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Abstract

The key of zero-shot learning (ZSL) is how to find the information transfer model for
bridging the gap between images and semantic information (texts or attributes). Ex-
isting ZSL methods usually construct the compatibility function between images and
class labels with the consideration of the relevance on the semantic classes (the man-
ifold structure of semantic classes). However, the relationship of image classes (the
manifold structure of image classes) is also very important for the compatibility model
construction. It is difficult to capture the relationship among image classes due to un-
seen classes, so that the manifold structure of image classes often is ignored in ZSL.
To complement each other between the manifold structure of image classes and that of
semantic classes information, we propose structure propagation (SP) for improving the
performance of ZSL for classification. SP can jointly consider the manifold structure of
image classes and that of semantic classes for approximating to the intrinsic structure
of object classes. Moreover, the SP can describe the constrain condition between the
compatibility function and these manifold structures for balancing the influence of the
structure propagation iteration. The SP solution provides not only unseen class labels
but also the relationship of two manifold structures that encode the positive transfer in
structure propagation. Experimental results demonstrate that SP can attain the promis-
ing results on the AwA, CUB, Dogs and SUN databases.
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1. Introduction

Although deep learning [[1] depending on large-scale labeled data training has been
widespreadly used for visual recognition, a daunting challenge still exists to recognize
visual object ’in the wild”. In fact, in specific applications it is impossible to collect all
class data for training deep model, so training and testing class sets are often disjoint.
The main idea of ZSL is to handle this problem by exploit the transfer model via the
redundant relevance of the semantic description. Furthermore, in ZSL, testing class im-
ages can be mapped into the semantic or label space by transfer model for recognizing
objects of unseen classes, from which samples are not available or can not be collected
in training sets. Many ZSL methods [2] [3] [4] [S] [6] [7] [8] attempt to model the
interaction relationship on the cross-domain (e.g. text domain or image domain) via
transfer model to classifying objects of unseen classes by the aid of the semantic de-
scription of unseen classes and seen classes, from which labeled samples can be used.
For example, ’pig’ is a unseen class in testing image sets, while *zebra’ is a seen class
in training image sets. These classes both have the related semantic description(e.g. at-
tribute is "has tail’). Therefore, ZSL can construct a knowledge transfer model between
’zebra’ and 'has tail’ in training sets, and then, ’pig’ can be mapped into the semantic
or label space by this model for recognizing 'pig’ in testing image sets.

To recognize unseen classes from seen classes, ZSL needs face to two challenges
[7]. One is how to utilize the semantic information for constructing the relationship
between unseen classes and seen classes, and other is how to find the compatibility
among all kinds of information for obtaining the optimal discriminative characteristics
on unseen classes.

To handle the first challenge, visual attributes [9] [10] [[L1] and text representations
[[12]] [13] [14] have been used for linking unseen and seen classes. These semantic
information can not only be regarded as a middle bridge for associating visual images
and class labels [[14]] [[15] [16] [17] [18] [19] [20]], but also be transformed into new
representations corresponding to the more suitable relation between unseen and seen
classes by Canonical Correlation Analysis (CCA)[21] or Sparse Coding (SC)[22] [23].

To address the second challenge, the classical method as baseline is the probability



model for visual attributes predicting unseen class labels [16]. For implementing the
discriminative classification, the recent methods have two tendencies. some methods
have built the linear [[12]] [24] [25]], nonlinear [[14]] [26] or hybrid [[19]] [23] compatibility
function between image domain and semantic domain (for example,text domain), oth-
ers have further considered the manifold structure of semantic classes for constraining
the compatibility function [7]. However, the manifold structure of image classes that
can enhance the connection between unseen classes and seen classes is often neglected,
because unseen classes make the manifold structure of image classes to be uncertain.
In this paper, our motivation is inspired by structure fusion [27] [28] [29] [30] [31]
[32] [33]for jointly dealing with two challenges. The intrinsic manifold structure is
crucial for object classification. However, in fact, we only can attain the observation
data of the manifold structure, which can represent different aspects of the intrinsic
manifold structure. For recovering or approximating the intrinsic structure, we can
fuse various manifold structures from observation data. Based on the above idea, we
try to capture different manifold structures in image and semantic space for improving
the recognition performance of unseen classes in ZSL. We view the weighted graph of
object classes in semantic or image space as the different manifold structure. In the
weighted graph of semantic space (the manifold structure of semantic classes), nodes
are corresponding to semantic representations (e.g. attributes[9], word vectors [34]],
GloVe [35] or Hierarchical embeddings [24]) of object classes and these weights of
edges describe the distance or similarity relationship of nodes. In the weighted graph
of image space(the manifold structure of image classes), it is difficulty to obtain some
certain nodes and weights because we do not know labels of unseen classes. Therefore,
we expect to construct the compatibility function for predicting labels of unseen classes
by building the manifold structure of image classes. On the other end, we attempt to
find the relevance between the manifold structure of semantic classes and that of image
classes in model space for encoding the influence between the negative and positive
transfer, and further make the better compatibility function for classifying unseen class
objects. Finally, we iterate the above process to converge the stable state for obtaining
the discriminative performance, and in this iteration process manifold structure can

be propagated on unseen classes. Model space corresponding to visual appearances



is the jointed projection space of semantic space and image space, and can preserve
the respective manifold structure. Therefore, we respectively define phantom object
classes (the coordinates of classes in the model space are optimized to achieve the best
performance of the resulting model for the real object classes in discriminative tasks
[7].) and real object classes corresponding to all classes in model space. Figure [I]

illustrates the idea of the proposed method conceptually.

« :seen class semantic representation n :real class in model
o:unseen class semantic representation o ;phantom class in model

Semantic space Model space

Fusion g

Structure
propagation

Image space

a seen class image representation : certain structure relation
aunseen class image representation e : uncertain structure relation

Figure 1: The illustration of structure propagation for zero-shot learning.

In our main contribution, a novel idea is to recover or approximate the intrinsic
manifold structure from seen classes to unseen classes by fusing the different space
manifold structure for handling the challenging unseen classes recognition. Specifi-
cally, we demonstrate how to construct the projected manifold structure for real and
phantom class in model space, and how to constrain the compatibility function and
the relationship of the manifold structure for the positive structure propagation. In the
experiment, we evaluate SP on four benchmark datasets for ZSL. Experimental results

are promising for improving the recognition performance of unseen class objects.



2. Related Works

ZSL can bridge the gap among the different domains to recognize unseen class ob-
jects by semantic information, which includes the class label and usually can be called
the semantic embedding of class labels. These semantic embeddings can come from
vision (attributes [10]) and language information (text [14]) by the manual annotation
[36], machine learning [37]]or data mining [38]]. In term of the transformation relation-
ship of different embedding, recent ZSL methods mainly fall into linear embedding,
nonlinear embedding and similarity embedding.

Linear embedding implements the linear transformation method among different
embedding spaces for learning the relevance between unseen class objects and class
labels. In classical methods, the first step maps image feature to semantic space, and
then the second step recognizes image object by class labels in the semantic space [36]]
[24]. In recent methods,the above steps are combined into a unified framework. Es-
pecially, some representation methods, which are max-margin learning learning label
embedding [39], ranking objective[12]], weighted approximate ranking objective [40],
full weight to the top of the ranked list [24]and risk minimization formulation with
regularization term [20], can obtain the compatibility of latent space by addressing im-
age and class bi-linear embedding for attaining the better recognition performance of
unseen class objects.

Nonlinear embedding can realize the nonlinear mapping of the embedding space
for building the compatibility function or classifier. There mainly are three ways for
constructing the nonlinear mapping. The first way is a piece-wise linear compatibil-
ity for modeling the different characteristic of the embedding [26], and is convenience
for computing the transformation matrix of the nonlinear compatibility function in the
cross-domain. The second way is a nonlinear hyperbolic tangent activation for learning
from image to semantic space of words [14] or computing inner product of hypothet-
ical space [41], and is suitable for the threshold transformation in the cross-domain.
The third way is a kernel function between two images for defining the discriminant
function of the intra-modal label transfer [41], and is fit for space metric in the same

domain.



Different from the above embeddings, similarity embedding builds the classifier by
the similarity metrics, which mostly include structure learning or class-wise similar-
ities. By structure learning, similarity embedding learns a joint latent space in cross
domain for fitting each sample by dictionary learning and improving the recognition
performance by bilinear classifier [42] [23]. Via class-wise similarities, unseen classes
associate with seen classes for enhancing the unseen object classification and the do-
main compatibility [43] [44] [7]. Recently, dual visual-semantic mapping paths[45]]
can capture and refine the semantic space manifold structure (it can be described by
the similarity metric) to enhance the transfer ability of visual-semantic mapping for
unseen classes classification. In our approach, the similarity metric is extended from
semantic space to image space, we attempt to find the relationship of similarities (man-
ifold structure in the different space) for constraining the compatibility function, and
further capture to the positive structure propagation for the significantly improvement
of the unseen object classification. Figure [2] shows a flowchart for describing the dif-

ferent steps of the proposed method.
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Figure 2: The flowchart of structure propagation (SP) for zero-shot learning (ZSL).



3. Structure propagation

In ZSL, we have training data set 2 = {(z,, € R”,y,)}_,, in which z,, is image
representation (it can be extracted based on deep model, and the detail is described in
section 4.2.) and y,(n = 1, ..., N) is the class label in the seen class set . = {s|s =
1,...,5}. We can denote the unseen class set as % = {uju = S+ 1,...,S + U}.
a. € Rp is the linear transformation vector of the ¢ € {7 | J % } class. Table ||lists

the important notations used in this paper.

3.1. Classification model and manifold structure

We construct a pair-wise linear classifier [7]]in the visual image feature space, and

determinate a estimated label ¢ to a feature x by the following formula.
P T
Yy = argmaxa, T, 1)
c

here, a. € RP is not only the transformation vector of the feature z, but also the
representation of the class ¢ in model. In other words, the above formula can describe
the pair-wise linear relation between the feature space and the class label space for
characterizing the class representation in the model.

To measure the manifold structure, we can compute the similarity of the related
representation in the homogeneous space, which has the same scale and metric. To this
end we respectively build a bipartite graph between unseen classes and seen classes
in semantic space and image space (this space includes all image representations). In
these bipartite graphes, nodes are corresponding to unseen classes or seen classes, and
weights of these nodes connect unseen classes with seen classes. Because we focus
on the transfer relation between unseen classes and seen classes, no connection exists
in unseen classes or seen classes. Supposing G < V3, E} > can denote the manifold
structure of semantic classes. Here, Vi, = Vis |J Vi and 0 = Vis (| Viu- Ep includes
connections between V;s(seen classes set in semantic space) and Vj,, (unseen classes
set in semantic space). Therefore, similarity is regarded as the weight between nodes,

which can be defined as following.

®) _ exp(—d(bs, by)) 5
T ST exp(—dbba)| @




Table 1:

List of mathematical notations.

Notation

Description

9 = {(I" € RD7yn)}TJY:1

S ={sls=1,...,5}
U ={ulu=S+1,..,S+U}
ce{sUu}

Ac

Vs

Vuy

Ts
an

(b)

su

wSy)

Training data set includes the image representation x,, and the

class label y,, in nth sample

The class label space of seen classes
The class label space of unseen classes
The label of any class in .7 | %

The transformation vector of the linear model or any real class

c representation in model space

The phantom class representation corresponding to the seen

class s in model space

The phantom class representation corresponding to the unseen

class u in model space

The semantic representation of the seen class s
The semantic representation of the unseen class u
The image representation of the seen class s

The image representation of the unseen class u

Similarity between the seen class s and the unseen class u in

semantic representation b space

Similarity between the seen class s and the unseen class v in

semantic representation x space

here, b, is the semantic representation (is the vector feature from different semantic

sources, and the detail is described in section 4.2.) of the seen class s, and b,, is the se-

(b)

mantic representation of the unseen class u. ws,, is the weight (the similarity ) between

the seen class s and the unseen class u in semantic representation b space. d(bs, by, ) is



a distance metric [7], and can be defined as following.
d(bsa bu) = (bs - bu)TZgl(bs - bu); (3)

here, >, = o/ can be learned from the semantic representation by cross-validation
(We alternately divide the training classes set into two part in according with the pro-
portion between the training classes set and the test classes set. One part is to learn the
model, and anther is to validate the model. We give the range of o, which is form 275
to 25, and select the parameter corresponding to the best result as the value of o3,.)
Like the manifold structure of semantic classes, we build a bipartite graphes G, <
Vz, E; > for the manifold structure of image classes. Here, V,, = V5 |J V4, and
0 = Vs () Vau. E. includes the connections between V,(seen classes set in image
space) and V,, (unseen classes set in image space). In term of (2)) and (3, we can define

the weight on G, as following.

wgi) _ exp(—d(zs, zy)) 7 @

S exp(—d(zs, )

d(l‘s,.’L‘u) = (xs - xu)ngl(xs - qu), (5)

here, >, = 0,1 can be learned from the image representation by cross-validation (It
is the same procedure like o}, learning.). In image space, the differentiation compared
with the semantic space is that x,, is not determined because of unseen classes, while
x5 can be obtained from training data by computing the mean value of the seen class.
The way to produce the center of the class as a representation is simple for conve-
nient computation, and it is reasonable to preserve the base characteristic of image
representation according with the distribution of the same class. x,, can be attained by
pre-classification of unseen classes (the detail in the next section).

In @, a. 1s the transformation vector, and also is the class representation in model
space. In , bs and b,, is the class representation in semantic space. In (EI), T and x,,
is the class representation in image space. We expect to construct the link among these
space by v, and v,,, which are respectively the phantom class of seen or unseen classes

in model. For preserving the manifold structure of two bipartite graphes and aligning



the image, the semantic and the model space, we build the optimization formula under

the condition of the distortion error minimization, which is defined as following.

U
(e, v B) = g min Jlae — 3237 [ @] 0

Qc,Vu,B

u=1
S T
A [ ) N
s=1
st. fM1=1,7"1=1,0<8,<1,0<v <1 (i=1,2)

(6)

- T T T
here,f = {31 ﬁ2} , 7 = [’Yl 72] ,andl = [1 1} . Because no connection
exists between unseen classes or seen classes in tow bipartite graphes, wgl;) = 0 and

wgﬁ) = 0. Therefore, (EI) can be transformed into the following formula.

T
m%mmmmchF[”@ﬂwﬁ

Qcy Uy, (7)
st. A1=1,0<8<1 (i=1,2)
The analytical solution o (IZ[) can find the relation between a. and v,,.
U
c=>_ 8" [wgﬁ) wﬁf)} Vu,
u=1 3
st. BT1=1,0<p<1 (i=1,2)

here, Ve € {1,2,...,S + U}.

3.2. Phantom classes and structure relation learning

For obtaining phantom class v, (v = 1,...,U) and the manifold structure of the
weight coefficient vector 3, we further reformulate the optimization formula for one-

versus-other classifier [[7]].

S
A
(Ula---;UU7B) _a’rg mln ZZE x'rﬂ yn,uac 52”%”%
15 c=1

;UU7ﬁc 1 n=1

U
st ac=Y B’ {wﬁ?) wg’{)} v, ATI=1,0<B <1 (i=1,2)
u=1
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here, the first term of formula @I) is the squared hinge loss, which can be defined as
Uz, L, ¢ ac) = max(0,1 — I, caczy). L, . € {—1,1} determinates whether or
not y, = c. The second term of formula @I) is a. of a regularization tern, which avoids
over-fitting problem on the pair-wise linear classifier for modeling the relationship be-
tween the class label and the image representation. However, in formula (@), we can

()

not determinate the value of wg,, , which can be computed by the certain class label,

because the class label of unseen classes can not be got in image space. Therefore,

) to 0. In other words, we do not consider the manifold

we set the initial value of w'~
structure of the image class in the initial state, and then can complete the optimization
of formula (9) by solving the quadratic programming problem. When we can cate-
gorize the unseen class, and obtain the image class representation by computing the
mean value of the same class image representation, in the next iteration computation

the updated w %

can be considered into the optimization of formula @) Although the
manifold structure of the image class can be successfully leaded into formula (9)), its
influence could have two aspects for recognizing the unseen class. One is the positive
effect, which is the mostly correct classification of unseen classes because of the posi-
tive structure propagation in each iteration. The other is the negative role, which is the
mainly uncorrect classification of unseen classes due to the negative structure propa-

gation. The former situation is our expectation. Therefore, we reformulate formula (9)

by added the third term as following.

S N S
- . A )
(v, v, B) =org win 3D Uow Ty erae) + 5 2 el

v1,..,00,8 c=1n=1

218w — BW,
(10)

u T
s.t. aczng[wgﬁ) wgiﬂ Vs

u=1

Ff1=1,0<p<1 (i=12)

Z s the element of the matrix W?, and w?, is the element of the matrix W?.

here, wg,, su

The third term of formula (I0) is the constraint of the manifold structure similarity
for preventing the negative structure propagation in image space. The alternating opti-

mization can be implemented for minimizing the formula (10)) with respect to {v, }7_;
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and 3 by solving the quadratic programming problem.

To depict the whole process of the structure propagation mechanism, we show the
pseudo code of the proposed SP algorithm in Algorithm[I] which includes three steps.
The first step (line 1) computes the similarity matrix to represent the manifold structure
of semantic classes. The second step (line 2) initializes the similarity matrix related
to the manifold structure of image classes. The third step includes phantom classes
{v, YU_,, weight coefficients E and the classification of unseen object classes updating
by each iteration (from line 3 to line 9). Structure propagation can be completed by the

whole iteration computation.

Algorithm 1 The pseudo code of the SP algorithm
Input: 2 = {(z,, € R”,y,)})_,,bs and b, (input data)

Output: y5 (P is the total iteration number )

1: Computes the similarity matrix W on the semantic representation by

2: Setting the similarity matrix W, to zero matrix on the image representation

3: forl <t< Pdo

4: Solving {v,}V_, and J by alternately optimizing

5. Computing a. according to ()

6:  Computing ¢ by (1)) and obtaining the class label y; of the unseen class corre-
sponding to the semantic class

7. Computing the mean value of each image class as the image class representation
T and x,,

8:  Computing and updating the similarity matrix W,y on the image representation

by @)

9: end for

3.3. Multi-semantic structure fusion

To address multi-semantic structure fusion, we produce w®, by the linear fusion of

multi-semantic structure as following.

T
wh, =i’ [wglff) w9 wéizh)] : (11

12



T
here, 77 = [52 B3 B 55} C S ) 09 and wl™ are respectively cor-

responding to attributes (att)[9], word vectors(w2v) [34]], GloVe (glo)[35] and Hierar-
chical embeddings (hie)[24]. We can bring formula (IT]) into formula (I0) for handling

the multi-semantic structure fusion as following.

S N S

- , A

(01,00, f) =arg min EZZM,HW,%) +5 2 llacl3
P e=1 n=1 c=1

+ 1B — B Wb — Bt — Byt — BN,

12)

U
st a= YA [0 uwl? Wl W W)

u=1

T
(%

Ff1=1,0<B<1 (i=1,..,5)

. T
here, 8 = {51 Bo B3 B 55} D w15 ®9 and w™ are respectively
the element of WS(Z“), s('gw), Ws(fig ), and Ws(gh). If there are the more semantic in-

formation, we can consider these semantic information for ZSL by the similar way of
formula (T2). Like Algorithm has the similar optimization solving process for

considering multi-semantic information in ZSL.

3.4. Complexity analysis

Formula (T0) can be solved by alternately quadratic programming, which of the
complexity includes two parts. In the first part, when E is fixed, formula 1| is related
to {v, }U_; of a quadratic programming problem, which of the complexity is O(U?)
for the worst [46]]. In the second part, while {v, }U_, is fixed, formula is corre-
sponding to E of a quadratic programming problem, which of the complexity is O(k?)
(k is the dimension of ﬁ)for the worst [46]. Given the proposed algorithm SP needs P

iterations, it’s complexity is O(PU? + Pk3).

4. Experiment

4.1. Datasets

For evaluating the proposed algorithm SP, we carry out the experiment in four chal-

lenging datasets, which are Animals with Attributes (AwA)[16]], CUB-200-2011 Birds

13



(CUB)[47], Stanford Dogs (Dogs)[48]], and SUN Attribute (SUN)[49]. These datasets
can be used for fine-grained recognition (CUB and Dogs) or non-fine-grained recog-
nition (AwA and SUN) in ZSL. In semantic space, AWA and CUB respectively are
described by att[9],w2v [34],glo[33] and hie[24], while Dogs is represented by w2v
[34],glo[33] and hie[24]. SUN is only depicted by att[9]]. Figure 3]shows image exam-
ples in CUB-200-2011 Birds database. Tab[2] provides the statistics and the extracted

features for these datasets.

Seen classes

p-! )
h
- 2 &7

Red winged blackbird Tree sparrow

3

Unseen classes

Rusty blackbird Song sparrow

Figure 3: Image examples in CUB-200-2011 Birds database.

4.2. Image and semantic feature

In our SPIIl method, image feature and semantic feature are the main support for
modeling ZSL. Deep learning feature can learn the discriminative characteristic of ob-
jects based on large scale database. In addition, for conveniently comparing with the
state-of-art methods, we adopt image feature provided by [24]. In one word, image fea-
ture is the outputs (1024 dimension feature vector) of the pre-trained GoogleNet[30],
which can process the whole image as inputs. These images are not pre-processed

in any way. In the semantic space, there are four ways to extract the related feature.

I'source code:https://github.com/Igf78103/Structure-propagation-for-zero-shot-learning.
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Table 2: Datasets statistics and the extracted feature in experiments.

Number of Number of Total number Semantic feature Image feature
Datasets
seen classes unseen classes  of images /dimension /dimension
att/85,
Deep feature based
w2v/400,
AwA 40 10 30473 on GoogleNet[50]
glo/400,
/1024
hie/about 200.
att/312,
Deep feature based
w2v/400,
CUB 150 50 11786 on GoogleNet[50]
glo/400,
/1024
hie/about 200.
N/A,
Deep feature based
w2v/400,
Dogs 85 28 19499 on GoogleNet[50]
glo/400,
/1024
hie/about 200.
att/102,
Deep featurebased
N/A,
SUN 645 72 14340 on GoogleNet[50]
N/A,
/1024
N/A.

The first way is the distinguishing vector feature of objects (att) from attributes [9]] by

human annotation and judgment, which have been completed for collecting data on

AwA, CUB, and SUN except Dogs. The second ways is word vectors(w2v) based on

a two-layer neural network to predict words through a text document[34]. The third

way is GloVe (glo) based on co-occurrence statistics of words from a large unlabel text

15



corpora [35]. The forth way is hierarchical embeddings (hie) based on vectorial class
structure from the class hierarchical relationship such as WordNet[24][51]. The w2v,
glo, and hie are also provided by [26]] to facilitate contrast to the state-of-art methods.
In addition, we can extend the other types of visual features in the proposed method,

as will be studied for feature fusion in future work.

4.3. Comparison methods

In this paper, there are three methods as the baseline for comparing with the pro-
posed SP method because of the semantic structure mining. The first method is struc-
tured joint embedding (SJE) [24], which can build the bilinear compatibility function
with the consideration of the structured output space for predicting the label of the
unseen class. The second method is latent embedding model (LatEm)[26],which can
construct the pair-wise bilinear (nonlinear) compatibility function according to model
number selection for recognizing unseen classes. The third method is synthesized
classifiers (SynC)[7], which can make nonlinear compatibility function with manifold

structure in semantic space for combining the base classifier in ZSL.

4.4. Classification and validation protocols

Classification accuracy is average value of all test class accuracy in each database.
Because the learned model involves four parameters, which are A, v, o, and o, (re-
spectively are in formula (3 and (5)) in formula (I0). We alternately divide the training
classes set into two part in according with the proportion between the training classes
set and the test classes set. One part is to learn the model, and anther is to validate the
model. Firstly, we set o}, and o, to 1, and obtain v and A\ corresponding to the best
result in v (form 2724 t027%) and X (form 272* to 279) by cross validation. Secondly,
we learn o3, and o, corresponding to the best result in o3, and o, (form 275 to 29) by

cross validation.

4.5. AwA

Animals with Attributes (AwA)[16] is popularly used for ZSL. The characteristic

of this dataset is the large scale and the small categories. We extract the deep feature of

16



the image based on the pre-trained GoogleNet[50], the continuous vector (att) for clus-
tering attributes in semantic classes [9], the word vector (w2v)for describing words in
the specific context[34], the glover vector (glo) for gathering the co-occurrence words
statistics in the given document[35], and the hierarchy vector (hie) for measuring the
distance of the hierarchy structure in semantic classes [24]. We have two configu-
rations for ZSL in AwA. One is the comparison SP with the state-of-art methods in
each semantic space, the other is the comparison experiment of the fusion methods in
multi-semantic space. Figure [ indicates the experimental comparison of the differ-
ent method in the various semantic space of AwA. Table |3| shows the performance of
the structure propagation (the proposed SP method) greatly outperforms that of other
three methods. The highest and the lowest improvement of SP are respectively 26.2%
and 10.9% to compare with SJE, 16.3% and 4.6% to contrast to LatEm, or 24.5% and
10.1% to contradistinguish SynC. Tabledemonstrates the performance of the SP fu-
sion method is better than that of other three fusion methods. Specifically, when the
fusion includes the supervised (att) and unsupervised (w2v, glo,and hie) semantic rep-
resentation, the accuracy of SP can be increased by 11.5% than SJE, 9.3% than LatEm,
and 7.4% than SynC. While the fusion only contains the unsupervised semantic de-
scription (w2v, glo,and hie), the precision of SP can be enhanced by 21.3% than SJE,
15.2% than LatEm, and 12.3% than SynC.

Table 3: Comparison of SP method with SJE[24]], LatEm[26] and SynC[7] in each semantic space, average
per-class Top-1 accuracy (%)of unseen classes is reported based on the same data configurations, same

images and semantic features in AWA.

Semantic feature SJE LatEm SynC SP

att 66.7 71.9 69.3 84.3
w2v 51.2 61.1 52.9 77.4
glo 58.8 62.9 53.4 70.5
hie 51.2 57.5 52.0 62.1
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Figure 4: Comparison of SP method with SJE[24], LatEm[26] and SynC[7] in att, w2v, glo, hie, w (the
fusion includes att, w2v, glo and hie) and w/o (the fusion contains w2v, glo and hie), average per-class Top-1
accuracy of unseen classes is reported based on the same data configurations, same images and semantic

features in AWA.

4.6. CUB

CUB-200-2011 Birds (CUB)[47] is generally utilized for the fine-grained recogni-
tion. The scale of this dataset is smaller than AwA, but there are the more categories
in CUB. Like AwA, we extracted the deep feature of images in CUB, and we get att,
w2v, glo and hie by the semantic description of CUB. Two configurations are respec-
tively the non-fusion and fusion methods comparison in the single and multi-semantic
space. Figure []indicates the experimental comparison of the different method in the
various semantic space of CUB. Table [5] shows that the performance of the structure
propagation (the proposed SP method) outperforms that of other three methods. The
highest and the lowest improvement of SP are respectively 9.1% and 1.7% to compare
with SJE, 6.3% and 0.1% to contrast to LatEm, or 4.3% and 0.2% to contradistin-

guish SynC. Table [] demonstrates that the performance of the SP fusion method is
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Table 4: Comparison of SP method with SJE[24], LatEm[26] and SynC|[7] for multi-semantic fusion, average
per-class Top-1 accuracy (%)of unseen classes is reported based on the same data configurations, same
images and semantic features in AwA. w: the fusion includes att, w2v, glo and hie, while w/o: the fusion

contains w2v, glo and hie.

Fusion SJE LatEm SynC SP
w 73.9 76.1 78.0 854
w/o 60.1 66.2 69.1 81.4

slightly better than that of other three fusion methods. Specifically, when the fusion
includes the supervised (att) and unsupervised (w2v, glo,and hie) semantic represen-
tation, the accuracy of SP can be increased by 2.4% than SJE, 6.7% than LatEm, and
5.3% than SynC. While the fusion only contains the unsupervised semantic description
(w2v, glo,and hie), the precision of SP can be enhanced by 5.4% than SJE, 0.4% than
LatEm, and 0.1% than SynC.

Table 5: Comparison of SP method with SJE[24]], LatEm[26] and SynC[7] in each semantic space, average
per-class Top-1 accuracy(%) of unseen classes is reported based on the same data configurations, same

images and semantic features in CUB.

Semantic feature SJE LatEm SynC SP

att 50.1 45.5 47.5 51.8

w2v 28.4 31.8 32.3 32.5

glo 24.2 32.5 32.8 333

hie 20.6 24.2 22.7 24.3
4.7. Dogs

Stanford Dogs (Dogs)[48]] is also usually a benchmark dataset for fine-grained

recognition. Dogs is middle between AwA and CUB about the scale and the cate-
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Figure 5: Comparison of SP method with SJE[24], LatEm[26] and SynC[7] in att, w2v, glo, hie, w (the
fusion includes att, w2v, glo and hie) and w/o (the fusion contains w2v, glo and hie), average per-class Top-1
accuracy of unseen classes is reported based on the same data configurations, same images and semantic

features in CUB.

gory number. We use the same method for extracting the deep feature of images and
semantic class features (w2v, glo and hie). We also carry out the experiment in non-
fusion methods in the single semantic space and fusion methods in the multi-semantic
space. Figure [f] indicates the experimental comparison of the different method in the
various semantic space of Dogs. Table[7]shows the performance of the structure propa-
gation (the proposed SP method) outperforms that of other three methods. The highest
and the lowest improvement of SP are respectively 15.6% and 8.1% to compare with
SJE, 12.5% and 7.2% to contrast to LatEm, or 11.5% and 1.3% to contradistinguish
SynC. Table[8]demonstrates the performance of the SP fusion method is obviously bet-
ter than that of other three fusion methods. Specifically, While the fusion only contains
the unsupervised semantic description (w2v, glo,and hie), the precision of SP can be

enhanced by 13% than SJE, 11.8% than LatEm, and 11.8% than SynC.
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Table 6: Comparison of SP method with SJE[24], LatEm[26] and SynC|[7] for multi-semantic fusion, average
per-class Top-1 accuracy(%) of unseen classes is reported based on the same data configurations, same
images and semantic features in CUB. w: the fusion includes att, w2v, glo and hie, while w/o: the fusion

contains w2v, glo and hie.

Fusion SJE LatEm SynC SP
w 51.7 474 48.8 54.1
w/o 29.9 34.9 35.2 35.3

Table 7: Comparison of SP method with SJE[24]], LatEm[26] and SynC[7] in each semantic space, average
per-class Top-1 accuracy(%) of unseen classes is reported based on the same data configurations, same

images and semantic features in Dogs.

Semantic feature SJE LatEm SynC SP

att N/A N/A N/A N/A

w2v 19.6 22.6 27.6 33.3

glo 17.8 20.9 21.9 334

hie 24.3 25.2 31.1 324
4.8. SUN

SUN Attribute (SUN)[49] is the first large-scale scene attribute dataset. Because
scene is greatly more complex than the specific object (e.g. bear, dog, or bird), so
it is difficult to find the unsupervised source (e.g. wikipedia for w2v and glo) for
precisely describing the scene semantics. Therefore, we only use att for implementing
the experiment. Figure[7)indicates the experimental comparison of the different method
in the attribute semantic space of SUN. Table [9] demonstrates the performance of the
SP method is superior to that of other three methods. Specifically, the accuracy of SP
can be enhanced by 11.5% than SJE, 10% than LatEm, and 4.8% than SynC.
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Figure 6: Comparison of SP method with SJE[24], LatEm[26] and SynC[[7]] in w2v, glo, hie and w/o (the
fusion contains w2v, glo and hie), average per-class Top-1 accuracy of unseen classes is reported based on

the same data configurations, same images and semantic features in Dogs.

4.9. Structure propagation with the iteration

The main idea of the proposed SP method shows three contents. In the first con-
tent, the manifold structure of images is considered for constructing the compatibility
function between the class label and the visual feature. In the second content, the re-
lationship between multi-manifold structures is found for booting the influence of the
positive structure. In the last content, it is the most important to propagate the positive
structure and fuse multi-manifold structures by the iteration computation. Therefore,
we carry out the related experiment for evaluating the effect of the iteration on the struc-
ture evolution in AWA. The recognition accuracy can show the approximation degree of
the class manifold structure. In other word, the better recognition accuracy is propor-
tional to the more similar relationship between the reconstruction manifold structure
and the intrinsic manifold structure of classes. Figure [§]demonstrates the recognition

accuracy change with the iteration. In the beginning, the recognition accuracy rapidly
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Table 8: Comparison of SP method with SJE[24], LatEm[26] and SynC|[7] for multi-semantic fusion, average
per-class Top-1 accuracy(%) of unseen classes is reported based on the same data configurations, same
images and semantic features in Dogs. w: the fusion includes att, w2v, glo and hie, while w/o: the fusion

contains w2v, glo and hie.

Fusion SJE LatEm SynC SP
w N/A N/A N/A N/A
w/o 35.1 36.3 36.3 48.1

Table 9: Comparison of SP method with SJE[24], LatEm[26] and SynC[7] in attribute semantic space,
average per-class Top-1 accuracy(%) of unseen classes is reported based on the same data configurations,

same images and semantic features in SUN.

Semantic feature SJE LatEm SynC SP

att 56.1 57.6 62.8 67.6

increases with the iteration, and then reaches a stable state. It means that structure
propagation with the iteration can advance the recognition accuracy and finally obtain

the best state.

4.10. Comparison with state-of-the-arts

In term of the image data utilization of unseen classes in testing, we can divide
ZSL methods into two categories, which are inductive ZSL and transductive ZSL. In-
ductive ZSL methods can serially process unseen samples without the consideration
of the underlying manifold structure in unseen samples[24] [26] [7] [23], while trans-
ductive ZSL can usually use the manifold structure of unseen samples to improve ZSL
performance [21] [52] [45]]. SP can find the structure of unseen classes in image feature
space to enhance the transfer model between seen and unseen classes, so SP belongs to
a transductive ZSL method. For a fair comparison, we use deep feature of images based

on GoogleNet[50] in contrasting methods, which include our method, one transductive
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Figure 7: Comparison of SP method with SJE[24], LatEm[26] and SynC[[7] in att, average per-class Top-1
accuracy of unseen classes is reported based on the same data configurations, same images and semantic

features in SUN.

ZSL method (DMaP [43])), and three inductive ZSL methods(SJE[24]], LatEm[26] and
SynC[7]). To the best of our knowledge, these methods are state-of-the-art methods
for ZSL. Table[I0]shows their results for ZSL on three benchmark datasets. SP mostly
outperforms the state-of-the-art methods except DMaP on CUB. DMaP focuses on the
manifold structure consistency between the semantic representation and the image fea-
ture, and can better distinguish fine-grained classes. SP can complement the manifold
structure between the semantic representation and the image feature, and better rec-
ognize coarse-grained classes. Therefore,integrating two ideas is expected to further

improve the ZSL performance in future work.

4.11. Experimental result analysis

From the above mention, five methods for constructing the compatibility function
have different consideration of the manifold structure. SJE can structure the output

space by weighting the different output embedding, which can be associated with the
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confidence contribution. LatEm try to find the structured model for making the overall
piecewise linear function and can capture the flexible model of the latent space for
fitting the unseen class. SynC can consider the manifold structure in semantic space for
achieving optimal discriminative performance in the model space. DMaP can construct
the manifold structure consistency between semantic representation and image feature.
The proposed SP can take into consideration for optimizing the relationship of the
manifold structure in semantic and image space, and enhance the positive structure
propagation by iteration computation for ZSL. From the above experiments, we can

attain the following observations.

e The semantic description have the different contribution for classifying unseen
classes. The supervised attribute tend to obtain the better recognition perfor-
mance than the unsupervised semantic representation (w2v, glo and hie) in AwWA

and CUB. In the unsupervised semantic representation, the recognition accuracy
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Table 10: Comparison of SP method with state-of-the-art methods for ZSL, average per-class Top-1 accuracy

(%) of unseen classes is reported based on the same data configurations. *+’ indicates fusion operation.

Method Semantic fea- T/I AwA CUB Dogs
ture

SIE att 1 66.7 50.1 N/A
w2v I 51.2 28.4 19.6

LatEm att I 71.9 45.5 N/A
w2v I 61.1 31.8 22.6

SynC att I 69.3 47.5 N/A
w2v I 52.9 32.3 27.6

DMaP att T 74.9 61.8 N/A
w2v T 67.9 31.6 38.9
att+w2v T 78.6 59.6 N/A

SP att T 84.3 51.8 N/A
w2v T 7.4 32.5 33.3
att+w2v T 84.7 52.5 N/A
att+w2v+glo+hie T 854 54.1 N/A
w2v+glo+hie T 81.4 35.3 48.1

of w2v or glo is better than that of hie in in AWA and CUB, but the performance
of hie is superior to that of w2v or glo in Dogs. This is mainly due to that
the flexibility and uncertainty of the semantic representation in the unsupervised

way.

e The performance of SP is better than that of other three methods, which are
SJE, LatEm,and SynC. However, the performance improvement is different in

the various datasets. The obvious improvement can be found in AwA, Dogs and
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SUN, while the slight improvement can be shown in CUB. The main reason of
this situation is related to whether or not effectively to propagate the positive

structure in the optimization computation in term of data differences.

SP emphasizes on the different manifold structure complement, while DMaP fo-
cuses on the various manifold structure consistency. Therefore, the performance
of SP is superior to that of DMaP because the structure complementarity plays
the important role for learning transfer model in AwA and Dogs, and the perfor-
mance of DMaP is better than that of SP because the structure consistency is a

key point for classifying unseen classes in CUB.

SP performs better with the positive structure propagation. SP has demonstrated
great promise in above experiments due to multi-manifold structure considera-
tion and alternated optimization between the weight computation and the mani-

fold structure estimation for ZSL.

The proposed fusion method can attain the better performance than the non-
fusion method because of appropriate complementing each other. w or w/o al-

ways performs better on AwA, CUB and Dogs.

The most computational load involved in SP is for solving quadratic program-
ming problem. Specifically,the complexity is O(PU? + Pk?) for P iteration

times.

5. Conclusion

We have proposed a new ZSL method, which called Structure Propagation (SP).

This method can not only directly model the relevance among the manifold structures

in semantic and image space, but also dynamically propagate the positive structure by

the crossing iteration. Specifically, the proposed SP method mainly includes four parts.

First, nonlinear model constructs the mapping relationship between the class label and

the visual image representation. Second, graph describes the relevance between seen

classes and unseen classes in semantic or image space. Three, loss function indicates
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the constrains relationship of multi-manifold structure to balance the structure depen-
dance. Last, structure propagation is implemented by the crossing iteration computa-
tion between phantom classes and weights solving. For evaluating the proposed SP, we
carry out the experiment on AwA, CUB, Dogs and SUN. Experimental results show

that SP can obtain the promising results for ZSL.
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