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Abstract. A technique for controlling errors in the functioning of nodes
for the formation of q-valued pseudo-random sequences (PRS) operating
under both random errors and errors generated through intentional at-
tack by an attacker is provided, in which systems of characteristic equa-
tions are realized by arithmetic polynomials that allow the calculation
process to be parallelized and, in turn, allow the use of redundant mod-
ular codes device.
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1 Introduction

In the theory and practice of cryptographic information protection, one of the
key tasks is the formation of PRS which width, length and characteristics meet
modern requirements [1]. Many existing solutions in this area aim to obtain a
binary PRS of maximum memory length with acceptable statistical characteris-
tics [2]. However, recently it is considered that one of the further directions in the
development of means of information security (MIS) is the use of multi-valued
functions of the algebra of logic (MFAL), in particular, using the PRS over the
Galois field GF(q) (q > 2), which have a wider spectrum of unique properties
comparing to binary PRS [3].

The nodes of the formation of the q-valued PRS, like the others, are prone
to failures and malfunction, which leads to the occurrence of errors in their
functioning. In addition to random errors occurrence in the generation of PRS
related to “unintentional” failures and malfunctions caused by various causes:
aging of the element base, environmental influences, severe operating conditions,
etc. (reasons typical for reliability theory), there are deliberate actions of an at-
tacker aimed to create massive failures of electronic components of the formation

ar
X

iv
:1

80
9.

02
45

2v
1 

 [
cs

.C
R

] 
 7

 S
ep

 2
01

8



2 Oleg Finko et al.

nodes of PRS due to the hardware errors generation (one of the types of infor-
mation security threats) [4].

Many methods have been developed to provide the necessary level of relia-
bility of the digital devices functioning; the most common are backup methods
and methods of noise-immune coding. However, backup methods do not provide
the necessary levels of operation reliability with limitations on hardware costs,
and methods of noise-immune coding are not fully adapted to the specifics of the
construction and operation of MIS, in particular, generators of q-valued PRS.

The work [5] offers a solution that overcomes the complexity of using code
control for the nodes of the binary PRS generation, based on the “arithmetic” of
logical count and the application of the redundant modular code device, which
provides the necessary level of security for their functioning. However, the solu-
tion obtained is limited to exclusive applicability in the formation of binary PRS.
At the same time, work [6], is known where by means of “arithmetic” of logical
count the task of parallelizing the nodes of forming of binary PRS is solved,
but without monitoring their functioning. As a result, it becomes necessary to
generalize the solutions obtained to ensure the security of the functioning of the
nodes of q-valued PRS formation.

2 General Principles of Building Generators of q-valued
PRS

The most common and tested methods for PRS are algorithms and devices of
PRS generation — linear recurrent shift registers (q-LFSR) with feedback —
based on the use of recurrent logical expressions [2].

The construction of the q-LFSR over the field GF(q) is carried out from the
given generating polynomial:

K(x) =

m∑
i=0

km−ix
m−i, (1)

where m — is the polynomial degree K(x), m ∈ N ; ki ∈ GF (q), km = 1, k0 6= 0.

Thus, the q-LFSR element is formed in accordance with the following char-
acteristic equation [7]:

ap+m = −km−1ap+m−1 − km−2ap+m−2 − . . .− k1ap+1 − k0ap. (2)

The Eq. (2) is a recursion which describes an infinite q-valued PRS with
period qm − 1 (with nonzero initial state, as well as under condition that the
polynomial (1) is primitive over the field GF(q)), each nonzero state appears
once per period.

A homogeneous recurrent Eq. (2) can be presented in the following form:

ap+m = km−1ap+m−1 ⊕ km−2ap+m−2 ⊕ . . .⊕ k1ap+1 ⊕ k0ap
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or

ap+m =

m⊕
i=1

ki−1ap+i−1, (3)

where ⊕ — is the symbol of addition on module q.
The q-LFSR corresponding to the polynomial (3) is shown in Fig. 1, whose

cells contain field GF(q) elements: ap, . . . , ap+m−1.

// ap+m−1

��

// ap+m−2

��

// ap+1

��

// ap

��

//Output

ap+m km−1 //
⊙
��

km−2 //
⊙
��

· · · · · · k1 //
⊙
��

k0 //
⊙

⊕ ⊕
oo oo

⊕
oo

Fig. 1. Structural diagram of the operation of the sequential q-LFSR in accordance
with formula (3) (⊕ and � — according to transaction of addition and multiplication
of the mod q)

3 Analysis of Possible Modifications q-valued PRS
Caused by the Error Occurred

It is known that the consequences of accidental errors that occur during the PRS
generation associated with “unintentional” failures, as well as the consequences
of intentional actions by an attacker based on the use of thermal, high-frequency,
ionizing or other external influences in order to obtain mass malfunctions of
the equipment by initiation of calculation errors, lead to similar types of PRS
modification.

Fig. 2 shows main types of modification of PRS over the GF(q) field. The
attacker’s actions based on error generation are highly effective for most of the
known and currently used algorithms for generating q-valued PRS [8–10]. It
is known [11] that the probability of error generation is proportional to the
irradiation time of the respective registers in a favorable state for the error
occurrence and to the number of bits within which an error is expected. This
type of impact has not been sufficiently studied and therefore represents a threat
to the information security of modern and promising MIS functioning.

One of the ways to solve this problem is to develop a technique for improving
the safety of the operation of the MIS nodes most susceptible to these effects, in
particular, the nodes of q-valued PRS formation.
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a)

… 3  7  2  1  0  4  ...

…  3  0  4  5  0  4 ...

Addition

…  3  7  2  1  0  4 … 1 3 6 4

b)

Removal

…  3  x  x  x  0  4  ...

c)
Change in order

… * 7  2  3  1  5  2  0  4  * * ...

d)

Change

… 3  7  2  1  0  4  ...

…  3  7  2  1  0  4  ...…  3  7  2  1  0  4  ...

Im
p
a
ct

Im
p
a
ct

Im
p
a
ct

Im
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ct

Im
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a
ct

Fig. 2. The main types of PRS modification: a) change in the elements of the PRS,
b) addition of new PRS elements, c) removal of the CAP elements, d) change in the
order of the PRS elements

4 Analysis of Ways to Control the Generation of q-valued
PRS

Currently, the necessary level of security for the functioning of the nodes for the
q-valued PRS formation is achieved both through the use of redundant equip-
ment (structural backup) and temporary redundancy due to various calculations
repetition.

In the field of digital circuit design solutions based on the use of block re-
dundant coding methods are known. To apply these methods to q-valued PRS
generators it is necessary to solve the problem of parallelizing the calculation
process of the q-valued PRS.

The solution of the problem is based on the use of classical parallel recursion
calculation algorithms [12], for which the characteristic Eq. (3) corresponding to
the generating polynomial (2) can be represented as a system of characteristic
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equations: 

at,m−1 =
m⊕
i=1

k
(m−1)
i−1 at−1, p+i−1,

at,m−2 =
m⊕
i=1

k
(m−2)
i−1 at−1, p+i−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

at, 1 =
m⊕
i=1

k
(1)
i−1at−1, p+i−1,

at, 0 =
m⊕
i=1

k
(0)
i−1at−1, p+i−1,

(4)

where k
(j)
i−1 ∈ GF(q); j = 0, 1, . . . , m− 2, m− 1.

The system (4) forms an information matrix:

GInf =

∥∥∥∥∥∥∥∥∥∥∥∥

k
(m−1)
0 k

(m−1)
1 . . . k

(m−1)
m−2 k

(m−1)
m−1

k
(m−2)
0 k

(m−2)
1 . . . k

(m−2)
m−2 k

(m−2)
m−1

...
...

. . .
...

...

k
(1)
0 k

(1)
1 . . . k

(1)
m−2 k

(1)
m−1

k
(0)
0 k

(0)
1 . . . k

(0)
m−2 k

(0)
m−1

∥∥∥∥∥∥∥∥∥∥∥∥
.

Similar result can be obtained in another convenient way [1]:

GInf =

∥∥∥∥∥∥∥∥∥∥∥

km−1 km−2 . . . k1 k0
1 0 . . . 0 0

0 1
. . . 0 0

0 0 . . . 0 0
0 0 . . . 1 0

∥∥∥∥∥∥∥∥∥∥∥

m

,

where the elements raised to the power m are of a matrix which is created
according to the known rules of linear algebra for the calculation of the next
q-valued element of the PRS ap+m:∥∥∥∥∥∥∥∥∥∥∥

ap+m
ap+m−1

...
ap+2

ap+1

∥∥∥∥∥∥∥∥∥∥∥
=

∣∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥∥

ap+m−1
ap+m−2

...
ap+1

ap

∥∥∥∥∥∥∥∥∥∥∥
·

∥∥∥∥∥∥∥∥∥∥
km−1 . . . k0

1 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0

∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣∣∣∣
q

,

where |·|q — is the smallest nonnegative deduction of the number “·” on mod-
ule q.

The technique for raising a matrix to the power can be performed with help
of symbolic calculations in any computer algebra system with the subsequent
simplification (in accordance with the axioms of the algebra and logic) of the
elements of the resulting matrix of the form Y kbj = kj according to the rules:
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1) kbj = kj ; 2) Y = 0, for even Y and Y = 1, for odd Y . Thus, we obtain the
t-block of PRS:

At = |GInf ·At−1|q ,

where

At =
[
at, p+m−1 at, p+m−2 . . . at, 1 at, 0

]>
,

At−1 =
[
at−1, p+m−1 at−1, p+m−2 . . . at−1, 1 at−1, 0

]>
.

To create conditions for the use of a separable linear redundant code, we
obtain a generating matrix GGen, consisting of the information and verification
matrixes by adding in the (4) test expressions:

at, p+m−1 =
m⊕
i=1

k
(m−1)
i−1 at−1, p+i−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

at, 0 =
m⊕
i=1

k
(0)
i−1at−1, p+i−1,

a∗t, p+r−1 =
r⊕
i=1

c
(r−1)
i−1 at−1, p+i−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

a∗t, 0 =
r⊕
i=1

c
(0)
i−1at−1, p+i−1,

where k
(j)
i−1, c

(z)
i−1 ∈ GF(q); z = 0, . . . , r − 1; r — is the number of redundant

symbols of the applied linear code; j = 0, . . . , m− 1.
The forming matrix takes the form:

GGen =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

k
(m−1)
0 k

(m−1)
1 . . . k

(m−1)
m−2 k

(m−1)
m−1

...
...

. . .
...

...

k
(0)
0 k

(0)
1 . . . k

(0)
m−2 k

(0)
m−1

c
(r−1)
0 c

(r−1)
1 . . . c

(r−1)
r−2 c

(r−1)
r−1

...
...

. . .
...

...

c
(0)
0 c

(0)
1 . . . c

(0)
r−2 c

(0)
r−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Then the t-block of the q-valued PRS with test digits (linear code block)

A∗t =
[
at, p+m−1 . . . at, 0 a

∗
t, p+r−1 . . . a

∗
t, 0

]>
is calculated as:

A∗t = |GGen ·At−1|q .

The anti-jamming decoding procedure is performed using known rules [13].
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The use of linear redundant codes and “hot” backup methods is not the only
option for realizing functional diagnostics and increasing the fault tolerance of
digital devices. Important advantages for these purposes are found in arithmetic
redundant codes, in particular, the so-called AN-codes and codes of modular
arithmetic (MA). However, arithmetic redundant codes are not applicable to
logical data types. In logical calculations, their structure collapses, which leads
to the impossibility of monitoring errors in logical calculations.

The use of arithmetic redundant codes to control logical data types must be
ensured by the introduction of additional procedures related to the “arithmetic”
of the logical count.

5 The Procedure for Parallelizing the Generation of
q-valued PRS by Means of Arithmetic Polynomials

Parallelizing the “calculation” processes of complex systems or minimizing the
number of operations involving the use of all resources makes it possible to
achieve any utmost characteristic or quality index, which in turn is necessary in
most practically important cases. In turn, the new direction formed at the end
of the last century – parallel-logical calculations through arithmetic (numerical)
polynomials [14], also allowed to provide “useful” structural properties. It be-
came possible to use arithmetic redundant codes to control logical data types
and increase the fault tolerance of implementing devices by representing arith-
metic expressions [14] as logical operations, in particular, by linear numerical
polynomials (LNP) and their modular forms [15].

In [5] an algorithm for parallelizing the generation of binary PRS is presented
based on the representation of systems of generating recurring logical formulas
by means of LNP offered by V. D. Malyugin, which allowed using the redun-
dant modular code device to control the errors of the functioning of the PRS
generation nodes and, ensure the required safety of their functioning in the MIS.

To ensure the possibility of applying code control methods to generators of
q-valued PRS, it is necessary to solve the problem of parallelizing the process
of calculating them, while in [6] in general terms, approach for the synthesis of
parallel generators of q-valued PRS on arithmetic polynomials is presented, the
essence of which is the following.

Let a0, a1, a2, . . . , am−1, . . . — be the elements of the q-valued PRS satis-
fying the recurrence Eq. (3). Knowing that random element ap (p ≥ m) of the
sequence a0, a1, a2, . . . , am−1, . . . is determined by the preceding m elements,
let us present the elements ap+m, ap+m+1, . . . , ap+2m−1 of the section of the q-
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valued PRS by the length m in the form of a system of characteristic equations:

ap+m =
m⊕
i=1

ki−1ap+i−1,

ap+m+1 =
m⊕
i=1

ki−1ap+i,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ap+2m−1 =
m⊕
i=1

ki−1ap+i+m−2,

(5)

where [ap+m ap+m+1 . . . ap+2m−1] — is the vector of the m-state of the q-valued
PRS (or the internal state of the q-LFSR on m-cycle of work).

By analogy with [5] let us express the right-hand sides of the system (5)
through the given initial conditions and let us write it as the m MFAL system
of m variables:

f1 (ap, ap+1, . . . , ap+m−1) =
m⊕
i=1

k
(0)
i−1ap+i−1,

f2 (ap, ap+1, . . . , ap+m−1) =
m⊕
i=1

k
(1)
i−1ap+i−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fm (ap, ap+1, . . . , ap+m−1) =
m⊕
i=1

k
(m−1)
i−1 ap+i−1,

(6)

where the coefficients k
(j)
i−1 ∈ {0, 1, . . . , q− 1} (i = 1, . . . , m; j = 0, . . . , m− 1)

are formed after expressing the right-hand parts of the system (5) through given
initial conditions.

It is known that random MFAL can be represented in the form of an arith-
metic polynomial in simple way [16,17]:

L (ap, ap+1, . . . , ap+m−1) =

qm−1−1∑
i=0

li a
i0
p a

i1
p+1 . . . a

im−1

p+m−1, (7)

where au ∈ {0, 1, . . . , q−1}; u = 0, . . . , m−1; li — i-coefficient of an arithmetic
polynomial; (i0 i1 . . . im−1)q — representation of the parameter i in the q-scale
of notation:

(i0 i1 . . . im−1)q =

m−1∑
u=0

iuq
m−u−1 (iu ∈ 0, 1, . . . , q − 1);

aiuu =

{
1, iu = 0,

au, iu 6= 0.

Similar to [16,17] let us implement the MFAL system (6) by computing some
arithmetic polynomial. In order to do this, we associate the MFAL system (6)
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with a system of arithmetic polynomials of the form (7), we obtain:

L1 (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

l1, i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1,

L2 (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

l2, i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lm (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

lm, i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1.

(8)

Let us multiply the polynomials of the system (8) by weights qe−1 (e =
1, 2, . . . , m):

L∗1 (ap, ap+1, . . . , ap+m−1) = q0L1 (ap, ap+1, . . . , ap+m−1)

=
qm−1−1∑
i=0

l∗1,i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1,

L∗2 (ap, ap+1, . . . , ap+m−1) = q1L2 (ap, ap+1, . . . , ap+m−1)

=
qm−1−1∑
i=0

l∗2,i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L∗m (ap, ap+1, . . . , ap+m−1) = qm−1Lm (ap, ap+1, . . . , ap+m−1)

=
qm−1−1∑
i=0

l∗m,i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1,

where l∗e, i = qe−1le, i (e = 1, 2, . . . ,m; i = 0, . . . , qm − 1).

Then we get:

L (ap, ap+1, . . . , ap+m−1) =

qm−1−1∑
i=0

d∑
e=1

l∗e, i a
i0
p a

i1
p+1 . . . a

im−1

p+m−1 (9)

or using the provisions of [18]:

D (ap, ap+1, . . . , ap+m−1) =

∣∣∣∣∣∣
qm−1−1⊕
i=0

vi a
i0
p a

i1
p+1 . . . a

im−1

p+m−1

∣∣∣∣∣∣
qm

, (10)

where

vi =

m⊕
e=1

l∗e, i (i = 0, 1, . . . , qm−1 − 1).

Let us calculate the values of the desired MFAL. For this, the result of the cal-
culation (10) is presented in the q-scale of notation and we apply the camouflage
operator Ξw{D (ap, ap+1, . . . , ap+m−1)}:
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Ξw{D (ap, ap+1, . . . , ap+m−1)} =

∣∣∣∣⌊D (ap, ap+1, . . . , ap+m−1)

qw

⌋∣∣∣∣
q

, where w — is the desired q-digit of the representationD (ap, ap+1, . . . , ap+m−1).
The presented method, based on the MFAL arithmetic representation, makes

it possible to control the q-valued PRS generation errors by means of arithmetic
redundant codes.

6 Control of Errors in the Operation of Generators of
q-valued PRS by Redundant MA Codes

In MA, the integral nonnegative coefficient l∗e, i of an arithmetic polynomial (9)
is uniquely presented by a set of balances on the base of MA (s1, s2, . . . , sη <
< sη+1 < . . . < sψ — simple pairwise):

l∗e, i = (α1, α2, . . . , αη, αη+1, . . . , αψ)MA, (11)

where ατ =
∣∣l∗e, i∣∣sτ ; τ = 1, 2, . . . , η, . . . , ψ. The working range Sη = s1s2 . . . sη

must satisfy Sη > 2g, where g =
∑

1≤ε≤σ
θε — is the number of bits required to

represent the result of the calculation (9).
Balances α1, α2, . . . , αη are informational, and αη+1, . . . , αψ — are con-

trol. In this case, MA is called extended and covers the complete set of states
presented by all the ψ balances. This area is the full MA range [0, Sψ), where
Sψ = s1s2 . . . sηsη+1 . . . sψ, and consists of the operating range [0, Sη), defined
by the information bases of the MA, and the range defined by the redundant
bases [Sη, Sψ), representing an invalid area for the results of the calculations.
This means that operations on numbers l∗e, i are performed in the range [0, Sψ).
Therefore, if the result of the MA operation goes beyond the limits Sη, then the
conclusion about the calculation error follows.

Let us study the MA given by the s1, s2, . . . , sη, . . . , sψ bases. Each coeffi-
cient l∗e, i of a polynomial (9) is presented in the form (11) and we obtain an MA
redundant code, represented by a system of polynomials:

U (1) = L(1) (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

∑d
e=1 l

∗(1)
e, i ai0p a

i1
p+1 . . . a

im−1

p+m−1,

U (2) = L(2) (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

∑d
e=1 l

∗(2)
e, i ai0p a

i1
p+1 . . . a

im−1

p+m−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

U (η) = L(η) (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

∑d
e=1 l

∗(η)
e, i ai0p a

i1
p+1 . . . a

im−1

p+m−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

U (ψ) = L(ψ) (ap, ap+1, . . . , ap+m−1) =
qm−1−1∑
i=0

∑d
e=1 l

∗(ψ)
e, i ai0p a

i1
p+1 . . . a

im−1

p+m−1.

(12)
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Substituting in (12) the values of the MA balances for the corre-
sponding bases for each coefficient (9) and the values of the variables
ap, ap+1, . . . , ap+m−1, we obtain the values of the polynomials of the system
(12), where U (1), U (2), . . . , U (η), . . . , U (ψ) — are nonnegative integrals. In ac-
cordance with the Chinese balances theorem, we solve the system of equations:

U∗ =
∣∣U (1)

∣∣
s1
,

U∗ =
∣∣U (2)

∣∣
s2
,

. . . . . . . . . . . .

U∗ =
∣∣U (η)

∣∣
sη
,

. . . . . . . . . . . .

U∗ =
∣∣U (ψ)

∣∣
sψ
.

(13)

Since s1, s2, . . . , sη, . . . , sψ are simple pairwise, the only solution (13) gives
the expression:

U∗ =

∣∣∣∣∣
ψ∑
d=1

Sd, ψµd, ψU
(d)

∣∣∣∣∣
Sψ

, (14)

where Sd, ψ =
Sψ
sd

, µd, ψ =
∣∣∣S−1d, ψ∣∣∣

sd
, Sψ =

ψ∏
d=1

sd.

The occurrence of the calculation result (14) in the range (test expression)

0 ≤ U∗ < Sη,

means no detectable calculation errors.
Otherwise, the procedure for restoring the reliable functioning of the q-valued

PRS generator can be implemented according to known rules [19].

7 Conclusion

A secure parallel generator of q-valued PRS on arithmetic polynomials is pre-
sented. The implementation of generators of q-valued PRS using arithmetic poly-
nomials and redundant MA codes makes it possible to obtain a new class of so-
lutions aimed to safely implement logical cryptographic functions. At the same
time, both functional monitoring of equipment (in real time, which is essential
for MIS) and its fault tolerance is ensured due to the possible reconfiguration of
the calculator structure in the process of its degradation. The classical q-LFSR,
studied in this work, forms the basis of more complex q-valued PRS generators.
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