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Abstract. Recently, the security of multimodal verification has become a grow-

ing concern since many fusion systems have been known to be easily deceived 

by partial spoof attacks, i.e. only a subset of modalities is spoofed. In this paper, 

we verify such a vulnerability and propose to use two representation-based met-

rics to close this gap. Firstly, we use the collaborative representation fidelity with 

non-target subjects to measure the affinity of a query sample to the claimed client. 

We further consider sparse coding as a competing comparison among the client 

and the non-target subjects, and hence explore two sparsity-based measures for 

recognition. Last, we select the representation-based measure, and assemble its 

score and the affinity score of each modality to train a support vector machine 

classifier. Our experimental results on a chimeric multimodal database with face 

and ear traits demonstrate that in both regular verification and partial spoof at-

tacks, the proposed method significantly outperforms the well-known fusion 

methods with conventional measure. 

Keywords: Multimodal Verification, Spoof Attacks, Representation-based 

Measure, Support Vector Machine. 

1 Introduction  

A generic biometric system has eight vulnerable points that can be exploited by an 

intruder to gain unauthorized access [1]. Among them, spoof attacks usually present a 

counterfeited biometric sample (e.g., a gummy fingerprint, a face image/video/mask) 

to a system sensor, which do not require knowledge about the system’s operational 

mechanism and internal parameters. Spoof attacks are also known as non-zero effort 

attacks, presentation attacks, and direct attacks. The concept of non-zero effort attacks 

is relative to zero effort attempts, where an imposter doesn’t fabricate the biometric 

trait of any specific client and merely presents his/her own biometric trait to the system. 

In the literature, an imposter is generally regarded as an intruder who performs zero 

effort attempts. In this paper, for clarity and terminological consistence, a legitimate 

claim, zero effort attempt, and non-zero effort attack are termed as genuine, imposter 

and spoof, respectively, together with their associated executor/sample/score. 



Multimodal systems have been considered intrinsically more secure than unimodal 

systems based on the intuition that an intruder would have to spoof all the biometric 

traits to successfully impersonate the targeted client [2]. Such a belief has long been 

established disregarding the possibility that an intruder is falsely accepted by spoofing 

only a subset of the biometric traits. The vulnerability of multimodal systems to partial 

spoof attacks has been shown in the worst-case scenario, where the intruder is assumed 

to be able to replicate a subset of the biometric traits of a genuine client exactly. Under 

this assumption, Rodrigues [3] showed experimental results on chimeric multimodal 

databases with face and fingerprint that multimodal systems can be deceived easily by 

spoofing only a subset of the modalities, if the fusion rule is not designed with any anti-

spoofing measure. Wild et al. [4] showed the sensitivity of multimodal systems to par-

tial spoof attacks with real fake biometric databases. 

Some efforts to enhance the security of multimodal systems against partial spoof 

attacks have already been reported. Rodrigues et al. [5] proposed a modification of the 

classic likelihood ratio (LLR) method that considers the possibility of spoof attacks and 

the degree of security to individual trait when modelling score distributions. However, 

these prior probabilities are application dependent and may not be time invariant, hence 

are quite difficult to quantify. Rodrigues et al. [3] also proposed the idea of using quality 

measures to protect against spoof attacks. Intuitively, a fake biometric sample is likely 

to be of inferior quality. However, biometric quality assessment is still an open issue to 

most biometrics. Besides, fake biometric sample is not necessarily to be inferior with 

the emerging image/video synthesis, 3D printing, and materials. 

Liveness detection is another kind of approach used to improve the spoofing re-

sistance for a given system. Marasco et al. [6] proposed a multimodal system that in-

corporates a liveness detection algorithm to reject spoofed samples. If a spoof attempt 

is indicated, the related modality matching score is ignored. Wild et al. [4] combined 

the recognition score and liveness measure at score level with a 1-median filtering 

scheme for enhanced tolerance to spoof attacks. Nevertheless, neither one of hardware-

based and software-based liveness detection systems have shown acceptable perfor-

mance and cost against spoof attacks. Physiological and behavioral characteristics are 

also employed to enhance multimodal verification security in [7]. 

This paper is enlightened by the fact that in a partial spoof attack, the recognition 

scores achieved from non-spoofed modalities are generally near the imposter score dis-

tribution center, given that they are also zero effort attempts from a unimodal view-

point. Unlike the quality- and/or liveness-based methods that focus on the spoofed mo-

dalities, we propose to take advantage of non-spoofed modalities. To this end, we put 

forward a representation-based measure to gauge the affinity of a query sample to a 

claimed client. This is based on the assumption that a biometric sample would result in 

inferior sparse representation fidelity if it doesn’t lie in any subspace spanned by the 

samples from the same subject [8-10]. Note that, it is unlikely to exhaustively collect 

the representative samples per subject to construct a class specific overcomplete dic-

tionary. We propose to build the dictionary together with samples from non-target sub-

jects to collaboratively represent a query sample.  

This affinity score could be an additional measure to a traditional verification 

method. However, we further consider sparse coding as a one-to-many comparison 



 

among the claimed client and non-target subjects, and hence explore other sparsity-

based metrics for verification. We evaluate two measures, namely, sparse coding error 

(SCE) and sparse contribution rate (SCR), on a multimodal database with face and ear. 

Encouraging performance of SCE-based and SCR-based sum fusion methods evidently 

supports the usage of sparsity-based one-to-many comparisons in multimodal verifica-

tion. However, SCR shows much more inferior performance in spoof attacks. Last, we 

assemble the proposed affinity score and SCE score of each modality as an input vector 

to train a support vector machine (SVM) classifier.  

To validate the effectiveness of the proposed method, we construct a chimeric mul-

timodal database with face and ear traits. The proposed method is compared with the 

well-known multimodal methods like LLR, SVM, and Sum fusion that are based on 

cosine similarity. The experimental results validate that in both no spoof and partial 

spoof cases, the proposed method significantly outperforms its competitors. For exam-

ple, the traditional methods get the best equal error rates (EER) of 8.32% and 11.89% 

in no spoof and spoof cases, while our method achieves 0.27% and 2.12%. Apparently, 

the proposed method helps to increase the spoofing resistance of multimodal systems.  

The remainder of the paper is structured as follows. We discuss the approaches to 

verification based on one-to-many match, and we review the existing methods using 

sparse coding in Section 2. In Section 3, we present the sparsity-based affinity and 

recognition measures, together with the proposed multimodal verification system. In 

Section 4, we describe our chimeric multimodal database and report the corresponding 

experimental results. The conclusion is drawn in Section 5. 

2 Related Work 

In a biometric verification system, an individual who desires to be recognized claims 

an identity and presents biometric samples. Then the system conducts a comparison to 

determine whether the claim is licit or not. Verification is used for positive recognition, 

where the aim is to prevent multiple people from using the same identity. 

Typically, biometric verification systems conduct a one-to-one match that compares 

a query image against the gallery template(s), whose identity is being claimed. The 

comparison produces a similarity score. The system accepts the claim if the score is 

higher than an operating threshold, otherwise rejects it. The operating threshold is de-

termined in the training phase based on the genuine and imposter score distributions. 

However, it is unlikely to collect all the representative samples of a client that cover all 

possible variations, for example, expression, pose, illumination, aging, and occlusion 

in face. Under such circumstances, it cannot be guaranteed that no imposter score is 

higher than the predefined operating threshold. The system is at a risk of being cracked 

by intruders. Therefore, the one-to-one match solely based on a predetermined operat-

ing threshold is problematic. 

Two decades ago, Verlinde et al. [11] proposed a one-to-many match biometric ver-

ification method using a k-NN classifier. To the best of our knowledge, this is one of 

the first attempts to consider non-target subjects for verification in the test phase. Nev-

ertheless, the inferior comparison algorithm like k-NN could probably account for the 



rare use of one-to-many match in verification. Cohort-based score normalization also 

takes advantage of non-target subjects but serves the traditional one-to-one match ver-

ification [12]. In recent years, we have witnessed the great success of sparse coding 

techniques in biometric recognition [13-15]. The sparse representation-based classifi-

cation (SRC) conducts one-to-many comparisons in a sparse coding procedure and is 

naturally applicable to biometric identification. Note that, along with the initial research 

of SRC-based face identification in [13], a metric called sparse concentration index 

(SCI) was applied to reject outliers, i.e. the subjects who do not appear in dictionary. 

Inspired by the success of SRC identification and sparsity-based outlier verification, 

SRC-based comparison has been introduced in speaker verification. In [16], GMM 

mean supervector is used as feature of an utterance. The L1-norm value of the represen-

tation coefficients associated with the claimed identity is used as genuine score, while 

the L1-norm of the coefficients of each other non-target subject are imposter scores. 

Based on a similar idea, Li et al. [17] created the dictionary using the total variability i-

vectors and evaluated three sparsity-based measures for speaker verification, which 

achieved better results than a SVM baseline. 

3 The Proposed Method 

3.1 Affinity metric 

In this section, we present a representation-based measure to gauge the affinity of a 

query sample to a claimed client, based on the assumption that a biometric sample 

would result in inferior sparse representation fidelity if it doesn’t lie in the subspace 

spanned by the samples from the same subject [8, 9]. Note that, it is unlikely to ex-

haustively collect the representative samples per subject to construct a class specific 

overcomplete dictionary. A feasible way is to use non-target subjects to collaboratively 

represent the query samples [18].  

Therefore, we select a number of non-target subjects together with the claimed client. 

Their gallery samples/features are used to construct an over-complete dictionary 
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composed of the gallery samples of the claimed client, which is a dynamic part of the 

dictionary.  The other sub-dictionary ( )
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samples of non-target subjects. Without any specific instructions, bA is fixed for all 

identity verification processes. Given a query sample y , if it is from a genuine client 

and isn’t of inferior quality, y  should lie in a subspace spanned by cA . In this context, 

y  can be sparsely represented by y = Aα with high fidelity (see the genuine distribu-

tion in Fig. 1), where NRα  is the coefficient vector. A sparse solution of α  can be 

obtained by the following optimization problem [13]: 

1
ˆ arg min=α α  s.t. 

2
− y Aα ,                                   (1)  

where 
1
  denotes the 1L -norm, and 0   is a positive constant. 



 

In a partial spoof attack, a query sample of non-spoofed modalities is unlikely to lie 

in any subspace spanned by the dictionary samples given that the non-target subjects 

are confidential. In this context, only a solution with inferior collaborative representa-

tion fidelity (CRF), described in Eq. (2), can be found by optimizing Eq. (1). 

( )
2

ˆF = −y y Aα .                                               (2) 

 

(a) Face distribution in ear spoof case                 (b) Ear distribution in face spoof case 

Fig. 1. CRF distributions in partial spoof attacks. 

Fig.1 shows the CRF distributions on a chimeric multimodal database using face and 

ear, detailed in Section 4. When the ear of a client is spoofed, the intruder needs to show 

his/her face or an arbitrary face to complete the biometric data enrollment. Such arbi-

trary face is unlikely to be from the non-target subjects since the combination of the 

overcomplete dictionary is confidential. In this context, the non-spoofed face is an out-

lier that does not lie in the subspace spanned by A and hence leads to an inferior CRF 

score, see in Fig. 1(a). When the face is spoofed, we see similar CRF distribution of the 

non-spoofed ears in Fig. 1(b). From the perspective of the client, CRF score can be used 

to represent the affinity of the query sample to it. 
 

3.2 Sparsity-based recognition scores 

We consider sparse coding as a competing comparison among the client and non-target 

subjects, and hence explore other two sparsity-based measures, namely, sparse coding 

error (SCE) and sparse contribution rate (SCR), for multimodal verification. 

