Skip to main content

An ELM Based Regression Model for ECG Artifact Minimization from Single Channel EEG

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11314))

  • 2302 Accesses

Abstract

Electroencephalogram (EEG) is the most widely used non-invasive technique to record the electrical activity of brain for analysis or diagnostic procedures. The sensitive electrodes of EEG are susceptible to high amplitude electrocardiogram (ECG) signals, which superimpose on the recorded EEG. Minimizing this artifact effectively from a single channel EEG without a reference ECG channel is a challenge. In this paper, extreme learning machine (ELM) algorithm as a regression model is implemented for ECG artifact removal from single channel EEG. The S-transform (ST) of the EEG signals are used as the feature set of for ELM training and testing. ST combines the progressive resolution and absolutely referenced phase information for the given time series uniquely. By training the ELM with pairs of contaminated and clean EEG signals both in magnitude and phase, is able to minimize the ECG artifact from contaminated EEG signal effectively in the testing phase. The average Root mean square error (RMSE) and the correlation coefficient (CC) for actual EEG signal to the estimated EEG signal from the ELM based regression model obtained are 0.32 and 0.96 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho, D., Lee, B.: Optimized automatic sleep stage classification using the normalized mutual information feature selection (NMIFS) method. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3094–3097. IEEE (2017)

    Google Scholar 

  2. Cui, G., Xia, L., Tu, M., Liang, J.: Automatic classification of epileptic electroencephalogram based on multiscale entropy and extreme learning machine. J. Med. Imag. Health Inform. 7(5), 949–955 (2017)

    Article  Google Scholar 

  3. Devuyst, S., Dutoit, T., Stenuit, P., Kerkhofs, M., Stanus, E.: Cancelling ECG artifacts in EEG using a modified independent component analysis approach. EURASIP J. Adv. Signal Process. 2008, 1–14 (2008)

    Article  Google Scholar 

  4. Dirlich, G., Vogl, L., Plaschke, M., Strian, F.: Cardiac field effects on the EEG. Electroencephalogr. Clin. Neurophysiol. 102(4), 307–315 (1997)

    Article  Google Scholar 

  5. Duan, L., Bao, M., Miao, J., Xu, Y., Chen, J.: Classification based on multilayer extreme learning machine for motor imagery task from EEG signals. Proc. Comput. Sci. 88, 176–184 (2016)

    Article  Google Scholar 

  6. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). http://circ.ahajournals.org/content/101/23/e215.fullPMID:1085218; https://doi.org/10.1161/01.CIR.101.23.e215. (June 13), circulation Electronic Pages:

  7. Hamaneh, M.B., Chitravas, N., Kaiboriboon, K., Lhatoo, S.D., Loparo, K.A.: Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans. Biomed. Eng. 61(6), 1634–1641 (2014)

    Article  Google Scholar 

  8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings 2004 IEEE International Joint Conference on Neural Networks, 2004, vol. 2, pp. 985–990. IEEE (2004)

    Google Scholar 

  9. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  10. Hussain, T., Siniscalchi, S.M., Lee, C.C., Wang, S.S., Tsao, Y., Liao, W.H.: Experimental study on extreme learning machine applications for speech enhancement. IEEE Access 5, 25542–25554 (2017)

    Article  Google Scholar 

  11. Jafarifarmand, A., Badamchizadeh, M.A.: Artifact removal in EEG signal using a new neural network enhanced adaptive filter. Neurocomputing 103, 222–231 (2013)

    Article  Google Scholar 

  12. Liang, Y., Leung, C., Miao, C., Wu, Q., McKeown, M.J.: Automatic sleep arousal detection based on C-ELM. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 2, pp. 376–382. IEEE (2015)

    Google Scholar 

  13. Lin, Q., Ye, S., Wu, C., Gu, W., Wang, J., Zhang, H.L., Xue, Y.: A novel framework based on biclustering for automatic epileptic seizure detection. Int. J. Mach. Learn. Cybern. pp. 1–13 (2017)

    Google Scholar 

  14. Liu, Q., Zhao, X., Hou, Z., Liu, H.: Epileptic seizure detection based on the kernel extreme learning machine. Technol. Health Care 25(S1), 399–409 (2017)

    Article  Google Scholar 

  15. Odelowo, B.O., Anderson, D.V.: Speech enhancement using extreme learning machines. In: 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 200–204. IEEE (2017)

    Google Scholar 

  16. Patel, R., Gireesan, K., Sengottuvel, S., Janawadkar, M., Radhakrishnan, T.: Common methodology for cardiac and ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. J. Med. Biol. Eng. 37(2), 201–208 (2017)

    Article  Google Scholar 

  17. Stockwell, R.G., Mansinha, L., Lowe, R.: Localization of the complex spectrum: the S-transform. IEEE Trans. Sig. Process. 44(4), 998–1001 (1996)

    Article  Google Scholar 

  18. Tan, P., Sa, W., Yu, L.: Applying extreme learning machine to classification of EEG BCI. In: 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 228–232. IEEE (2016)

    Google Scholar 

  19. Tan, P., Tan, G.Z., Cai, Z.X., Sa, W.P., Zou, Y.Q.: Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI. Med. Biol. Eng. Comput. 55(1), 33–43 (2017)

    Article  Google Scholar 

  20. Waser, M., Garn, H.: Removing cardiac interference from the Electroencephalogram using a modified Pan-Tompkins algorithm and linear regression. In: 35th Annual International Conference of IEEE EMBS, pp. 2028–2031. July 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmayee Dora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dora, C., Biswal, P.K. (2018). An ELM Based Regression Model for ECG Artifact Minimization from Single Channel EEG. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics