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Abstract. Since their introduction in the late 90’s, side-channel attacks
have been considered as a major threat against cryptographic imple-
mentations. This threat has raised the need for formal leakage models in
which the security of implementations can be proved. At Eurocrypt 2013,
Prouff and Rivain introduced the noisy leakage model which has been
argued to soundly capture the physical reality of power and electromag-
netic leakages. In their work, they also provide the first formal security
proof for a masking scheme in the noisy leakage model. However their
work has two important limitations: (i) the security proof relies on the
existence of a leak-free component, (ii) the tolerated amount of informa-
tion in the leakage (aka leakage rate) is of O(1/n) where n is the security
parameter (i.e. the number of shares in the underlying masking scheme).
The first limitation was nicely tackled by Duc, Dziembowski and Faust
one year later (Eurocrypt 2014). Their main contribution was to show
a security reduction from the noisy leakage model to the conceptually
simpler random-probing model. They were then able to prove the secu-
rity of the well-known Ishai-Sahai-Wagner scheme (Crypto 2003) in the
noisy leakage model. The second limitation was addressed in a paper by
Andrychowicz, Dziembowski and Faust (Eurocrypt 2016) which makes
use of a construction due to Ajtai (STOC 2011) to achieve security in
the strong adaptive probing model with a leakage rate of O(1/ log n).
The authors argue that their result can be translated into the noisy
leakage model with a leakage rate of O(1) by using secret sharing based
on algebraic geometric codes. In terms of complexity, the protected pro-
gram scales from |P | arithmetic instructions to Õ(|P | n2). According to
the authors, this Õ(n2) blow-up could be reduced to Õ(n) using packed
secret sharing but no details are provided. Moreover, such an improve-
ment would only be possible for a program of width at least linear in
n. The issue of designing an explicit scheme achieving Õ(n) complexity
blow-up for any arithmetic program is hence left open.

In this paper, we tackle the above issue: we show how to securely
compute in the presence of noisy leakage with a leakage rate Õ(1) and
complexity blow-up Õ(n). Namely, we introduce a transform that turns
any program P composed of arithmetic instructions on some filed F into
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a (functionally equivalent) program Π composed of |Π| = O(|P |n log n)
arithmetic instructions which can tolerate some (quasi-constant) amount
of noisy leakage on its internal variables (while revealing negligible infor-
mation). We use a polynomial encoding allowing quasilinear multipli-
cation based on the fast Number Theoretic Transform (NTT). We first
show that our scheme is secure in the random-probing model with leak-
age rate O(1/ log n). Using the reduction by Duc et al. this result can
be translated in the noisy leakage model with a O(1/|F|2 log n) leakage
rate. However, a straight application of this reduction is not satisfactory
since our construction requires |F| = O(n). In order to bypass this issue
(which is shared with the construction of Andrychowicz et al.), we pro-
vide a generic security reduction from the noisy leakage model at the
logical-instruction level to the random-probing model at the arithmetic
level. This reduction allows us to prove the security of our construction
in the noisy leakage model with leakage rate Õ(1).

1 Introduction

Side-channel attacks have been considered as a major threat against crypto-
graphic implementations since their apparition in the late 90’s. It was indeed
shown that even a tiny dependence between the data processed by a device and
its side-channel leakage (e.g. running time, power consumption, electromagnetic
emanation) could allow devastating key-recovery attacks against the implemen-
tation of any cryptosystem secure in the black-box model (i.e. the model in
which the adversary only sees the input-output behaviour of the cryptosys-
tem) [15,18,19]. The so-called physical security of cryptographic implementa-
tions has then become a very active research area and many efficient counter-
measures have been proposed to mitigate these side-channel attacks. However,
most of these countermeasures are only empirically validated or they are proven
secure in a weak adversarial model where, for instance, an attacker only exploits
a small part of the available leakage.

An important step towards a more formal treatment of side-channel security
was made by Micali and Reyzin in 2004 in their physically observable cryptog-
raphy framework [20]. In particular, they formalized the assumptions that a
cryptographic device can at least keep some secrets and that only computation
leaks information. This framework was then specialized into the leakage resilient
cryptography model introduced by Dziembowski and Pietrzak in [14] which gave
rise to a huge amount of subsequent works. In this model, a leaking computation
is divided into elementary operations that are assumed to leak some informa-
tion about their inputs through a leakage function whose range is bounded (i.e.
taking values in {0, 1}λ for some parameter λ). Many new leakage-resilient cryp-
tographic primitives were proposed as well as so-called compilers that can make
any computation secure in this model [16].

While the leakage resilient literature has achieved considerable theoretical
advances, the considered model does not fully capture the physical reality of
power or electromagnetic leakages (see for instance [24]). In particular for a
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leakage function f : {0, 1}m → {0, 1}λ, the parameter λ must be (significantly)
smaller than m. This means, for instance, that the leakage of an AES computa-
tion should be smaller than 128 bits, whereas in practice a power trace resulting
from an AES computation can take several kilobytes (or even megabytes). On
the other hand, it is fair to assume that the side-channel leakage is noisy in
such a way that the information f(x) leaked by an elementary operation on a
variable x is not enough to fully recover x. This intuition was formalized in the
noisy leakage model introduced by Prouff and Rivain in 2013 [21]. In a nutshell,
this model considers that an elementary operation with some input x leaks a
noisy leakage function f(x) (with a random tape parameter which is omitted
from the presentation). The noisy feature is then captured by assuming that an
observation of f(x) only implies a bounded bias in the probability distribution
of x. Namely the statistical distance between the distribution of x and the dis-
tribution of x given the observation f(x) is bounded by some parameter δ which
shall be called the leakage rate in the following. The function f is then said to be
a δ-noisy leakage function. Notably, this model does not imply any restriction
on the leakage size (i.e. on the range of f) but only on the amount of useful
information it contains.

1.1 Related Works

Probing-Secure Circuits. In a seminal paper of 2003, Ishai, Sahai and Wag-
ner considered the problem of building Boolean circuits secure against probing
attacks [17]. In the so-called probing model, an adversary is allowed to adaptively
probe up to t wires of the circuit. They show how to transform any circuit C
with q logic gates into a circuit C ′ with O(qt2) logic gates that is secure against
a t-probing adversary. Their scheme consists in encoding each Boolean variable
x as a random sharing (x1, x2, . . . , xn) satisfying x1 + x2 + . . . + xn = x over
F2, where n = 2t + 1. They show how to transform each logic gate into a gadget
that work on encoded variables. Their construction is actually secure against an
adversary that can adaptively place up to t probes per such gadget. The so-called
ISW construction has since then served as a building block in many practical
side-channel countermeasures known as higher-order masking schemes (see for
instance [10,11,22]). Its efficiency has also been improved in recent works [5,6]
which respectively show how to optimize the randomness consumption and the
number of multiplications (while conserving similar asymptotic complexity).

Towards Noisy-Leakage Security. In [21], Prouff and Rivain proposed the
first formal security proof for an ISW-like masking scheme in the noisy leakage
model. In particular they generalize the previous work of Chari et al. [7] and
show that in the presence of noisy leakage on the shares x1, x2, . . . , xn the
information on x becomes negligible as n grows. Specifically, they show that for
any δ-noisy leakage function f , the mutual information between x and the leakage
(f(x1), f(x2), . . . , f(xn)) is of order O(δn). They also provide a security proof
for full masked computation in the noisy leakage model, however their result
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has two important limitations. First they assume the existence of a leak-free
component that can refresh a sharing without leaking any information. Second,
their proof can only tolerate an δ-noisy leakage with δ = O(1/n). Namely, the
leakage rate must decrease linearly with the number of shares. Note that this
second limitation is inherent to masking schemes based on the ISW construction
since it implies that each share leaks O(n) times. Some practical attacks have
been exhibited that exploit this issue [4].

Avoiding Leak-Free Components. In [13], Duc, Dziembowski and Faust
tackled the first of these two limitations. Namely they show how to avoid the
requirement for a leak-free component with a nice and conceptually simpler
security proof. Applying the Chernoff bound, they show that the ISW scheme
is secure in the δ-random probing model in which each operation leaks its full
input with a given probability δ = O(1/n) (and leaks nothing with probability
1 − δ). Their main contribution is then to show that any δ′-noisy leakage f(x)
can be simulated from a δ-random probing leakage φ(x) with δ′ ≤ δ · |X |, where
X denotes the definition space of x. In other words, if the δ-random probing
leakage of a computation contains no significant information, then neither does
any δ′-noisy leakage of this computation as long as δ ≤ δ′ · |X |. The ISW scheme
is therefore secure against δ′-noisy leakage for δ′ = O(1/n|X |). Note that for an
arithmetic program working over some field F, each elementary operation takes
up to two inputs on F, meaning X = F

2 and δ′ = O(1/n|F|2). This way, the work
of Duc et al. avoid the strong requirement of leak-free components. However, it
still requires a leakage rate of O(1/n).

Towards a Constant Leakage Rate. This second limitation was addressed
by Andrychowicz, Dziembowski, and Faust [3]. They propose a scheme –that we
call ADF scheme hereafter– which is based on Shamir’s secret sharing [23] and
a refreshing algorithm from expander graphs due to Ajtai [1]. The number of
instructions in the protected program is multiplied by a factor O(n3) which can
be reduced to O(n2 log n) using an FFT-based multiplication. They show that
this construction achieves security in the strong probing model where an adver-
sary can adaptively place up to O(1/ log n) probes per elementary operation. In
the random probing model, the result is improved to a constant ratio. Applying
the reduction from [13] they obtain the security in the noisy model for a leakage
rate δ = O(1/|F|2).1 For the standard version of their scheme based on Shamir’s
secret sharing, the base field F must be of size O(n) which implies a leakage
rate δ = O(1/n2) in the noisy leakage model. Fortunately, their scheme can be
improved by using secret sharing based on algebraic geometric codes [8] (at the
cost of weaker parameters). As argued in [3], these codes operate over fields of

1 Note that they obtain a leakage rate O(1/|F|) in the restrictive model where input
variables leak independently. In the present paper, we make the more realistic
assumption that the leakage function applies to the full input of each elementary
operation.
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constant size and hence there basic operations can be implemented by constant
size Boolean circuits, which gives a δ = O(1) noisy leakage rate with the reduc-
tion from [13]. We show in this paper that a simple reduction actually exists to
achieve δ = Õ(1) noisy leakage security from a random-probing secure scheme
on a field F = O(n). This reduction could also be used to get tight noisy-leakage
security for the ADF scheme without algebraic geometric codes (i.e. with simple
Shamir’s secret sharing).

Towards a Quasilinear Complexity. The leakage-secure schemes in the cur-
rent state-of-the-art imply a (quasi)quadratic blow-up of the complexity: the pro-
tected program (or circuit) scales from |P | arithmetic instructions to Õ(|P | n2).
Another challenging issue is hence to bridge the gap between this Õ(n2) blow-
up and the theoretically achievable Õ(n) blow-up. In [3], the authors claim that
the complexity of their scheme can be improved by using packed secret shar-
ing [2,12]. As explained in [2], the use of packed secret sharing allows to securely
compute (in the presence of leakage) an addition or a multiplication on several
encoded values in parallel at the same asymptotic cost as a single operation
with a standard secret sharing. Using the transform of [12], one can improve the
complexity of the ADF scheme on an arithmetic program P from O(|P |n2 log n)
to O(|P | log |P | n2 log n/w) where w denotes the width of P . Roughly speaking,
the width of P is the number of operations that can be computed in parallel
throughout an execution of P which satisfies w = O(|P |/d) where d is the depth
of P (considered as a circuit). For a circuit of width w = Θ(n), this approach
hence results in a complexity blow-up quasilinear in n. For a constant-size circuit
(as the AES cipher) on the other hand, only a constant factor can be saved and
the complexity blow-up remains (quasi)quadratic.

1.2 Our Contribution

In this paper we show how to securely compute any arithmetic program (or
circuit) in the noisy leakage model with a leakage rate Õ(1) and with complex-
ity blow-up Õ(n). Our scheme is conceptually very simple and also practically
efficient provided that the computation relies on a base field F with appropriate
structure.

We consider an arithmetic program P that executes basic arithmetic instruc-
tions over some prime field F (additions, subtractions, and multiplications) sat-
isfying |F| = α · n + 1 for n being a power of 2 (in particular |F| = O(n) as
in [3]). Note that we prefer the terminology of (arithmetic) program composed
of instructions to the terminology of (arithmetic) circuit composed of gates but
the two notions are strictly equivalent.

Each internal variable a ∈ F of the computation is encoded into a random
tuple (a0, a1, . . . , an−1) that satisfies the relation a =

∑n−1
i=0 aiω

i for some ran-
dom element ω ∈ F. In other words, a is encoded as the coefficient of a random
n-degree polynomial Q satisfying Q(ω) = a. It is worth noting that the security
of our scheme does not rely on the secrecy of ω but on its random distribu-
tion. We then show how to transform each arithmetic instruction of P into a
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corresponding secure gadget that works on encoded variables. Using a fast Num-
ber Theoretic Transform (NTT), we then achieve a multiplication gadget with
O(n log n) instructions.

We first show that our scheme is secure in the δ-random-probing model for
a parameter δ = O(1/ log n). Specifically, we show that for any program P with
a constant number of instructions |P |, the advantage of a δ-random-probing
adversary can be upper bounded by negl(λ) + negl′(n) where negl and negl′ are
some negligible functions and where λ denotes some security parameter that
impact the size of F (specifically we have λ = log α where |F| = α · n + 1). This
is shown at the level of a single NTT-based secure multiplication in a first place.
Then we show how to achieve compositional security, by interleaving each gadget
by a refreshing procedure that has some input-output separability property. Using
the Chernoff bound as in [13] we can then statistically bound the number of
leaking intermediate variables in each gadget. Specifically, we show that the
leakage in each gadget can be expressed as linear or quadratic combinations of the
input shares that do not reveal any information with overwhelming probability
(over the random choice of ω).

From our result in the random probing model, the security reduction of Duc
et al. [13] directly implies that our construction is secure in the δ′-noisy leakage
model for δ′ = O(1/|F|2 log n). However, since we require |F| = O(n) (as in the
standard ADF scheme) this reduction is not satisfactory. We then refine the
granularity of our computation by considering the noisy leakage model on logical
instructions working on constant-size machine words. In this model, we provide
a generic reduction from the random-probing model over F to the noisy leakage
model on logical instructions. Namely we show that any arithmetic program Π
secure under a δ-random-probing leakage gives rise to a functionally equivalent
program Π ′ that is secure under a δ′-noisy leakage at the logical instruction
level where δ′ = δ/O(log |F| log log |F|). Applying this reduction, our construction
achieves security in the δ′-noisy leakage model with δ′ = O

(
1/((log n)2 log log n)

)

for a complexity blow-up of O(n log n).
Table 1 hereafter gives a asymptotic comparison of our scheme and the previ-

ous schemes in the literature (with noisy leakage security): the ISW scheme [17]
with the reduction from [13], the ADF scheme with algebraic geometric codes [3],
the ADF scheme improved with packed secret sharing [2,3] (ADF-PSS). We
emphasize that for the latter case no detailed description and analysis have been
provided.

Table 1. Asymptotic comparison of secure schemes in the noisy leakage model.

ISW ADF ADF-PSS∗ Our result

Leakage rate O(1/n) O(1) O(1) Õ(1)

Complexity blow-up O(n2) Õ(n2) Õ(n2/w) Õ(n)
∗w stands for the width of the protected program.
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The paper is organized as follows. Section 2 provides background notions on
the noisy leakage model and the considered adversary. In Sect. 3 we describe
our secure quasilinear multiplication scheme and we prove its security in the
random probing model. Section 4 then presents the refreshing procedure used
to get compositional security and provides a security proof for a full arithmetic
program. In Sect. 5 we give our generic reduction from the random-probing model
over F to the noisy leakage model on logical instructions and we apply this
reduction to our scheme to get our final result. We finally discuss practical
aspects of our scheme and related open problems in Sect. 6.

2 Leakage and Adversary

In the rest of the paper, we shall denote by x ← X the action of picking x
uniformly at random over some set X . Similarly, for a probabilistic algorithm A,
we denote by y ← A(x) the action of running A on input x with a fresh random
tape and setting y to the obtained result.

2.1 Noisy Leakage Model

The noisy leakage model introduced by Prouff and Rivain in [21] follows the only
computation leaks paradigm [20]. In this paradigm, the computation is divided
into subcomputations; each works on a subpart x of the current computation
state and leaks some information f(x), where f is called the leakage function. In
practice, f is a so-called randomized function that takes two arguments, the input
variable x and a random tape ρ that is large enough to model the leakage noise.
A subcomputation with input variable x hence leaks f(x, ρ) for a fresh random
tape ρ. For the sake of simplicity, in the sequel we shall omit the parameter ρ
and see f(x) as a random realization of f(x, ρ). Moreover, the definition space
of the input x shall be called the domain of f , and we shall write f : X → Y for
a randomized function with domain X and image space Y.

In the noisy leakage model [21], a noisy leakage function f is defined as a
randomized function such that an observation f(x) only implies a bounded bias
in the probability distribution of x. Namely, the statistical distance between the
distributions of x and (x | f(x)) is assumed to be bounded by some bias δ. Let
X and X ′ be two random variables defined over some set X . We recall that the
statistical distance between X and X ′ is defined as:

Δ(X;X ′) =
1
2

∑

x∈X
|Pr(X = x) − Pr(X ′ = x)|. (1)

The notion of noisy leakage function is then formalized as follows:

Definition 1 ([21]). A δ-noisy leakage function is a randomized function f :
X → Y satisfying

∑

y∈Y
Pr(f(X) = y) · Δ(X; (X | f(X) = y)) ≤ δ, (2)

where X is a uniform random variable over X .
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In practice, the leaking input x might not be uniformly distributed but one
must specify a distribution to have a consistent definition, and as argued in
[21], the uniform distribution is a natural choice. Also note that in the original
paper [21], the L2 norm was used for the definition of the statistical distance
while, as argued in [13], the L1 norm is a more standard choice (that we also
adopt in this paper).

A conceptually simpler model, known as the random probing model, was first
used in [17] and formalized in the work of Duc, Dziembowski, and Faust [13].
Informally speaking, this model restricts the noisy leakage model to leakage
functions that leak their entire input with a given probability. These random-
probing leakage functions are formalized in the following definition.2

Definition 2. A δ-random-probing leakage function is a randomized function
φ : X → X ∪ {⊥} satisfying

φ(x) =

{
⊥ with probability 1 − δ

x with probability δ
(3)

It can be checked that such a function is a special case of δ-noisy leakage func-
tion.3 Moreover, it has been shown by Duc, Dziembowski, and Faust [13] that
every noisy leakage function f can be expressed as a composition f = f ′ ◦ φ
where φ is a random-probing leakage function. This important result enables to
reduce noisy-leakage security to random-probing security. It is recalled hereafter:

Lemma 1 ([13]). Let f : X → Y be a δ-noisy leakage function with δ < 1
|X | .

There exists a δ′-random-probing leakage function φ : X → X ∪ {⊥} and a
randomized function f ′ : X ∪ {⊥} → Y such that for every x ∈ X we have

f(x) = f ′(φ(x)) and δ′ ≤ δ · |X |. (4)

In the random-probing model, the total number of leaking operations can be
statistically bounded using the Chernoff bound as suggested in [13,17]. We shall
follow this approach in the present paper by using the following corollary.

Corollary 1 (Chernoff bound [9]). The δ-random probing leakage of a com-
putation composed of N elementary operations reveals the input of � > δN of
these elementary operations with probability lower than

ψ(�,N) = exp
(

− (� − δ N)2

� + δ N

)
. (5)

If � ≤ αn and N = βn, for some α, β and n with α/β > δ, the above gives

ψ(αn, βn) = exp
(

− (α − δβ)2

α + δβ
n
)
. (6)

2 Note that we use a different terminology from [13] where these are called δ-identity
functions.

3 To be tighter, a δ-random-probing leakage function is a δ (1 − 1
|X| )-noisy function.

This can be simply checked by evaluating (2).
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2.2 Leakage Adversary

We consider computation schemes that encode the data of a program in order to
make the leakage on the encoded data useless. An encoding Enc is a randomized
function that maps an element x ∈ F to a n-tuple Enc(x) ∈ F

n, where n is
called the encoding length, and for which a deterministic function Dec : F

n → F

exists that satisfies Pr(Dec(Enc(x)) = x) = 1 for every x ∈ F (where the latter
probability is taken over the encoding randomness).

Consider an arithmetic program P taking a string x ∈ F
s as input and exe-

cuting a sequence of instructions of the form μi ← μj ∗ μk, where ∗ denotes
some operations over F (addition, subtraction, or multiplication) and where
[μ0, μ1, . . . , μT ] denotes the memory of the program which is initialized with
x (and some constants). To achieve leakage security, the program P is trans-
formed into a functionally equivalent arithmetic program Π taking as input an
encoded string Enc(x) (where the encoding simply applies to each coordinate
of x). According to the defined leakage model, each executed instruction of Π
is then assumed to leak some noisy function f(μj , μk) of its pair of inputs. It
is further assumed that Π includes random sampling instructions μi ← F that
each leaks a noisy function of the generated random element f(μi). We denote
the overall leakage by L(Π,x). The compiler is then said to be leakage secure
if an observation of L(Π,x) does not reveal significant information about x.
More specifically, the leakage L(Π,x) must be indistinguishable from the leak-
age L(Π,x′) for every x′ ∈ F

s. This security notion is formalized as follows:

Definition 3 (Leakage Security). The program Π is ε-leakage secure (w.r.t.
leakage functions L) if every adversary A has advantage at most ε of distin-
guishing L(Π,x0) from L(Π,x1) for chosen x0 and x1, i.e. we have:

Adv Π, L
A :=

∣
∣
∣Succ Π, L

A − 1
2

∣
∣
∣ ≤ ε (7)

where

Succ Π, L
A = Pr

⎛

⎝
(x0,x1, μ) ← A(⊥)

b ← {0, 1} : A(x0,x1, μ, �) = b
� ← L(Π,xb)

⎞

⎠. (8)

In the above definition, μ ∈ {0, 1}∗ denotes any auxiliary information com-
puted by the adversary during the first round when she chooses the inputs x0

and x1. Note that for the definition to be sound, we only consider adversaries
A such that A(⊥) takes values over F

s × F
s × {0, 1}∗ and A(x0,x1, μ, �) takes

values over {0, 1} for every input (x0,x1, μ, �) ∈ F
s × F

s × {0, 1}∗ × span(L).
Lemma 1 provides a security reduction from the noisy leakage model to the

random probing model. This is formalized in the following corollary:

Corollary 2. Let Π be an arithmetic program that is ε-leakage secure w.r.t
δ-random-probing leakage functions. Then Π is ε-leakage secure w.r.t δ′-noisy
leakage functions, where δ′ = δ |F|2.
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Note that in the original version of Lemma 1 (see [13]), the authors need the
additional requirement that f ′ is efficiently decidable so that f ′(φ(x)) is com-
putable in polynomial time in |X |. We ignore this property in the present paper
since our security statements consider adversaries with unlimited computational
power.

3 Secure Multiplication in Quasilinear Complexity

In this section, we describe our encoding scheme and the associated secure mul-
tiplication. An important requirement of our construction is that the size n of
the underlying encoding must divide p−1

2 where p is the characteristic of F, that
is F must contain the 2n-th roots of unity. This implies that the size of the ele-
ments of F is in Ω(log n). Without loss of generality, we further assume that n
is a power of 2.

3.1 Our Encoding

Let ξ denote a primitive 2nth root of unity in F. Our encoding is based on a
random element ω ∈ F

∗ and is defined as follows:

Definition 4. Let ω ∈ F
∗ and a ∈ F. An ω-encoding of a is a tuple (ai)n−1

i=0 ∈ F
n

satisfying
∑n−1

i=0 aiω
i = a.

Our encoding function Enc maps an element a ∈ F to a random element
ω ∈ F

∗ and a random uniform ω-encoding of a:

Enc(a) = 〈ω, (a0, a1, . . . , an−1)〉. (9)

The corresponding decoding function Dec is defined as:

Dec
(〈ω, (a0, a1, . . . , an−1)〉

)
:= Decω(a0, a1, . . . , an−1) :=

n−1∑

i=0

aiω
i (10)

It is easy to check that we have Pr(Dec(Enc(a)) = a) = 1 for every a ∈ F. It is
worth noting that the security of our scheme does not rely on the secrecy of ω
but on its uniformity. Besides, we will consider that ω is systematically leaked
to the adversary.

3.2 Multiplication of Encoded Variables

Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be an ω-encoding of b. To compute
an ω-encoding (ci)n−1

i=0 of c = a · b we use the NTT-based polynomial multiplica-
tion.

Specifically, we first apply the NTT on (ai)i and (bi)i to obtain the polyno-
mial evaluations uj =

∑n−1
i=0 ai(ξj)i and vj =

∑n−1
i=0 bi(ξj)i for j ∈ [[0, 2n − 1]].

These evaluations are then pairwisely multiplied to get evaluations of the
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product sj = (2n)−1uj · vj for j ∈ [[0, 2n − 1]] (with a multiplicative factor
(2n)−1). Afterwards, we apply the inverse NTT to get coefficients ti that satisfy
∑2n−1

i=0 tiω
i = (

∑n−1
i=0 aiω

i) · (
∑n−1

i=0 biω
i). Eventually, we apply a compression

procedure to recover an n-size ω-encoding from the 2n-size ω-encoding (ti)i.
Due to the particular form of roots of unity, an NTT can be evaluated with
a divide and conquer strategy in 3 n log n arithmetic instructions (a detailed
description is given in Appendix A).

The overall process is summarized as follows:

(u0, u1, . . . , u2n−1) ← NTTξ(a0, a1, . . . , an−1, 0, . . . , 0)
(r0, r1, . . . , r2n−1) ← NTTξ(b0, b1, . . . , bn−1, 0, . . . , 0)

(s0, s1, . . . , s2n−1) ← (2n)−1(u0 · r0, u1 · r1, . . . , u2n−1 · r2n−1)
)

(t0, t1, . . . , t2n−1) ← NTTξ−1(s0, s1, . . . , s2n−1)
(c0, c1, . . . , cn−1) ← compress(t0, t1, . . . , t2n−1)

Compression Procedure. After computing the inverse NTT, we get a double-size
encoding (ti)2n−1

i=0 satisfying
∑2n−1

i=0 ti ωi = a · b. In order to obtain a standard
encoding with n shares, we simply set ci = ti + tn+iω

n for i ∈ [[0, n − 1]]. It is
not hard to see that the result is consistent.

3.3 Security in the Random Probing Model

We first focus on the NTT leakage security as it is the most complex part of our
scheme, and then provide a security proof for the whole multiplication.

Security of the NTT. We have the following result:

Theorem 1. Let ω be a uniform random element of F
∗, let (ai)n−1

i=0 be a uniform
ω-encoding of some variable a and let δ < 1/(6 log n). The NTTξ procedure on
input (ai)n−1

i=0 is ε-leakage secure in the δ-random-probing leakage model, where

ε =
n

|F| + exp
(

− (1 − 6δ log n)2

4
n
)
. (11)

The rest of the section gives a proof of Theorem 1. During the computation
of the NTT on an ω-encoding (ai)n−1

i=0 of a, all the leaking intermediate variables
(i.e. the inputs of arithmetic instructions) are linear combinations of the ai’s.
Specifically, every intermediate variable v occurring in the NTT computation
can be expressed as

v =
n−1∑

i=0

αiai (12)

where the αi’s are constant coefficients over F. In the following, we shall use the
notation

[v] = (α0, α1, . . . , αn−1)t (13)
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for the column vector of coefficients of such an intermediate variable. Similarly,
we shall denote [a] = (1, ω, ω2, . . . , ωn−1)t since we have a =

∑n−1
i=0 ωiai by defini-

tion. Moreover, we will denote by [v0, v1, . . . , v�] the matrix with column vectors
[v0], [v1], . . . , [v�]. In particular, we have [a0, a1, . . . , an−1] = In (where In stands
for the identity matrix of dimension n over F) and for ui =

∑n−1
j=0 aj(ξi)j (the

output elements of the NTT), the matrix [u0, u1, . . . , un−1] is a Vandermonde
matrix.

First consider an adversary that recovers � < n intermediate variables in the
computation of the NTT, denoted v1, v2, . . . , v�. Without loss of generality, we
assume that these intermediate variables are linearly independent (otherwise the
adversary equivalently gets less than � intermediate variables), which means that
the matrix [v1, v2, . . . , v�] has full rank. The following lemma gives a necessary
and sufficient condition for such a leakage to be statistically independent of a.

Lemma 2. Let v1, v2, . . . , v� be a set of � < n intermediate variables of the
NTT on input a uniform ω-encoding of a variable a. The distribution of the
tuple (v1, v2, . . . , v�) is statistically independent of a iff

[a] /∈ span([v1, . . . , v�]) , (14)

where span(·) refers to the linear span of the input matrix.

Proof. If [a] ∈ span([v1, . . . , v�]) then there exists constants γ1, γ2, . . . , γ� such
that [a] =

∑
i γi[vi] implying a =

∑
i γivi, and the distribution (v1, v2, . . . , v�) is

hence statistically dependent on a. On the other hand, if [a] /∈ span([v1, . . . , v�]),
then the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a =
∑n−1

j=0 ωjaj = γ0

v1 =
∑n−1

j=0 α1,jaj = γ1

v2 =
∑n−1

j=0 α2,jaj = γ2
...
v� =

∑n−1
j=0 αt,jaj = γ�

has |F|n−(�+1) solutions (a0, a1, . . . , an−1) for every (γ0, γ1, . . . , γ�) ∈ F
�+1. This

implies the statistical independence between a and (v1, v2, . . . , v�). �

The following lemma gives an upper bound on the probability that the above
condition is not fulfilled.

Lemma 3. Let ω be a uniform random element in F
∗ and let v1, v2, . . . , v� be a

set of � < n linearly independent intermediate variables of the NTT on input an
ω-encoding of a variable a. We have:

Pr
(
[a] ∈ span([v1, . . . , v�])

) ≤ �

|F| − 1
<

n

|F| , (15)

where the above probability is taken over a uniform random choice of ω.
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Proof. Let us denote A(x) =
∑n−1

i=0 aix
i so that [A(α)] = (1, α, α2, . . . , αn−1)t

for every α ∈ F, and in particular [a] = [A(ω)]. For any distinct � + 1 elements
α1, α2, · · · α�+1 ∈ F

∗, the matrix [A(α1), A(α2), . . . , A(α�+1)] has full rank since
it is a Vandermonde matrix with distinct input entries. This directly implies:

span([A(α1), A(α2), . . . , A(α�+1)])
︸ ︷︷ ︸

dim �+1

� span([v1, . . . , v�])
︸ ︷︷ ︸

dim �

, (16)

hence the set Ω = {α | [A(α)] ∈ span([v0, v1, . . . , v�])} has cardinality at most �.
By the uniform distribution of ω, we then have a probability at most �/(|F|−1) ≤
n/|F| to have ω ∈ Ω that is to have [a] ∈ span([v1, . . . , v�]). �

We now have all the ingredients to prove Theorem 1.

Proof. (Theorem 1) We will show that for any adversary A, the advantage
AdvNTT, L

A in distinguishing L(NTT,Enc(a(0))) from L(NTT,Enc(a(1))) for any
chosen elements a(0), a(1) ∈ F is lower than ε, where L(NTT,Enc(a)) denotes the
δ-random-probing leakage of the procedure NTTξ on input Enc(a) = 〈ω, (ai)n−1

i=0 〉.
Note that this leakage is a tuple in which each coordinate corresponds to an
arithmetic instruction in the computation of NTTξ that either equals ⊥ (with
probability 1 − δ) or the input of the instruction. We recall that the advantage
is defined as AdvNTT, L

A =
∣
∣SuccNTT, L

A − 1
2

∣
∣ where

SuccNTT, L
A = Pr

⎛

⎝
(a(0), a(1), μ) ← A(⊥)

b ← {0, 1} : A(a(0), a(1), μ, �) = b
� ← L(NTT, a(b))

⎞

⎠ (17)

Without loss of generality, we assume SuccNTT, L
A ≥ 1

2 . Indeed, for any adversary
with success probability 1

2 −AdvNTT, L
A , there exists an adversary A′ with success

probability 1
2 + AdvNTT, L

A (defined as A′(a(0), a(1), �) = 1 − A(a(0), a(1), μ, �)).
The procedure NTTξ is composed of N = 3n log n arithmetic instructions. In

the δ-random-probing model, each of these instructions leaks its input(s) with
probability δ. The number of instructions that leak hence follows a binomial
distribution with parameters N and δ. Let us denote by max� the event that � or
less instructions leak in the random-probing leakage L(NTT,Enc(a)). Since each
instruction takes at most two inputs over F, the adversary gets the values of at
most 2� intermediate variables whenever max� occurs. By the Chernoff bound
(see Corollary 1), the probability that more than � > Nδ arithmetic instructions
leak, namely the probability that ¬max� occurs, satisfies:

Pr(¬max�) ≤ ψ(�,N). (18)

From N = 3n log n and � < n
2 , we get that:

Pr(¬max�) ≤ exp
(

− (1 − 6δ log n)2

2 + 12δ log n
n
)

≤ exp
(

− (1 − 6δ log n)2

4
n
)
. (19)
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Now let assume that max� occurs for some � < n
2 and let denote v1, v2, . . . ,

v2� the recovered intermediate variables. Without loss of generality, we assume
that the recovered intermediate variables are linearly independent. Let us then
denote by free the event that [a] /∈ span([v1, . . . , v�]). By Lemma 3, we have

Pr(¬free) <
n

|F| . (20)

And let finally denote by succ the event that A outputs the right bit b on input
(a(0), a(1), μ, �) so that SuccNTT, L

A = Pr(succ). We can then write:

SuccNTT, L
A = Pr(max�) Pr(succ | max�) + Pr(¬max�) Pr(succ | ¬max�)

≤ Pr(succ | max�) + Pr(¬max�). (21)

In the same way, we have

Pr(succ | max�) ≤ Pr(succ | max� ∩ free) + Pr(¬free). (22)

By Lemma 2, we have that the leakage � is statistically independent of a(b) in (17)
whenever max� ∩ free occurs. This directly implies Pr(succ | max� ∩ free) = 1

2 ,
which gives

SuccNTT, L
A <

1
2

+ Pr(¬max�) + Pr(¬free). (23)

Hence, we finally get

AdvNTT, L
A < Pr(¬max�) + Pr(¬free) =

n

|F| + exp
(

− (1 − 6δ log n)2

4
n
)
, (24)

which concludes the proof. �

Security of the Full Multiplication. We now prove the security of the full
multiplication. We have the following result:

Theorem 2. Let ω be a uniform random element of F
∗, let (ai)n−1

i=0 and (bi)n−1
i=0

be uniform ω-encodings of some variables a and b, and let δ < 1/(21 log n).
The above NTT-based multiplication procedure on input (ai)n−1

i=0 and (bi)n−1
i=0 is

ε-leakage secure in the δ-random-probing leakage model, where

ε =
2n

|F| + 5 exp
(

− (1 − 21δ log n)2

14
n
)
. (25)

Proof. The full multiplication is composed of five successive steps:

1. the NTT on input (ai)i,
2. the NTT on input (bi)i,
3. the pairwise multiplications (2n)−1 · ui · ri,
4. the NTT on input (si)i,
5. the final compression on input (ti)i.
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Let us denote by �1, �2, . . . , �5 the number of operations that leak at each of
these steps. Since each operation takes up to 2 input variables, the adversary
then gets:

– up to 2�1 variables from the first NTT, each variable providing a linear equa-
tion in the ai’s;

– up to 2�2 variables from the second NTT, each variable providing a linear
equation in the bi’s;

– up to �3 pairs (ui, ri);4 each pair providing a linear equation in the ai’s and
a linear equation in the bi’s;

– up to 2�4 variables in the third NTT (the inverse NTT), each variable pro-
viding a linear equation in the sj ’s;

– up to �5 pairs (ti, ti+n),5 each pair providing two linear equations in the sj ’s.

To sum up, the adversary gets a system composed of

– up to �∗
1 = 2�1 + �3 linear equations of the form

n∑

i=1

αk,i · ai = ηk for k = 1, . . . , �∗
1 (26)

– up to �∗
2 = 2�2 + �3 linear equations of the form

n∑

i=1

βk,i · bi = νk for k = 1, . . . , �∗
2 (27)

– up to �∗
3 = 2�4 + 2�5 linear equations of the form

2n∑

j=1

γk,j · sj = χk for k = 1, . . . , �∗
3 (28)

we have sj = (2n)−1ujrj for every j, and since uj and rj can be expressed
as linear combinations of (ai)i and of (bi)i respectively, for every j, the last �∗

3

equations can be rewritten as:

n∑

i=1

γ′
k,i · bi = χk for k = 1, . . . , �∗

3 (29)

where the γ′
k,i’s are coefficients that depend on the ai’s.

From these equations, the attacker gains the knowledge that:

4 Either a multiplication of the form (2n)−1·ui or a multiplication of the form (2n)−1ui·
ri leaks. In both cases we consider that the pair (ui, ri) is revealed to the adversary.

5 Either a multiplication ωn · ti+n or an addition ti + ωnti+n leaks. In both cases we
consider that the pair (ti, ti+n) is revealed to the adversary.
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1. the encoding (ai)n−1
i=0 belongs to some vectorial space

S1 = {x ∈ F
n ; M1 · x = η} (30)

of dimension at least n − �∗
1 where M1 is the matrix with coefficients αk,i’s,

and η is the vector with coordinates ηk,
2. the encoding (bi)n−1

i=0 then belongs to some vectorial space

S2 = {x ∈ F
n ; M2 · x = (ν,χ)} (31)

of dimension at least n − �∗
2 − �∗

3 where M2 is the matrix with coefficients
βk,i’s and γ′

k,i’s and (ν,χ) is the vector with coordinates νk and χk.

Following the demonstration of Lemma 2, it can be checked that if

(1, ω, . . . , ωn−1) /∈ span(M1) and (1, ω, . . . , ωn−1) /∈ span(M2),

then the full leakage of the multiplication is statistically independent of a and b,
namely the leakage security holds. These two events are denoted free1 and free2
hereafter.

Then, following the demonstration of Lemma 3, free1 occurs with probability
at least 1− n

|F| over a random choice of ω, provided that we have rank(M1) < n.
Then, since the vectorial space S1 is independent of ω, any possible choice of
(ai)n−1

i=0 ∈ S1 gives rise to some coefficients γ′
k,i’s independent of ω and we have

that free2 occurs with probability at least 1 − n
|F| over a random choice of ω as

long as we have rank(M2) < n. The two conditions on the ranks of M1 and M2

are then fulfilled whenever we have

�∗
1 = 2�1 + �3 < n, (32)

and

�∗
2 + �∗

3 = 2�2 + �3 + 2�4 + 2�5 < n. (33)

Let us denote maxi the event that the number of leaking operations �i at step
i is lower than n/7, for every i. If maxi occurs for every i ∈ {1, 2, 3, 4, 5}, then
two above inequalities are well satisfied.

By applying the Chernoff bound, we hence get:

Pr(¬maxi) ≤ ψ
(n

7
, Ni

)
, (34)

where Ni is the number of operations at step i, which satisfies Ni ≤ 3n log n,
which gives

Pr(¬maxi) ≤ ψ
(n

7
, 3n log n

) ≤ exp
(

− (1 − 21δ log n)2

14
n
)
. (35)

We finally get that the multiplication is ε-leakage secure with

ε < Pr(¬max1) + Pr(¬max2) + · · · + Pr(¬max5)
+ Pr(¬free1 | max1 ∧ . . . ∧ max5)

︸ ︷︷ ︸
<n/|F|

+ Pr(¬free2 | max1 ∧ . . . ∧ max5)
︸ ︷︷ ︸

<n/|F|

. (36)

�
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4 Compositional Security for Arithmetic Programs

In this section we show how to obtain leakage security for a full arithmetic
program, composed of several multiplications, additions and subtractions. Since
computing addition and subtraction on encoded variables is quite simple, our
main contribution is to describe a refreshing procedure which allows us to achieve
compositional security.

We first describe our refreshing procedure before explaining how to trans-
form an arithmetic program into a leakage-secure equivalent arithmetic program.
Then we provide our compositional security proof.

4.1 Refreshing Procedure

Our refreshing procedure is based on the common approach of adding an encod-
ing of 0. Let (ai)n−1

i=0 be an ω-encoding of a variable a. We refresh it into an
ω-encoding (a′

i)
n−1
i=0 of a as follows:

1. sample a random ω-encoding (r0, r1, . . . , rn−1) ← Encω(0)
2. set a′

i = ai + ri for i = 0 to n − 1

The main issue with such an approach is the design of a scheme to sample
an encoding of 0 which has the right features for the compositional security. As
detailed later, we can prove the compositional security as long as our construction
satisfies the two following properties:

– Uniformity: it outputs a uniform ω-encoding of 0;
– Output linearity: its intermediate variables (i.e. the input of elementary

operations in the sampler) can each be expressed as a linear combination of
the output shares (ri)i.

We now describe an Encω(0) sampler which satisfies these two properties.

Sampling Encodings of 0. At the beginning of the computation of Π, a
random ω-encoding of 0 is generated. This is simply done by randomly picking
n − 1 of the n shares and computing the last one accordingly. We will denote by
(ei)n−1

i=0 this encoding. Note that just as for ω, this encoding can be fully leaked
to the adversary. Our sampler then works as follows:

1. pick n − 1 random values u0, u1, . . . , un−2 over F,
2. output (ri)n−1

i=0 = NTTMult((u0, u1, . . . , un−2, 0), (e0, e1, . . . , en−1))

where NTTMult is the NTT-based multiplication described in Sect. 3.
It is not hard to see that the result is indeed an encoding of 0: since the (ei)i

encode a 0, then the encoded product is also a 0. The uniformity is slightly more
tricky to see. We claim that with overwhelming probability (over the random
choice of (ei)i), the function:

(u0, u1, . . . , un−2) �→ NTTMult((u0, u1, . . . , un−2, 0), (e0, e1, . . . , en−1)), (37)
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is invertible. This function is indeed linear and it can be seen as a multiplication
by an (n−1)×n matrix. We empirically validated that this matrix is of rank n−1
with overwhelming probability.6 By discarding one column we can get a full-rank
square matrix of dimension n−1, allowing the recovery of the (u0, u1, . . . , un−2)
from output encoding. Therefore, we have a one-to-one mapping between the
vectors (u0, u1, . . . , un−2) ∈ F

n−1 and the ω-encodings of 0, (ri)n−1
i=0 ∈ F

n with
Decω((ri)n−1

i=0 ) = 0.
The output linearity is a direct consequence of the above. Since the ui’s can

be expressed as linear combinations of the ri’s, then all the intermediate variables
of the sampling procedure can be expressed as such linear combinations as well.

4.2 Arithmetic Program Compiler

We consider an arithmetic program P processing variables defined over a prime
field F. We show how to transform such a program into a leakage-secure arith-
metic program Π. Each arithmetic instruction of P gives rise to a corresponding
gadget in Π that works on encodings. We describe these different gadgets here-
after.

Copy Gadget. The copy gadget simply consists in applying a refreshing pro-
cedure to copy an encoded variable into the same freshly encoded variable. Let
(ai)n−1

i=0 be an ω-encoding of a. The copy gadget compute an ω-encoding (a′
i)

n−1
i=0

of a as:

(a′
0, a

′
1, . . . , a

′
n−1) ← refresh(a0, a1, . . . , an−1)

The copy gadget is used whenever an output ω-encoding (ai)n−1
i=0 from some

previous gadget is used as an input of several following gadgets. If (ai)n−1
i=0 is to

be used in input of N following gadgets, one makes N − 1 extra copies (in such
a way that each new copy enters the next copy gadget):

(ai)n−1
i=0 → (a(2)

i )n−1
i=0 → · · · → (a(N)

i )n−1
i=0

This way, each fresh encoding (a(j)
i )n−1

i=0 enters at most two different gadgets: the
copy gadget and one of the N computation gadgets.

Addition Gadget. Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be an ω-
encoding of b. To compute an ω-encoding (ci)n−1

i=0 of c = a + b, we simply com-
pute:

(c0, c1, . . . , cn−1) ← refresh(a0 + b0, a1 + b1, . . . , an−1 + bn−1)

6 To avoid to rely on an empirical assumption, one could easily check whether the
generated encoding (ei)i gives rise to a full-rank linear transformation.
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Subtraction Gadget. Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be an
ω-encoding of b. To compute an ω-encoding (ci)n−1

i=0 of c = a + b, we simply
compute:

(c0, c1, . . . , cn−1) ← refresh(a0 − b0, a1 − b1, . . . , an−1 − bn−1)

Multiplication Gadget. Let (ai)n−1
i=0 be an ω-encoding of a and (bi)n−1

i=0 be
an ω-encoding of b. To compute an ω-encoding (ci)n−1

i=0 of c = a · b, we simply
compute:

(c0, c1, . . . , cn−1) ← refresh
(
NTTMult((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1))

)

where NTTMult denotes the NTT-based multiplication described in Sect. 3.

4.3 Compositional Security

The compositional security of our construction is based on the two following
properties of the refreshing procedure:

– Uniformity: for a given ω ∈ F
∗ and a given value a ∈ F, the ω-encoding

(a′
i)

n−1
i=0 in output of the refreshing procedure is uniformly distributed and

independent of the input ω-encoding (ai)n−1
i=0 ;

– I/O linear separability: the intermediate variables of the refreshing proce-
dure can each be expressed as a deterministic function of a linear combination
of the (ai)i and a linear combination of the (a′

i)i.

The uniformity property is a direct consequence of the uniformity of the
Encω(0) sampler. The I/O linear separability holds from the output linearity of
the Encω(0) sampler since the shares (ri)i output by the sampler satisfy ri =
a′

i −ai for every i, implying that any linear combination
∑

iγiri equals
∑

iγia
′
i −∑

iγiai and is hence a deterministic function of a linear combination
∑

iγia
′
i and

a linear combination
∑

iγiai.
The I/O linear separability of the refreshing procedure implies that its leakage

can be split into some leakage depending only on its input encoding, which is the
output (before refreshing) from a previous gadget, and some leakage depending
only on its output encoding, which is the input of a next gadget. This way, the full
leakage can be split into subleakages each depending on the input/output of one
gadget. Moreover, the uniformity property implies that all these subleakages are
mutually independent. They can hence be analyzed separately: if none of them
reveal information, then the full leakage does not reveal information either.

The compositional security of our construction is formalized in the following
theorem.

Theorem 3. Let P be an arithmetic program taking some input x ∈ F
s and let

Π denotes the corresponding program protected with n-size encodings as described
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above. For every δ < 1/(33 log n), Π is ε-leakage secure in the δ-random-probing
model where

ε = 3|P | ·
(

2 exp
(

− (1 − 33δ log n)2

22
n
)

+
2n

|F|
)

, (38)

where |P | denotes the size of P i.e. its number of arithmetic instructions.

Proof. Let |Π| denotes the number of gadgets in Π. Since the output of each
gadget is refreshed (and nothing more), the number of call to the refreshing pro-
cedure is also |Π|. Each arithmetic instruction in P gives rise to one associated
gadget, plus up to 2 copy gadgets if necessary. We hence deduce |Π| ≤ 3|P |.

Let us denote by rmax the event that at most n
11 operations leak in each

refreshing. By applying the Chernoff bound (see Corollary 1), we have

Pr(¬rmax) ≤ |Π| · ψ
( n

11
, Nref

)
, (39)

where Nref denotes the number of elementary operations in the refreshing pro-
cedure. Let us further denote by gmax the event that at most n

11 operations leak
in each gadget (without refreshing). In the same way as above, we have

Pr(¬gmax) ≤
|Π|∑

i=1

ψ
( n

11
, N (i)

) ≤ |Π| · ψ
( n

11
, Ngad

)
, (40)

where N (i) denotes the number of elementary operations in the ith gadget and
where Ngad denotes the max (which is reached by the multiplication gadget).

In the following, we shall denote by (a(i)
j )j and (b(i)j )j the input encodings of

the ith gadget of Π and by (c(i)j )j the output encoding (before refreshing) of the
ith gadget of Π. Let us further denote by L the full δ-random-probing leakage
of Π, so that we have:

L =
|Π|⋃

i=1

G(i) ∪
|Π|⋃

i=1

R(i) (41)

where G(i) denotes the leakage from the ith gadget (without refreshing) and
where R(i) denotes the leakage of the ith refresh. Specifically, G(i) and R(i)

are families of intermediate variables (inputs of elementary operations) that are
revealed by the δ-random-probing leakage. If rmax and gmax occurs, we have
|G(i)| ≤ 2n

11 and |R(i)| ≤ 2n
11 .

According the the I/O linear separability property of the refreshing proce-
dure, we can define a separated leakage L′ as

L′ =
|Π|⋃

i=1

(G(i) ∪ A(i) ∪ B(i) ∪ C(i)
)

(42)
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where A(i) is a set of linear combinations of (a(i)
j )j , B(i) is a set of linear com-

binations of (b(i)j )j , C(i) is a set of linear combinations of (c(i)j )j , such that L is
a deterministic function of L′. This implies that if L′ is statistically indepen-
dent of the program input x, then so is L. The remaining of the proof consists
in showing that the former occurs with overwhelming probability (for a sound
choice of the parameters).

We shall bound the probability (over the distribution of ω) that the family
L′ is statistically dependent on x, hereafter denoted x � L′. We have

x � L′ =
|Π|∨

i=1

(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
. (43)

By the uniformity property of the refreshing, we have that, given
the program input x, the different families of input/output shares
{
(a(i)

j )n−1
j=0 , (b(i)j )n−1

j=0 , (c(i)j )n−1
j=0

}
are mutually independent. We hence get

Pr(x � L′) ≤
|Π|∑

i=1

Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
. (44)

We can then upper bound the probability Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
when

the ith gadget is a secure multiplication by following the proof of Theorem 2.
The only difference is that the attacker gets additional linear combinations of
the input/output shares from the refreshing procedures. Specifically, we would
have

– up to �∗
1 = 2�1 + �3 + 2�′

1 linear combinations of the form
∑

i αk,iai, for
1 ≤ k ≤ �∗

1;
– up to �∗

2 = 2�2 + �3 + 2�′
2 linear combinations of the form

∑
i βk,ibi, for

1 ≤ k ≤ �∗
2;

– up to �∗
3 = 2�4 + 2�5 + 2�′

3 linear combinations of the form
∑

i,j γk,jsj , for
1 ≤ k ≤ �∗

3;

where �′
1, �′

2 and �′
3, are the number of leaking operations in the input/output

refreshing procedures. Taking the constraint �i < n
11 and �′

i < n
11 for every i, we

still get �∗
1 + �∗

3 < n and �∗
2 + �∗

3 < n. That is, if rmax and gmax occurs, we get

Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i) | rmax ∧ gmax

) ≤ 2n

|F| . (45)

For copy, addition and subtraction gadgets, the proof is quite simple. When an
operation leaks in such a gadget, it reveals one shares from each input encoding.
We hence get less that n

11 linear combinations on each input encoding (from the
gadget leakage), plus 2n

11 linear combinations on each input encoding (from their
respective refreshing), plus 2n

11 linear combinations on the output encoding, which
can be split into independent linear combinations on the two input encodings.
We clearly get less than n linear combinations on each encoding, which allows
us to apply Lemma 3 and to obtain (45) for every kind of gadget.
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We finally get

Pr(x � L′) ≤ Pr(¬rmax) + Pr(¬gmax)

+
|Π|∑

i=1

Pr
(
x � G(i) ∪ A(i) ∪ B(i) ∪ C(i) | rmax ∧ gmax

)

≤ |Π| ·
(
ψ

( n

11
, Nref

)
+ ψ

( n

11
, Ngad

)
+

2n

|F|
)
,

which together with Nref , Ngad < 3n log n concludes the proof. �

5 From Arithmetic Random Probing to Noisy Leakage

5.1 Logical Programs

The definition of a logical program is analogous to the definition of an arithmetic
program but it is composed of logical instructions over {0, 1}w such as the bitwise
AND, OR, XOR, logical shifts and rotations, as well as the addition, subtraction,
and multiplication modulo 2w (namely typical instructions of a w-bit processor).
In the ε-noisy leakage model, a logical program leaks an ε-noisy leakage function
f(μj , μk) of the pair of inputs of each logical instruction μi ← μj ∗ μk.

The security reduction of Duc et al. (Lemma 1) then implies that a logical
program Π that is secure against δ-random-probing leakage is also secure against
δ′-noisy leakage with δ′ = δ/22w.

5.2 A Generic Reduction

We then have the following reduction of random-probing model for a logical
programs, to the random-probing model for an arithmetic programs:

Lemma 4. Let Π be a ε-leakage secure arithmetic program in the δ-random-
probing model, then there exists a functionally equivalent logical program Π ′

that is ε-leakage secure in the δ′-random-probing model for some δ′ satisfying

δ′ = 1 − (1 − δ)1/N ≥ δ

N
with N = O

( 1
w

log |F| log
( 1
w

log |F|)
)
. (46)

Proof. The logical program Π ′ is simply the program Π where arithmetic
instructions are built from several w-bit logical instructions. It is well known
that the addition and subtraction on F can be computed in N = O

(
1
w log |F|)

elementary (w-bit) operations, and that the multiplication on F can be computed
from N = O

(
1
w log |F| log

(
1
w log |F|)) elementary (w-bit) operations.

Assume that there exists an adversary A′ with advantage ε that makes use of
a δ′-random-probing leakage on Π ′, then we show that there exists an adversary
A with advantage ε that makes use of a δ-random-probing leakage on Π. Since
by assumption no such adversary A exists, then by contraposition neither does
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such adversary A′, meaning that Π ′ is indeed ε-leakage secure in the δ′-random-
probing model.

We construct an adversary A that is given the full input to an arithmetic
instruction of Π whenever at least one of the corresponding logical instruction
leaks in Π ′. Informally, it is clear that this can only increase the success proba-
bility. To make this reasoning formal, we need to construct an adversary A that
receives the strengthened leakage, resamples it to make its distribution iden-
tical to that of the δ′-random-probing leakage on Π ′ and then call A′. When
A receives ⊥ as leakage for an arithmetic instruction, it simply sends ⊥ to A′

for all the corresponding logical instructions. When it receives the full input
of the arithmetic instruction (meaning that at least one corresponding logical
instruction of Π ′ must leak), it can compute all the inputs of the corresponding
logical instructions in Π ′, and reveal each of them to A′ with some (biased)
given probability. Since we do not consider the computational complexity of the
adversaries, the easiest way to achieve a perfect simulation is to use rejection
sampling. Namely, for every logical instruction in the group, the input is revealed
with probability δ′. If at the end of the group, no input was revealed, simply
restart the revealing process for the same group. This way, we have constructed
an adversary A using a δ-random-probing leakage on Π where

δ = 1 − (1 − δ′)N ,

for N = O
(
log |F| log log |F|). Since by assumption no such adversary exists,

this means that no adversary A′ exists with advantage ε that makes use of a
δ′-random-probing leakage on Π ′. �

Combining the above lemma with Lemma 1, and considering a constant word-
size w, we get a tight reduction of the security in the noisy leakage model for
logical program to the security in the random-probing model for arithmetic pro-
gram:

Lemma 5. Let Π be a ε-leakage secure arithmetic program in the δ-random-
probing model, then there exists a functionally equivalent logical program Π ′

that is ε-leakage secure in the δ′-noisy leakage model for some δ′ satisfying

δ′ =
δ

O(log |F| log log |F|) . (47)

5.3 Application to Our Scheme

In the previous section we have shown that for δ = O(1/ log n) our construction
is ε-leakage secure in the δ-random-probing model with

ε = negl(λ) + negl′(n) (48)

where negl and negl′ are some negligible functions and where λ is some security
parameter such that log |F| = λ + log n.

By applying the above reduction to our construction (and recalling that we
have |F| = O(n)), we obtain the following corollary of Theorem 3:
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Corollary 3. Let Π ′ denotes the secure logical program corresponding to our
construction (see Sect. 4). Π ′ is ε-leakage secure in the δ-noisy leakage model
where ε = negl(λ) + negl′(n) and δ′ = O

(
1/((log n)2 log log n)

)
.

6 Practical Aspects and Open Problems

Securing Arbitrary Computation. Although our scheme is described to
work on a finite field F with specific structure, it can be used to secure any
arbitrary computation represented as a Boolean circuit. Indeed, it is possible to
embed a Boolean circuit into an arithmetic program over F. Each bit is sim-
ply represented by an element a ∈ {0, 1} ⊆ F. The binary multiplication then
matches with the F-multiplication over this subset. Regarding the binary addi-
tion ⊕, it can be implemented with operations over F as:

a ⊕ b = a + b − 2ab, (49)

for every a, b ∈ {0, 1} ⊆ F. Of course such an embedding comes at a high
cost in practice and our scheme would not be efficient to protect e.g. an AES
computation. However, our scheme is asymptotically more efficient than previous
ISW-based schemes meaning that there exists some masking order n for which an
implementation of our scheme would be more efficient than an implementation
of a previous scheme. Moreover and as discussed hereafter, we think that our
scheme could be practically improved in many ways.

Practical Efficiency. For any cryptographic computation on a base field F

with appropriate structure, our scheme should be very efficient in practice. We
recall that the field should be such that |F| = α · n + 1, for n being a power of
2 and α being large enough so that n/α is negligible. A 256-bit prime field such
as those used in Elliptic Curve Cryptography could for instance satisfy these
criteria. An interesting open issue would be to extend our scheme to work on
other algebraic structures and in particular on binary fields (e.g. to efficiently
secure the AES) or on rings used in lattice-based cryptography.

On the Size of the Field. We note that we need a ‘big’ field (typically of
size 128+2 log n) in order to have enough randomness when picking ω. However
this might be a proof artefact and the scheme could be secure for some constant
ω and/or using smaller fields. Another direction of improvement would be to
mitigate or remove this constraint with an improved construction and/or proof
technique.

Packing Encodings. Finally our scheme could also probably be improved
by using the principle of packed secret sharing as suggested in [2,3] since our
encoding is a kind of randomized Shamir’s secret sharing.
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A Number Theoretic Transform

The Number Theoretic Transform (NTT) is essentially a (Fast) Fourier Trans-
form defined in a finite field (or ring) where inaccurate floating point or complex
arithmetic can be avoided. The NTT can be used to multiply two polynomials
over a finite field in quasilinear complexity. Let Fp be a prime finite field such that
d | p−1 for some integer d (Fp contains d-th roots of unity) and let A be a (d−1)-
degree polynomial over Fp[x] such that A(x) = a0 +a1x+a2x

2 + · · ·+ad−1x
d−1.

For a given primitive d-th root of unity ξ, the NTT maps the coefficients of A
to the evaluations A(ξi) with 1 ≤ i ≤ d:

NTTξ : (a0, a1, . . . , ad−1) �→ (A(ξ1), A(ξ2), . . . , A(ξd)). (50)

For d being a power of two, the NTT can be computed in time complexity
O(d log d). To show this, let us define A0 and A1, the two (d

2 − 1)-degree poly-
nomials

A0(x) = a0 + a2x + a4x
2 + · · · + ad−2x

d
2 −1

A1(x) = a1 + a3x + a5x
2 + · · · + ad−1x

d
2 −1

which satisfy

A(x) = A0(x2) + xA1(x2).

The problem of evaluating A(x) at each d-th root of unity ξi, for 1 ≤ i ≤ d,
is reduced to the problem of evaluating A0(x) and A1(x) at the points ξ2i, for
1 ≤ i ≤ d

2 , and we can combine the results with A(ξ) = A0(ξ2) + ξA1(ξ2). The
polynomials A0(x) and A1(x) can also be evaluated at the points ξ2i with the
same divide and conquer strategy, using the polynomials A00, A01, A10, A11

satisfying

A0(x) = A00(x2) + xA01(x2) and A1(x) = A01(x2) + xA11(x2).

This divide and conquer strategy can be iterated log2(d) times. At the t-th step
we have 2t polynomials Au of degree d

2t for u ∈ {0, 1}t that must be evaluated
in ξj for j = 2t, 2 · 2t, . . . , d

2t · 2t, which makes a total of 2t · d
2t = d evaluations.

Moreover, from ξj+ d
2 = −ξj we have

Au (ξj)= Au |0(ξ2j)+ ξjAu |1(ξ2j) and Au (ξj+ d
2 )= Au |0(ξ2j) − ξjAu |1(ξ2j) (51)

implying that the number of evaluations can be merely divided by two.
In practice, we start with t = log2(d), where we have 2t = d constant poly-

nomials Au = aϕ(u) with ϕ(u) denoting the integer corresponding to the binary
expansion u ∈ {0, 1}log2(d). Then we iterate (51) for t from log2(d) down to 1
where we have our d evaluations of A. The overall process is summarized here-
after:
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1. (c0, c1, . . . , cd−1) ← (a0, a1, . . . , ad−1)
2. for t = log2(d) − 1 down to 1:
3. j = 2t; k = 2d−t−1

4. for i ∈ ⋃k−1
�=0 Uj,�

5. (ci, ci+j) ← (ci + ξjci+j , ci − ξjci+j)

where Uj,� = {(2�j, . . . , (2� + 1)j − 1)} and where the index shiftings of c are
done modulo d, i.e. ci+j = ci+j mod d. It can be checked that the above evalu-
ation of NTTξ takes a total of d log d

2 multiplications, d log d
2 additions and d log d

2
subtractions.

Using the NTT with a dth root of unity, we can efficiently compute the
product C(x) = A(x) · B(x) for any two polynomials A,B ∈ Fp[x] of degree
up to n − 1 with d = 2n. We first apply the NTT to get d evaluations of both
polynomials:

(A(ξ1), A(ξ2), . . . , A(ξd)) = NTTξ(a0, a1, . . . , an−1, 0, . . . , 0)

(B(ξ1), B(ξ2), . . . , B(ξd)) = NTTξ(b0, b1, . . . , bn−1, 0, . . . , 0)

from which we get d evaluations of C by C(ξi) = A(ξi) · B(ξi) for 1 ≤ i ≤ d.
Finally, we can recover the coefficients of the output polynomial C by computing
the inverse NTT on (C(ξ), C(ξ1), . . . , C(ξd)), which satisfies

(c0, c1, . . . , cd) = NTT−1
ξ (C(ξ1), C(ξ2), . . . , C(ξd))

= NTTξ−1

(1
d
C(ξ1),

1
d
C(ξ2), . . . ,

1
d
C(ξd)

)
.
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6. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part III. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63697-9 14

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

8. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 31

9. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

10. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

11. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 10

12. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

13. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

14. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October 2008

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
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