Since α̂  is achieved in Eq. (1), the SCE value is calculated by 

( ) ( )
2

ˆ
c cE = −y y A α ,                   (3) 

where c : N NR R→  is the characteristic function that selects the coefficients associ-

ated with the claimed client. 

The well-known SRC and most of its extensions identify a query sample based on 

comparing the SCEs of all classes in dictionary. Their superior classification perfor-

mance validates that SCE is a good candidate to measure the correlation between a 



query sample and a specific class, as a distance score. Thus, it is reasonable to use SCE 

for verification. 

Wright et al. [13] presented a metric called sparse concentration index (SCI) to reject 

outliers in face identification. Essentially, the SCI value depends on the class who con-

tributes the most in sparse coding. Given a query sample that isn’t an outlier, it gener-

ally belongs to the class with the maximal sparse contribution rate (SCR), as defined in 

Eq. (4). A large value of SCR obtained by a class indicates a greater possibility of the 

query sample belonging to this class. Therefore, SCR could possibly be used as a sim-

ilarity score for verification. 

( ) ( )
11

ˆ ˆ ˆ
cR =α α α .                                                           (4) 

 

Fig. 2. The distributions of SCE and SCR with Sum fusion on our multimodal dataset. 

Fig. 2 plots the distributions of SCE and SCR scores obtained on the proposed chi-

meric multimodal database of face and ear. For convenience to illustrate the effective-

ness of SCE and SCR in multimodal verification, we use the Sum rule to fuse face and 

ear scores. As for SCE, the distribution centers of the genuine and imposter scores are 

far away from each other with little overlap. Although there is no a clear distribution 

center peak of the genuine SCR, the overlap is not evident as well. More experimental 

evidence supporting SCE and SCR is shown in Section 4. In addition, Fig. 2 also 

demonstrates that most spoof scores are located between the distribution centers of gen-

uine and imposter scores. This implies that the multimodal fusion methods based on 

SCE or SCR are vulnerable to spoof attacks. 

Some variants of SCE and SCR have been used in speaker verification and shown 

to achieve comparable performance with the traditional one-to-one verification. How-

ever, in our face and ear unimodal experiments, a genuine client might lose his/her 

chance to obtain an eligible SCE or SCR score in the competing comparison, owing to 

the variations in query samples. If it happens, the genuine score will be extremely low. 

It means that many licitly claimed clients could not pass the verification system by 

tuning a client specific operating threshold. Instead, more user cooperation will be nec-

essary, which would degrade the user experience. Therefore, for high accuracy and user 

convenience of identity verification, sparsity-based one-to-many comparisons would 

be rather preferable in multimodal scenarios rather than in unimodal applications.   



 

3.3 Multimodal Verification 

The CRF score that measures the affinity of a query sample to its claimed client can be 

utilized to enhance the system’s resistance to partial spoof attacks in a serial or parallel 

fusion mode. In a serial fusion mode, multimodal systems firstly examine the CRF 

scores of each modality to determine whether they are spoofed or not, and then conduct 

multimodal verification.  

However, as shown in Fig. 1, the overlap of the genuine and the spoof CRF score 

distribution is still rather obvious. A hard CRF threshold would lead to high false ac-

ceptance rate (FAR), while a loose one may compromise crack the multimodal system. 

Furthermore, there is a high possibility that the non-spoofed modalities get inferior 

recognition scores along with inferior CRF scores from the same sparse coding. The 

CRF score and sparsity-based recognition score are complementary. Hence, it is worth-

while to combine them in a parallel way to achieve better performance. 

 

 

Fig. 3. An overview of the multimodal system architecture. 

Two sparsity-based recognition scores, i.e., SCE and SCR, are introduced in Section 

3.2. Both the Sum fusion methods based on them get promising verification perfor-

mance in zero effort attempts, as shown by the distributions in Fig. 2. These results 

support the use of the sparsity-based one-to-many comparison in multimodal systems. 

On the other hand, SCR is much more inferior to SCE in spoof attacks. The detailed 

experimental results will be given in Section 4. 

Last, we select the SCE and CRF scores of each modality to form a score vector for 

a verification claim. Suppose there are K modalities, ke  and kf  are the SCE and CRF 

scores of the kth modality. The final score vector can be denoted by 



1 1 2 2( , , , , , , )K KS e f e f e f = . In the training phase, we use genuine, imposter, and spoof 

score samples to train a SVM classifier with RBF kernel. For simplicity but without the 

loss of generality, an overview of system architecture with two modalities (K=2) is 

shown in Fig. 3 to illustrate the proposed method. 

The chimeric multimodal database introduced in Section 4 contains 79 subjects with 

7 gallery samples each. All these samples are used to form an overcomplete dictionary 

with 553 atoms. We don’t have abundance data to discuss how to optimally select the 

non-target subjects in this paper. Note that, we ignore the issue of score normalization, 

given that the scores of face and ear are compatible in our experiments.   

4 Experiments and Discussion 

4.1 Databases 

The proposed method is general for verification using multiple biometric traits. In this 

paper, we construct a chimeric multimodal database with publicly available face and 

ear databases. All the 79 subjects in USTB III ear database [19] are randomly paired 

with the first 79 subjects of AR face database [20]. For each subject, the 7 face images 

without occlusion of Session 1 are used as gallery samples, while the same type of 7 

images of Session 2 are used as probe samples. The USTB III is a multi-view ear data-

base with 20 images per subject. We use the same gallery and probe partition rule in [8, 

9], where 7 ear gallery images and 13 ear probe images are selected for each subject. 

In our experiments, the 2 probe images per subject with extreme pose variation are 

discarded. For each subject on the multimodal database, in the gallery set, 7 face images 

are uniquely paired with the 7 ear images to form 79×7=553 multimodal samples. In 

the probe set, each face image is paired with all the ear images to form 79×7×11=6083 

multimodal samples. 

To simulate the worst-case partial spoof attacks, in a face spoof case, we replace the 

ear part of a multimodal sample with the image of USTB II ear database (77 subjects, 

4 images per subject) [19], In an ear spoof case, we replace the face part with the image 

of Georgia Tech face database (GT, 50 subjects, 8 images per subject) [21]. Finally, we 

get 77 subjects, 28 face spoof multimodal samples per subject, and 50 subjects, 88 ear 

spoof multimodal samples per subject.  

In the experiments, we use the features of gallery samples of all 79 subjects to con-

struct the overcomplete dictionary. The SCE, SCR, and CRF scores are derived from 

the comparison between one-sample and one-set. The numbers of genuine, imposter 

and spoof score samples are 6083, 474474 (6083×78), and 6556, respectively. As for 

the competing methods using cosine similarity, we empirically select the best match 

score from each comparison, hence their score sample numbers are the same. 

4.2 Settings 

The 2D-DCT method is applied for feature extraction of face and ear images, since it 

is fast, general, and without specific training. The DCT coefficients are scanned in a 



 

zigzag manner starting from the top-left corner of the entire transformed image to form 

a feature vector with 200 dimensions.  

The proposed multimodal method uses SVM with RBF kernel (sigma=0.25). It is 

compared with the Sum fusion methods of SCE and SCR, denoted by SUM(sce) and 

SUM(scr), respectively. The competing multimodal methods include the well-known 

LLR [22], SVM [23], and Sum fusion methods, which use cosine similarity and are 

respectively denoted by LLR(cos), SVM(cos), and SUM(cos). SVM(cos) also uses 

RBF kernel (sigma=1). 

Without specific instructions, half of the genuine, imposter and spoof scores are ran-

domly selected for training, and the remainder are for testing. To alleviate the imbal-

ance of training samples, SVM-based classifiers use 1/10 imposters to train. The 

LLR(cos) uses half of all kinds of samples to fit Gaussian mixture models for score 

distribution estimation. We run all experiments 5 times, the results presented here are 

based on the average from these 5 runs. 

4.3 Results 

The metrics like false acceptance rate (FAR), false rejection rate (FRR), equal error rate 

(EER), and the receiver operating characteristic (ROC) curves are generally used to 

evaluate methods in regular verification. The spoof FAR (SFAR) is specifically used 

to note the FAR in spoof attacks. 

In the first part of the experiments, we train all the learning-based classifiers without 

considering the spoof samples, namely no spoof training. Fig. 4 plots the ROC curves 

of all competing methods in regular verification. The methods with sparsity-based met-

rics are observed to be significantly better than the methods with traditional metric. 

Among the former methods, SUM(scr) is obviously inferior to SUM(sce) and the pro-

posed method. The ROC curves and the EERs summarized in Table 1 do not show 

evident advantage of our method when compared with SUM(sce). 

Table 1. Performance in terms of EER (%). 

Training Testing SUM(cos) SVM(cos) LLR(cos) SUM(sce) SUM(scr) Ours 

Genuine 

Imposter 

Regular 11.83 6.632 6.85 0.20 0.39 0.18 

Spoof attacks 12.44 22.05 21.04 8.73 28.26 4.13 

Genuine 

Imposter 

Spoof 

Regular 11.83 8.79 8.32 0.20 0.39 0.27 

Spoof attacks 12.44 11.89 12 8.73 28.26 2.12 

 

Fig.5(a) demonstrates that all these methods without spoof training are vulnerable to 

partial spoof attacks. Both the EERs of LLR(cos) and SVM(cos) increase by about 

15%, and even that of SUM(scr) soars to 28.26%. On the other hand, our method 

achieves a 4.13% EER, which is less than half of the second best. 

In the second part of the experiments, all the learning-based classifiers are trained 

with genuine, imposter and spoof samples, namely spoof training. We can see from 

Table 1 that, compared with the former experiments of spoof attacks, both LLR(cos) 

and SVM(cos) get about 10% improvements, while the EER of ours reduces by half, 



down to 2.12%. The overwhelming advantage of our method can be seen vividly with 

the ROC curves plotted in Fig. 5(b). It is quite promising provided that the experiments 

here are in the worst-case spoof conditions where the fake score distribution of the 

spoofed modalities is identical to that of genuine. 

 

Fig. 4. Performance in regular verification. 

 
(a) No spoof training.                          (b) Spoof training. 

Fig. 5. Performance in partial spoof attacks. 

Although LLR(cos) and SVM(cos) also exhibit obvious improvements, they encoun-

ter obvious accuracy decline in regular verification, see Table 1. These results show 

again that the spoof training may bring about unacceptable performance degradation in 

regular identity verification [2]. As for the proposed method, the EER increases from 

0.18% to 0.27%, which is still very low. Above all, the proposed method is able to 

achieve very low EER in both regular verification and partial spoof attacks. 

5 Conclusion 

In this paper, aiming to improve the multimodal system’s resistance to partial spoof 

attacks, we proposed the use of collaborative representation fidelity with non-target 



 

subjects to measure the affinity of a query sample to a claimed client. We further con-

sidered sparse coding as a competing comparison among the claimed client and non-

target subjects, and hence explored two sparsity-based measures associated with indi-

vidual subjects for recognition. The encouraging performance evidently supports the 

use of sparsity-based one-to-many comparisons in multimodal systems. However, 

based on their performance in spoof attacks, only the representation-based one is se-

lected as recognition score. Last, two types of representation-based scores for each mo-

dality are assembled to train a SVM classifier. 

The proposed method was compared with well-known multimodal methods like 

LLR, SVM, and Sum fusion methods, using the cosine similarity measure, on a chi-

meric multimodal database of face and ear traits. The experimental results demonstrate 

that in both regular verification and partial spoof attacks, the proposed method over-

whelmingly outperforms its competitors. The proposed method is a general model for 

combining multiple biometric traits. In the future work, we plan to evaluated with more 

biometric traits like palmprint, iris, and with real spoofed data. We believe the method 

can be further enhanced by using more robust feature extraction method like CNN-

based, and advanced multimodal joint sparse coding techniques [24]. 
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