Skip to main content

A Metaheuristic Approach for the \( \alpha \)-separator Problem

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Abstract

Most of the critical infrastructures can be easily modeled as a network of nodes interconnected among them. If one or more nodes of the network fail, the connectivity of the network can be compromised, to the point of completely disconnecting the network. Additionally, disconnecting the network can result in cascade failures, because the remaining nodes may be overloaded because of heavy traffic in the network. One of the main objectives of an attacker is to isolate the nodes whose removal disconnect the network in minimum size subnetworks. On the contrary, a defender must identify those weak points in order to maintain the network integrity. This work is focused on solving the \( \alpha \) separator problem, whose main objective is to find a minimum set of nodes that disconnect a network in isolated subnetworks of size smaller than a given value. The problem is tackled from a metaheuristic point of view, analyzing the solutions given by a Greedy Randomized Adaptive Search Procedure over different network topologies. The results obtained are compared with the best algorithm found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, G., et al.: Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans. Pow. Syst. 20(4), 1922–1928 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bavelas, A.: Communication patterns in task-oriented groups. Acoust. Soc. Am. J. 22, 725 (1950)

    Article  Google Scholar 

  3. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)

    Article  Google Scholar 

  4. Cuadra, L., Salcedo-Sanz, S., Del Ser, J., Jiménez-Fernández, S., Geem, Z.W.: A critical review of robustness in power grids using complex networks concepts. Energies 8(9), 9211–9265 (2015)

    Article  Google Scholar 

  5. Duarte, A., Sánchez-Oro, J., Resende, M.G., Glover, F., Martí, R.: Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. Inf. Sci. 296, 46–60 (2015)

    Article  MathSciNet  Google Scholar 

  6. Erdős, P., Rényi, A.: On random graphs. Publications Mathematicae 6, 290 (1959)

    MATH  Google Scholar 

  7. Feige, U., Mahdian, M.: Finding small balanced separators. In: Kleinberg, J.M. (ed.) STOC, pp. 375–384. ACM (2006)

    Google Scholar 

  8. Feo, T.A., Resende, M.G., Smith, S.H.: Greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

    Article  Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability - A Guide to the Theory of NP-Completeness. Freeman, San Fransisco (1979)

    MATH  Google Scholar 

  10. Lee, J., Kwak, J., Lee, H.W., Shroff, N.B.: Finding minimum node separators: a Markov chain Monte Carlo method. In: 13th International Conference on DRCN 2017 - Design of Reliable Communication Networks, pp. 1–8, March 2017

    Google Scholar 

  11. Mohamed-Sidi, M.: K-Separator Problem (Problème de k-Sèparateur). Ph.D. thesis, Telecom & Management SudParis, Èvry, Essonne, France (2014)

    Google Scholar 

  12. Quintana, J.D., Sánchez-Oro, J., Duarte, A.: Efficient greedy randomized adaptive search procedure for the generalized regenerator location problem. Int. J. Comput. Intell. Syst. 9(6), 1016–1027 (2016)

    Article  Google Scholar 

  13. Resende, M.G.C., Ribeiro, C.C.: GRASP: greedy randomized adaptive search procedures. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 287–312. Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7_11

    Chapter  Google Scholar 

  14. Wachs, M., Grothoff, C., Thurimella, R.: Partitioning the internet. In: Martinelli, F., Lanet, J.L., Fitzgerald, W.M., Foley, S.N. (eds.) CRiSIS, pp. 1–8. IEEE Computer Society (2012)

    Google Scholar 

Download references

Acknowledgements

This work has been partially founded by Ministerio de Economía y Competitividad with grant ref. TIN2015-65460-C2-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Sánchez-Oro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Peló, S., Sánchez-Oro, J., Duarte, A. (2018). A Metaheuristic Approach for the \( \alpha \)-separator Problem. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11315. Springer, Cham. https://doi.org/10.1007/978-3-030-03496-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03496-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03495-5

  • Online ISBN: 978-3-030-03496-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics