Skip to main content

Combined Classifier Based on Quantized Subspace Class Distribution

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11314))

  • 2285 Accesses

Abstract

Following paper presents Exposer Ensemble (ee), being a combined classifier based on the original model of quantized subspace class distribution. It presents a method of establishing and processing the Planar Exposer – base representation of discrete class distribution over given subspace, and a proposition how to effectively fuse discriminatory power of many Planar Exposers into a combined classifier. The natural property of the representation used in the following article is its resistance to the imbalance of training data, without the need to use over- or undersampling methods and the constant computational complexity of prediction. Description of proposed algorithm is complemented by a series of computer experiments conducted on the collection of balanced and imbalanced datasets with diverse imbalance ratio, proving its usefulness in a supervised learning task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sci2s.ugr.es/keel/datasets.php.

  2. 2.

    https://github.com/w4k2/exposing.

References

  1. Alcalá-Fdez, J., et al.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 17, 255–287 (2011)

    Google Scholar 

  2. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (2001)

    Google Scholar 

  3. Bellman, R.E.: Adaptive Control Processes: A Guided Tour, vol. 2045. Princeton University Press, Princeton (2015)

    Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  5. Dolph, C.V., Alam, M., Shboul, Z., Samad, M.D., Iftekharuddin, K.M.: Deep learning of texture and structural features for multiclass Alzheimer’s disease classification. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2259–2266, May 2017. https://doi.org/10.1109/IJCNN.2017.7966129

  6. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  7. Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approx. Reason. 50(3), 561–577 (2009)

    Article  Google Scholar 

  8. Gu, J., Jiao, L., Liu, F., Yang, S., Wang, R., Chen, P., Cui, Y., Xie, J., Zhang, Y.: Random subspace based ensemble sparse representation. Pattern Recognit. 74, 544–555 (2018)

    Article  Google Scholar 

  9. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9, 1263–1284 (2008)

    Google Scholar 

  11. Kuncheva, L.: Fuzzy Classifier Design, vol. 49. Springer Science & Business Media, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-1850-5

    Book  MATH  Google Scholar 

  12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2004)

    Book  Google Scholar 

  13. Liu, B., Yu, X., Zhang, P., Yu, A., Fu, Q., Wei, X.: Supervised deep feature extraction for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(4), 1909–1921 (2018). https://doi.org/10.1109/TGRS.2017.2769673

    Article  Google Scholar 

  14. Mitchell, T.M., et al.: Machine learning. WCB (1997)

    Google Scholar 

  15. Pedregosa, F.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  17. Ramentol, E., Caballero, Y., Bello, R., Herrera, F.: SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl. Inf. Syst. 33(2), 245–265 (2012)

    Article  Google Scholar 

  18. Romero, A., Gatta, C., Camps-Valls, G.: Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54(3), 1349–1362 (2016). https://doi.org/10.1109/TGRS.2015.2478379

    Article  Google Scholar 

  19. Yen, S.J., Lee, Y.S.: Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36(3), 5718–5727 (2009)

    Article  MathSciNet  Google Scholar 

  20. Yin, F.L., Pan, X.Y., Liu, X.W., Liu, H.X.: Deep neural network language model research and application overview. In: 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 55–60, December 2015. https://doi.org/10.1109/ICCWAMTIP.2015.7493906

  21. Yousif, H., Yuan, J., Kays, R., He, Z.: Fast human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2017. https://doi.org/10.1109/ISCAS.2017.8050762

Download references

Acknowledgment

The work was funded by the statutory funds of Department of Systems and Computer Networks (Faculty of Electronics, Wrocław University of Science and Technology) during realization of Mloda Kadra 2017/2018 task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Ksieniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ksieniewicz, P. (2018). Combined Classifier Based on Quantized Subspace Class Distribution. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics