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TWAM: A Certifying Abstract Machine for Logic Programs

ROSE BOHRER and KARL CRARY, Carnegie Mellon University, USA

Type-preserving (or typed) compilation uses typing derivations to certify correctness properties of compila-

tion. We have designed and implemented a type-preserving compiler for a simply-typed dialect of Prolog we

call T-Prolog. The crux of our approach is a new certifying abstract machine which we call the TypedWarren

Abstract Machine (TWAM). The TWAMhas a dependent type system strong enough to specify the semantics

of a logic program in the logical framework LF. We present a soundness metatheorem which constitutes a

partial correctness guarantee: well-typed programs implement the logic program specified by their type. This

metatheorem justifies our design and implementation of a certifying compiler from T-Prolog to TWAM.
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1 INTRODUCTION

Compiler verification is important because of the central role that compilers play in computing
infrastructure, and because compiler bugs are easy to make but often difficult to catch. Most work
on compiler verification has been done in the setting of imperative or functional programming;
very little has been done for logic programming languages like Prolog.

Compiler verification is an equally interesting problem in the case of logic programming. Logic
programs are often easier to write correctly than programs in other paradigms, because a logic
program is very close to being its own specification. However, the correctness advantages of logic
programming cannot be fully realized without compiler verification. Compiler correctness is a
concern for logic programming given the scale of realistic language implementations; for example,
SWI-Prolog is estimated at over 500,000 lines of code [26].
Certifying compilation [18] is an approach to verification wherein a compiler outputs a formal

proof that the compiled program satisfies some desired properties. Certifying compilation, unlike
conventional verification, has the advantage that the certificates can be distributed with the com-
piled code and checked independently by third parties, but the flip side is that compiler bugs are
not found until the compiler sees a program that elicits the bug. In the worst case, bugs might be
found by the compiler’s users, rather than its developers.
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1:2 Rose Bohrer and Karl Crary

In most work on certifying compilation [18], an additional disadvantage is that while type and
memory safety are certified, dynamic correctness is not. In contrast, we certify the dynamic be-
havior of logic programs, whose semantics we give as a signature in the logical framework LF [10].
This semantics abstracts away the low-level operational details of Prolog semantics such as order
of execution. This brings the type system into close harmony with our source programs, allowing
type correctness to naturally encompass dynamic correctness.
In this work, we develop the Typed Warren Abstract Machine (TWAM), a dependently-typed

certifying abstract machine suitable as a compilation target for certifying compilers. Section 6 for-
malizes and proves the following claim that TWAM certifies partial correctness:
Theorem 1(Soundness): If a query ?-G . succeeds, there exists a proof of G in LF. That is, well-

typed TWAM programs satisfy partial correctness with respect to their LF semantics. Because this
theorem says that well-typed TWAM programs implement sound proof search procedures for the
LF specification, we also call this theorem soundness. We show that TWAM is a suitable compilation
target by implementing a compiler from a simply-typed dialect of Prolog called T-Prolog to the
TWAM.The result is a certifying compilerwith a small, domain-specific proof checker as its trusted
core: the TWAM typechecker.
We ease the presentation of TWAM by first presenting its simply-typed variant (SWAM) in

Section 4 along with standard progress and preservation theorems, which show type and memory-
safety. We then develop a dependently-typed variant in Section 6 whose type system expresses
the behavior of a TWAM program as a logic program in the logical framework LF [10], using an
encoding demonstrated in Section 5.

2 SOURCE LANGUAGE: T-PROLOG

Our compiler accepts programs for a simply-typed dialect of Prolog which we named T-Prolog. It
is worth noting that the language need not be typed for our approach to work: if we wished to
work in an untyped dialect of Prolog, we could simply add a compiler pass to collect a list of all the
constructors used in a particular Prolog program and construct a single type called term containing
every constructor we need. We choose a simply-typed language over an untyped one because our
use of LF in the TWAM makes this feature easy to implement and because the correspondence
with LF is easier to present for a simply-typed language.

T-Prolog programs obey the following grammar:

programs P ::= D∗ Q

query Q ::= ?−t .
declaration D ::= Dτ | Dc | Dp

type declaration Dτ ::= ident : type
constructor declaration Dc ::= ident : τc
predicate declaration Dp ::= ident : τp C

∗

constructor types τc ::= type | ident -> τc
predicate types τp ::= prop | ident -> τp
clause C ::= t . | t :-G∗

goals G ::= t . | t , G∗

terms t ::= Ident | ident(t , . . . ,t)

As our running example throughout the paper, we consider a series of arithmetic operations on the
Peano representation of the natural numbers zero and succ(n). To start, here is the plus function
written in T-Prolog, with the query 2 + 2 = X. As in standard Prolog, we will often annotate
constructors and predicates with their arities as in plus/3. However, each identifier in T-Prolog
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TWAM: A Certifying Abstract Machine for Logic Programs 1:3

has a unique type and thus a unique arity, so annotating identifiers with their arity is not strictly
necessary.

Example 2.1. nat : type.

zero/0 : nat.

succ/1 : nat -> nat.

plus/3 : nat -> nat -> nat -> prop.

plus(zero,X,X).

plus(succ(X),Y,succ(Z)) :-

plus(X,Y,Z).

?- plus(succ(succ(zero)), succ(succ(zero)), X).

There is no fundamental difference between type and prop (and in the theory they are identical):
we differentiate them in the T-Prolog syntax because we find this notation intuitive and because
it makes the language easier to parse.

2.1 Semantics of T-Prolog

In order to certify that a compiler preserves the dynamic semantics of T-Prolog programs, we must
first ascertain those semantics. As in typical Prolog, a T-Prolog program is defined as a signature of
logical inference rules, and execution proceeds via depth-first proof-search under that signature,
trying rules in the typical Prolog order. Seeing as Prolog evaluation is proof search, the semantics
of Prolog are often given operationally in terms of proof-search trees. This operational treatment
has the advantage that it can naturally express non-termination and the order in which rules are
tried. The disadvantage is that, in increasing operational detail, we diverge further from the world
of pure logic, increasing the difficulty of verification.
For this reason, while the T-Prolog implementation does evaluate in the same order as Prolog,

we do not take the operational search-based semantics of T-Prolog as canonical. Rather, we take
as the meaning of a T-Prolog program the set of formulas provable from its inference rules (Sec-
tion 5), without regard to the order in which the proof steps are performed. The abstractions made
in this semantics are not significantly greater than those already made by a proof-search seman-
tics. The common insight is that a formal semantics for logic programs should exploit the close
relationship to logic, ignoring implementation details that have no logical equivalent. In both se-
mantics, for example, it is typical to ignore Prolog’s cut operator !, which has the side effect of
skipping any remaining backtracking opportunities for the current predicate, typically used as an
optimization. The cut operation is inherently about search rather than truth, informing the Prolog
implementation to ignore some of the available proof rules.
Both the search semantics and provability semantics implicitly assume that all Prolog terms are

finite. The backbone of Prolog proof search is unification, and as usual for unification, finiteness
cannot be taken for granted. Allowing instances such asX = f (X ) to unify would result in infinite
terms that do not have a logical interpretation. In typical Prolog implementations, such terms are
accepted out of the interest of performance. In T-Prolog, we apply the standard solution of using an
occurs check in unification, causing unification to fail on instances such as X = f (X ) whose only
solutions are infinite. This restores the close correspondence with logic, at the cost of decreased
performance.
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1:4 Rose Bohrer and Karl Crary

3 THE TWAM INSTRUCTION SET

The TWAM borrows heavily from the Warren Abstract Machine, the abstract machine targeted
by most Prolog implementations [25]. For a thorough, readable description of the WAM, see Aït-
Kaci [1]. Readers familiar with theWAMmaywish to skim this section and observe the differences
from the standard WAM, while readers unfamiliar with the WAMwill wish to use this section as a
primer or even consult Aït-Kaci’s book. In this section we present our simplified instruction set for
the WAM using examples. Notable simplifications include the usage of continuation-passing style
and omission of many optimizations (with the exception of tail-call optimization in Section 6.5) in
order to simplify the formalism. The description here is informal; the formal semantics are given
in Section 4.5.

Prolog and WAM Terminology. The following terminology will be used extensively in this paper
to describe Prolog and the WAM: a Prolog term is an arbitrary combination of unification variables

X combined with constructors such as succ and zero. What we call constructors are generally called
functors in Prolog terminology. We use the phrase unification variable when discussing Prolog
source text and instead use free variable to discuss WAM state at runtime. The distinction becomes
significant, e.g. because the Prolog source may specify that a parameter to some predicate is a
unification variable, but at runtime the argument is a ground term. We use the word constructor

only when discussing data and use the word predicate to refer both to predicates for which a
WAM program implements proof search and to the implementation itself. We also say that certain
WAM instructions are constructors because they construct some Prolog term, or destructors if
they perform pattern matching on some Prolog term. A structure is the WAM representation of a
constructor applied to its arguments. A predicate consists of one or more clauses, each of which
specifies one inference rule and each of which consists of a head term along with zero or more
subgoals. A user interacts with the Prolog program by making a query, which is compiled in the
same way as a predicate with one clause with one subgoal. In our discussion of TWAM programs,
we consider programs with arbitrarily many predicates, one of which is designated as the query.

Term Destructors. The instructions get_var, get_val, and get_str are used the implementa-
tion of predicates to destruct the predicate arguments:

• get_var rd , rs reads (gets) rs into rd . This is an unconditional register-to-register move and
thus its use can be minimized by good register allocators. This is used to implement clauses
where a unification variable is an argument.
• get_val r1, r2 reads (gets) r1 and r2 and unifies their values against each other. This is used
to implement clauses where multiple arguments are the same unification variable.
• get_str rs , c reads (gets) rs and unifies it against the constructor c . For our initial examples,
we will consider only the case where c has no arguments. get_str is effectively an optimized
special-case of get_val where we know the second unificand must be c . This is used to
implement clauses where a constructor appears as a predicate argument.

For example, the Prolog predicate both_zero(zero, zero), which holds exactly when both argu-
ments are zero, could be compiled in all of the following ways, with the naming convention that
the register for argument i is named Ai and the i’th temporary is named Xi :

Example 3.1 (Implementing a Predicate).

# Implementation 1

get_str A_1, zero/0;

get_str A_2, zero/0;

# Implementation 2

get_str A_1, zero/0;

get_val A_1, A_2;

# Implementation 3

get_var X_1, A_1;

get_var X_2, A_2;

get_str X_1, zero/0;

get_val X_1, X_2;
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TWAM: A Certifying Abstract Machine for Logic Programs 1:5

Generally speaking, Implementation 1 is most efficient, then Implementation 2, then Implemen-
tation 3. Note that even though the Prolog predicate both_zero(zero, zero) contains no unifi-
cation variables, we can still use get_val in the implementation, because the unification problems
A1 = zero,A2 = zero and A1 = zero,A1 = A2 are equivalent. Observe that any instruction that
uses unification, such as get_val and get_str, will fail if unification fails. Should this occur, the
runtime automatically backtracks if possible; backtracking is never executed explicitly in the text
of a TWAM program.

TermConstructors and Jumps. To implement a query or subgoal that uses the predicate both_zero,
we must first construct its arguments, then jump to the implementation:

• put_var rd writes (puts) a new free variable into rd . This is used to implement passing a
unification variable as an argument.
• put_val rd , rs writes (puts) the value of an existing unification variable into rd , assuming it is
already in rs . This is an unconditional register move. Thus it is entirely identical to get_var.
For this reason, in our theory we will condense these into one instruction mov rd , rs and
only use the names get_var and put_val for consistency with traditional terminology in
our examples.
• put_str rd , c writes a structure into rd using constructor c . get_str is effectively an op-
timized special-case of put_val where we are storing not an arbitrary unification variable,
but specifically a constant c . This is used to implement passing a constructor as an argument
to a predicate.
• jmp ℓC passes control to the code location (address literal) ℓC . Arguments are passed through
registers. All code is in continuation passing style, and thus a continuation can be passed in
through a register, which is named ret by convention. The queries in Example 3.2 do not
require returning from predicate calls, thus continuations are discussed separately.

Example 3.2 (Making a Query).
# both_zero(X, X).

put_var A_1;

put_val A_2, A_1;

jmp both_zero/2;

# both_zero(X, zero).

put_var A_1;

put_str A_2, zero/0;

jmp both_zero/2;

Constructors with Arguments. We continue to use the put_str and get_str instructions to con-
struct and destruct structures that contain arguments. The difference is that when calling put_str
or get_strwith a constructor of arity n > 0, we now initiate a spine (terminology ours) consisting
of n additional instructions using only the following:

• When unify_var r is the i’th instruction of a spine, it unifies the i ′th argument of the con-
structor with a new unification variable, at register r .
• When unify_val r is the i’th instruction of a spine, it unifies the i ′th argument of the con-
structor with an existing unification variable, at register r .

The same instructions are used with both put_str and get_str spines. However, at runtime a
spine will execute in one of two modes, read mode or write mode. Read mode is used to destruct an
existing value, meaning we are in the get_str rs , c and rs contains a structure whose constructor
is c .Write mode is used to construct a new value, meaning we are either in put_str rd , c or we are
in get_str rs , c but the content of rs is a free variable. In both modes, each unification instruction
processes one constructor argument:

• Read-mode unify_var stores the next constructor argument in a register.
• Read-mode unify_val unifies the next constructor argument with the content of a register.
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1:6 Rose Bohrer and Karl Crary

• Write-mode unify_var allocates a free variable as constructor argument, storing it also in
a register.
• Write-mode unify_val uses the content of a register as constructor argument.

For example, the Prolog predicate same_pos(succ(X), succ(X))which holds when the argu-
ments are the same positive number, can be implemented and used as follows:

Example 3.3 (Predicates with Prolog Spines).

# Implementation

get_str A_1, succ/1;

unify_var X_1;

get_str A_2, succ/1;

unify_val X_1;

# Query same_pos(succ(X),succ(Y))

put_str A_1, succ/1;

unify_var X_1;

put_str A_2, succ/1;

unify_var X_1; # Overwrites X_1

jmp same_pos/2;

# Query same_pos(succ(X),succ(X))

put_str A_1, succ/1;

unify_var X_1;

put_str A_2, succ/1;

unify_val X_1; # Reads X_1

jmp same_pos/2;

# Query same_pos(zero,succ(succ(zero)))

put_str A_1, zero/0;

put_str X_1, zero/0; # Z = 0

put_str X_2, succ/1; # Y = 1

unify_val X_1;

put_str A_2, succ/1; # X = 2

unify_val X_2;

jmp same_pos/2;

The last example demonstrates a compilation technique known as flattening: The unification
problem X = succ(succ(zero)) is equivalent to the problem X = succ(Y ),Y = succ(Z ),Z = zero.
This allows us to implement nested structures such as succ(zero) or succ(succ(succ(zero))) by in-
troducing intermediate variables. Thus each spine need only introduce one structure, and nested
structures are reduced to the one-structure case by flattening.

Continuations, Closures, and Halting. Prolog proof search can be structured using success and
failure continuations. [9] When a predicate has multiple clauses, failure continuations are used
to remember alternate clauses and implement backtracking. When a clause has multiple subgoals,
success continuations are used to remember the remaining subgoals. In our system, success con-
tinuations can be stored in registers and passed to predicates, typically in a register named ret,
whereas failure continuations are stored in the trail. Both success and failure continuations can ac-
cess an environment value (generally a tuple) through the register env. Tuples are like structures,
but can contain closures and cannot be unified. The entry-point of a TWAM program is a top-level
query, which specifies an initial continuation that terminates the program in success. If all clauses
fail, then the runtime will automatically report that the program failed.

• close rd , re , ℓ
C places a new closure in rd containing an environment read from re . When

that closure is invoked, control will pass to ℓC and the environment will be placed in a
special-purpose register named env. This is used to construct success continuations.
• push_bt re , ℓ

C (push backtracking point) creates a new failure continuation. When that con-
tinuation is invoked, control will pass to ℓC and the environment will be placed in env. Note
that push_bt does not take a destination register: a stack of failure continuations is stored
implicitly in the machine state, and they are only ever invoked implicitly, when unification
instructions like get_val fail.
• put_tuplerd ,n begins a tuple spine of lengthnwhichwill put a new tuple in rd . All following
instructions of the tuple spine are set_val.
• set_val rs copies rs in as the next tuple element.
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TWAM: A Certifying Abstract Machine for Logic Programs 1:7

• proj rd , rs , i copies the i’th element of the tuple at rs into rd .
• succeed immediately terminates the program and indicates that the initial query has suc-
ceeded. (At this point, the runtime system will print out the solution to the query.)

As an example, consider implementing and calling the predicate X + Y = Z with two clauses:
plus(zero,X,X) and plus(succ(X),Y,succ(Z)) :- plus(X,Y,Z):

Example 3.4 (Implementing plus).

# Entry point to plus, implements the

# case plus(zero,X, X) and tries

# plus-succ on failure

plus-zero/3:

put_tuple X_1, 3;

set_val A_1;

set_val A_2;

set_val A_3;

push_bt X_1, plus-succ/3;

get_str A_1, zero/0;

get_val A_2, A_3;

jmp ret;

# plus(succ(X), Y, succ(Z)) :- plus(X,Y,Z).

plus-succ/3:

proj A_1, env, 1;

proj A_2, env, 2;

proj A_3, env, 3;

get_str A_1, succ/1;

unify_var A_1;

get_str A_3, succ/1;

unify_var A_3;

jmp plus-zero/3;

Example 3.5 (Calling plus).

init-cont/0:

succeed;

# plus(succ(zero), succ(zero), X)

query/0:

put_tuple X_1, 0;

close ret, X_1, init-cont/0;

put_str X_2, zero/0;

put_str A_1, succ/1;

unify_val X_2;

put_str A_2, succ/1;

unify_val X_2;

put_var A_3;

jmp plus-zero/3;

In this example, plus-zero/3 is the entry point for addition, and implements the base case.
Because plus-zero/3 is not the last case, it constructs a failure continuation which tries the
plus-succ/3case if an instruction fails. This requires remembering the environment, implemented
by creating a tuple. In the example query, the first invocation of plus-zero/3 will fail on the
get_str instruction becauseA1 contains succ(zero), not zero, causing plus-succ/3 to run (which
will succeed after another call to plus-zero). plus-succ contains several optimizations. The final
subgoal of a clause can always apply tail-call optimization, so no success continuation is necessary.
Furthermore, it carefully avoids the use of intermediate registers. For example, when reading the
argument succ(X ), the variable X is written directly into A1 to prepare for the recursive call. The
query plus(succ(zero), succ(zero),X ) must specify an initial continuation, which simply reports
success. Because the success continuation is trivial, the empty tuple suffices as its environment.

Runtime State. The runtime representation of a TWAM program differs from that of a WAM
program, following the differences in their instruction sets. Both languages have a fixed code section
containing the TWAM program text and a variable-sized heap, which maintains all Prolog terms
in a union-find data structure to enable fast unification. The most significant difference is that
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1:8 Rose Bohrer and Karl Crary

the TWAM machine state does not have a stack, but instead allocates success continuations on
the heap and allows them to be garbage collected. Failure continuations, however, are stored in
a separate area called the trail as in standard WAM. In addition to storing a closure created with
push_bt, the trail automatically keeps track of all state changes which might have to be reverted
during backtracking. Traditional descriptions of the WAM contain a push-down list or PDL area,
which is used in unification to store a temporary list of unification subproblems. Because this data
structure is used only during unification, we found it easier to express the PDL merely as a part of
unification and not as a permanent part of the state.

Differences Between WAM and TWAM Instruction Sets. The key difference between WAM and
TWAM is that the TWAM implements predicate calls and backtracking with success and failure
continuations, while WAM implements both by maintaining a custom stack discipline, whose in-
variants are non-trivial. The use of CPS significantly simplifies the formalism and unifies several
instructions that are distinct in traditional WAM:

• Environments in TWAM are expressed as tuples with the instructions put_tuple, set_val,
and proj, which replace allocate and deallocate.
• The jmp instruction of TWAM unifies call, execute, and proceed from WAM.
• The push_bt instruction of TWAM replaces try_me_else, retry_me_else, and trust_me

from WAM.
• The succeed instruction is added in TWAM for stylistic purposes; WAM reuses proceed for
this purpose.
• The unification and spinal instructionns of TWAM correspond directly to WAM.
• TWAM omits several optimizations such as cut and case analysis.

4 THE SIMPLY-TYPED WAM (SWAM)

The core contributions of this work are the design, metatheory, and implementation of a type
system for the TWAM strong enough to certify compilation. The certification guarantees provided
by the dependently-typed TWAM in Section 6 require significant complexity in the type-system. In
this section, we ease the presentation of that system by first presenting its simply-typed variant,
the SWAM. We prove progress and preservation for SWAM, which constitute a safety property
analogous to those of other strongly-typed abstract machines such as the typed assembly language
TAL [16]. In Section 6, this is subsumed by progress and preservation for TWAM, which is strong
enough to certify partial dynamic correctness.

4.1 Typechecking SWAM

The text of a SWAM program is structured as a code area C mapping code locations ℓC to code
values code[Γ](I ). A code value is a single basic block I annotated with a register file type (rftype)
Γ which indicates, for each register ri , the type expected by I . One of those code values is des-
ignated as the query (a predicate with one clause and one subgoal), which is the entry point of
the program. The type τ assigned to each register is either an atomic type a representing a Prolog
term, a continuation type ¬Γ representing a closure that expects the registers to obey the types in
Γ, or a tuple type x[®τ ], where the elements ®τ can freely mix atomics and continuations. Here ®τ is an
abbreviation for the sequence τ1, . . . , τn ; similar abbreviations will be used extensively throughout
the paper.
The main typing judgement in SWAM is Γ ⊢Σ;Ξ I ok, which says the basic block I is well-typed

assuming the registers obey Γ initially, and given signatures Σ,Ξ which assign types to every
constructor c and code location ℓC , respectively. We omit the subscripts Σ;Ξ on rules where they
are not relevant. Throughout the paper, the notation Γ{r : τ } refers to updating the type of r in
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TWAM: A Certifying Abstract Machine for Logic Programs 1:9

Γ to be τ . Analogous notation will be used for register values, etc. Throughout this section, we
alternate between inference rules for typechecking instructions and their descriptions.

Γ ⊢ succeed; I ok
Succeed

Γ{r : a } ⊢ I ok

Γ ⊢ put_var [a]r ; I ok
PutVar

Γ(r1) = a Γ(r2) = a Γ ⊢ I ok

Γ ⊢ get_val r1, r2; I ok
GetVal

Γ ⊢Σ;Ξ op : ¬Γ′ · ⊢ Γ′ ≤ Γ

Γ ⊢Σ;Ξ jmp op, I ok
Jmp

Γ(rs ) = τ Γ{rd : τ } ⊢ I ok

Γ ⊢ mov rd , rs ; I ok
Mov

Γ ⊢ I ok Γ(re ) = τ Ξ(ℓC ) = ¬{env : τ }

Γ ⊢Σ;Ξ push_bt re, ℓ
C ; I ok

PushBT

Γ(re ) = τ Γ{rd : ¬Γ
′ } ⊢ I ok

Γ ⊢ ℓC : ¬Γ′{env : τ }

Γ ⊢ close rd , re, ℓ
C ; I ok

Close

• succeed always typechecks, and is typically the last instruction of its block.
• put_var [a]r allocates a free variable of type a in r , thus updating r to type a. We write the
annotation [a] in brackets to emphasize that it is used only for typechecking.
• get_val r1, r2 unifies r1 and r2, so they must have the same (atomic) type.
• jmp op transfers control to op, which in the general case is either a location ℓC (used in predi-
cate calls) or register r (used in returns, by convention generally named ret). The judgement
· ⊢ Γ′ ≤ Γ means ∀r ∈ Dom(Γ′).Γ′(r ) = Γ(r ) (Γ′ may omit some registers of Γ). The judge-
ment Γ ⊢Σ;Ξ op : τ has the rules:

Ξ(ℓC ) = τ

Γ ⊢Σ;Ξ ℓ
C : τ

Op-ℓC
Γ(r ) = τ

Γ ⊢Σ;Ξ r : τ
Op-r

• mov rd , rs copies rs into rd .
• push_bt re , ℓ

C installs the failure continuation ℓC in the trail along with the environment
from re , which will be in env upon invocation of ℓC .
• close rd , rs , ℓ

C is analogous, but stores the resulting success continuation in rd before pro-
ceeding.

Γ(rs ) = x[®τ ] Γ{rd : τi } ⊢ I ok (where i ≤ |®τ |)

Γ ⊢ proj rd , rs, i ; I ok
Proj

Γ ⊢ I :t (®τ → {rd : x[®τ ]}) (where n = | ®τ |)

Γ ⊢ put_tuple rd , n; I ok
PutTuple

• proj rd , rs , i puts the i’th element the tuple rs into rd , typechecking only if rd has length at
least i . Here ®τ is a sequence of types, one for each element.
• put_tuple rd ,n initiates a tuple spine of length n with destination rd . The remainder of
the tuple spine is checked using the auxiliary tuple spine typing judgement Γ ⊢ I :t (τ1 →
· · · → τn → Post), where Post is a singleton rftype {rd : x[®τ ]}. The auxiliary judgement
Γ ⊢ I :t (τ1 → · · · → τn → Post) should be read as “the next n instructions construct tuple
elements of type τi ,with postcondition Post ≤ Γ, and all remaining instructions typecheck”.
The typing rules for the spine typing judgement are given in Section 4.2.

Σ(c) = ®a → a Γ(r ) = a
Γ ⊢ I :s (®a → {})

Γ ⊢ get_str c, r ; I ok
GetStr

Σ(c) = ®a → a
Γ{r : a} ⊢ I :s (®a → {})

Γ ⊢ put_str c, r ; I ok
PutStr

• get_str c, r and put_str c, r both initiate Prolog spines which are checked with Prolog spine

typing judgement Γ ⊢ I :s (a1 → · · · → an → Post). Unlike tuple spines, Prolog spines
contain only atomic types, and in SWAM always have an empty postcondition Post = {}.
Intuitively one might expect Post = {r : a}, for put_str, but we choose to update the type
of r at the beginning of the spine instead of the end, because this leaves put_str symmetric
more symmetric with get_str (a free variable is stored at rd until the spine completes to
ensure type safety).
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4.2 Spine Typing

When constructing compound data structures (either tuples or structures), we wish to know that
the data structure has the intended number of arguments, each with the intended type. For this
reason, we apply the auxilliary typing judgements for tuple and Prolog spines. Each spinal instruc-
tion produces one element, and so each rule application checks the type of one element. Consider
the rules for the tuple spine judgement Γ ⊢ I :t (τ1 → · · · → τn → Post):

Γ(r ) = τ Γ ⊢ I :t J

Γ ⊢ set_val r ; I :t (τ → J )
TSpine-SetVal

(Γ+Post) ⊢ I ok

Γ ⊢ I :t Post
TSpine-End

The rule for (TSpine-SetVal) says that each set_val contributes one element. The rule (TSpine-
End) resumes the main typing judgement Γ ⊢ I ok when says that when a tuple is complete, we
store the tuple according to Post and resume normal typechecking. Specifically, (Γ+Γ′) is the rftype
such that (Γ+Γ′)(r ) = Γ

′(r ) for Dom(Γ′) and (Γ+Γ′)(r ) = Γ(r ) otherwise.
Prolog spines have their own auxilliary judgment, Γ ⊢ I :s (a1 → · · · → an → Post). The rule

for ending a Prolog spine is analogous to (TSpine-End). The elements of a Prolog spine can be
produced either by unify_val r or unify_var r . The unify_val r instruction which requires the
argument register type to match the constructor argument, whereas unify_var r creates a new
unification variable of the correct type, which appears both in rd and as a constructor argument.

Γ(r ) = a Γ ⊢ I :s J

Γ ⊢ unify_val r ; I :s (a → J )
UnifyVal

Γ{r : a} ⊢ I :s J

Γ ⊢ unify_var r ; I :s (a → J )
UnifyVar

4.3 State Representation and Invariants

Following the traditional description of the WAM, the essential parts of the SWAM machine state

include the code section C , heap H , and trail T (backtracking structure). H and C are often consid-
ered together as the store S = (C,H ). Locations in the code section are written ℓC and locations in
the heap are written ℓH . Where both are acceptable we write ℓ. The notation S(ℓ) denotes either
H (ℓH ) orC(ℓC ) as appropriate. We additionally have an explicit representation of the register file R
and we represent the instruction pointer as the sequence I of remaining instructions in the current
basic block. Machines also support three spinal execution modes: read spines, write spines, and
tuple (write) spines. In short, machine states are described by the syntax:

m ::= (T , S,R, I ) | read(T , S,R, I , ®ℓH ) | write(T , S,R, I , c, ℓH , ®ℓH ) | twrite(T , S,R, I , r ,n, ®ℓH )

We first consider the following typing invariant for normal states (T , S,R, I ) in depth and then
revisit the additional invariants for spinal states:

S ⊢ T ok
· ⊢ S : (Ξ;Ψ) Ψ ⊢ R : Γ Γ ⊢ I ok

· ⊢Σ;Ξ (T , S,R, I ) ok
Mach

As in Section 4.1, all judgments are parameterized by signatures Σ and code section types Ξ,which
are elided when irrelevant. The code section is well-typed when each basic block is well-typed
according to the rules of Section 4.1. The code section is allowed to be mutually recursive:

· ⊢Σ;Ξ vC1 : τ1 · · · · ⊢Σ;Ξ vCn : τn (where Ξ = {vC1 : τ1, . . . ,v
C
n : τn})

· ⊢Σ;Ξ {v
C
1 , . . .v

C
n } : Ξ

Code-Sec

Heap types are written Ψ and are analogous to rftypes. As in rftypes we write Ψ{ℓH : τ } when
updating the type of ℓH . We also write Ψ{{ℓH : τ }} when adding a fresh location ℓH with type
τ , or {} for an empty heap or empty heap type. We prohibit cycles in the heap because it sim-
plifies implementing SWAM and simplifies the dependent type system of Section 6 even further.
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Specifically, a typing derivation D : (· ⊢ H : Ψ) serves as a witness that H is acyclic, because D
implicitly specifies a topological sorting onH : the rules below state that each value may only refer
to preceding values. However, Ψ need not assign a type to all values in H, so long as those values
without types are never accessed. This technicality is useful when reasoning about backtracking
as in Lemma 10.

· ⊢ H : {}
Heap-Nil

· ⊢ H : Ψ H (ℓH ) = vH Ψ ⊢ vH : τ ℓH < Dom(Ψ)

· ⊢ H : Ψ{{ℓH : τ }}
Heap-Cons

Values are divided into heap values vH which are arbitrarily large and word values w which are
fixed size. In SWAM, words are always heap locations w ::= ℓH . The heap values vH follow the
syntax:

vH ::= c〈ℓH1 , . . . , ℓ
H
n 〉 | FREE[a] | BOUND ℓ

H | close (wenv , ℓ
C ) | 〈w1, . . . ,wn〉

The values c〈ℓH1 , . . . , ℓ
H
n 〉 and FREE[a] introduce structures and free variables in Prolog terms,

respectively. The type annotation a in FREE[a] is merely a convenience for the metatheory and
not used at runtime (i.e. SWAM and TWAM support type erasure).
Combined with pointers BOUND ℓH , these values provide a union-find data structure within

the heap, used by SWAM’s unification algorithm. TheBOUND ℓH pointers aremerely an artifact of
that algorithm and are semantically equivalent to ℓH . In addition to Prolog terms, the heap contains
closures close (wenv , ℓ

C ) where the machine word wenv is the environment for executing ℓC , as
well as tuples 〈w1, . . . ,wn〉. The typing invariants for heap values are:

Ψ ⊢ wenv : τ Ψ ⊢ ℓC : ¬Γ{env : τ }

Ψ ⊢ close (wenv , ℓ
C ) : ¬Γ

HV-Close
Ψ ⊢ w1 : τ1 · · · Ψ ⊢ wn : τn
Ψ ⊢ 〈w1, . . . ,wn〉 : x[τ1, . . . , τn]

HV-Tup

Ψ ⊢ ℓH : a

Ψ ⊢ BOUND ℓH : a
HV-Bound

Σ(c) = ®a → a Ψ ⊢ ℓHi : ai

Ψ ⊢Σ;Ξ c〈ℓH1 , . . . , ℓ
H
n 〉 : a

HV-Str
Ψ ⊢ FREE[a] : a

HV-Free

Register Typing. A register file R simply maps registers ri to word values wi and is well-typed
when allwi are well-typed. Because the only word values in SWAM are heap locations, it suffices
to consult the heap type Ψ:

Ψ ⊢ w1 : τ1 · · · Ψ ⊢ wn : τn
Ψ ⊢ {r1 7→ w1, . . . , rn 7→ wn} : {r1 : τ1, . . . , rn : τn}

RF
Ψ(ℓH ) = τ

Ψ ⊢ ℓH : τ
WV-ℓH

Trail Typing. When Prolog backtracks because a clause failed, it must revert all changes made
by the failed clause. The only such change is the binding of free variables during unification, thus
it suffices to record bindings when they occur and revert them during backtracking. The trail is
the data structure that records these variables. In traditional presentations of the WAM, the trail
contains variable addresses only and separate choice point records in the call stack contain the
failure continuation. For our presentation, it simplified the formalism to store the continuation
inline. The trail is given as a list of trail frames (t ,wenv , ℓ

C ) where t is a list of heap locations
(in the theory, annotated with types as in ℓH : a), where we write the list of ti as t1 :: · · · ::
tn :: ϵ . The environment is wenv and ℓC is the failure continuation. The function unwind(S, t)

describes the process of backtracking one trail frame, i.e. unwind(S, (ℓH : a) :: t) = unwind(S{ℓH 7→
FREE[a]}, t) and unwind(S, ϵ) = S .

S ⊢ ϵ ok
Trail-Nil

unwind(S, t) = S ′ S ′ ⊢ T ok

⊢ S ′ : (Ξ,Ψ′) Ψ
′ ⊢ wenv : τ Ψ

′ ⊢ ℓC : ¬{env : τ }

S ⊢Σ;Ξ (t ,wenv , ℓ
C ) :: T ok

Trail-Cons
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1:12 Rose Bohrer and Karl Crary

Special Mode Invariants. When the machine is in read or write mode, it maintains additional
data. Read mode maintains a list of arguments not yet read, while the write modes maintain lists
of arguments written so far with destination registers or locations. Prolog write mode also tracks
the constructor being applied while tuple write mode tracks the number of elements left to be
written in the tuple. In each case additional invariants are required, as given in the judgementsΨ ⊢
®ℓH reads ®a, Ψ ⊢ (®ℓH , ℓH , c) writes (®a2 → {}) and Ψ ⊢ (n, r , ®ℓ

H ) writes (®τ2 → {r : x[®τ1®τ2]}). In
each case the invariants ensure that the type of the constructor or tuple in question is consistent
with both the values computed so far and the remaining spinal instructions.

S ⊢ T ok ⊢ S : (Ξ;Ψ)

Ψ ⊢ R : Γ Γ ⊢ I :s J Ψ ⊢ ®ℓH reads J

· ⊢Σ;Ξ read(T , S, R, I, ®ℓH ) ok
Mach-Read

Ψ ⊢ ℓH
i
: ai

Ψ ⊢ ®ℓH reads ( ®a → {})
Reads

S ⊢ T ok · ⊢ S : (Ξ;Ψ)

Ψ ⊢ R : Γ Γ ⊢ I :s J Ψ ⊢ ( ®ℓH , ℓ, c) writes J

· ⊢Σ;Ξ write(T , S, R, I, c, ℓH , ®ℓH ) ok
Mach-Write

Σ(c) = ®a1 → ®a2 → a Ψ ⊢ ®ℓH : ®a1 Ψ(ℓH ) = a

Ψ ⊢Σ;Ξ ( ®ℓ
H , ℓH , c) writes ( ®a2 → {})

Writes

S ⊢ T ok ⊢ S : (Ξ;Ψ)

Ψ ⊢ R : Γ Γ ⊢ I :t J Ψ ⊢ ( ®w, r, n) writes J

· ⊢Σ;Ξ twrite(T , S, R, I, ®w, r, n) ok
Mach-TWrite

Ψ ⊢ ®ℓH : ®τ1 | ®τ2 | = n

Ψ ⊢ (n, r, ®ℓH ) writes (®τ2 → {r : x[®τ1 ®τ2]})
TWrites

4.4 Operational Semantics

The dynamic semantics of SWAM are given as a small-step operational semantics. We begin with
an informal example trace executing the query ?- plus(X,zero,succ(zero)) using the plus

function of Example 3.4 before developing the semantics formally.
For each line we describe any changes to the machine state, i.e. the heap, trail, register file, and

instruction pointer. As with the WAM, the TWAM supports special execution modes for spines:
read mode and write mode. When the program enters read mode, we annotate that line with the
list ℓHs of variables being read, and when the program enters write mode we annotate it with the

constructor c being applied, the destination location ℓH and the argument locations ®ℓH . The final
instruction of a write-mode spine is best thought of two evalution steps, one of which constructs
the last argument of the constructor and one of which combines the arguments into a term.

Code Change

# Query plus(X , zero, succ(zero))

query 7→ code[{}](

put_var r1; H ← H {{ℓ1 7→ FREE[nat]}}, R ← R {r1 7→ ℓ1 }

put_str r2, zero/0; H ← H {{ℓ2 7→ FREE[nat]}}, R ← R {r2 7→ ℓ2 }, c = zero

ℓ = ℓ2, ®ℓ = 〈〉,

H ← H {ℓ 7→ c 〈 ®ℓ 〉 }

put_str r3, succ/1; H ← H {{ℓ3 7→ FREE[nat]}}, R ← R {r3 7→ ℓ3 }, c = succ

ℓ = ℓ3, ®ℓ = 〈〉

unify_val r2; ®ℓ ← 〈ℓ2 〉, H ← H {ℓ 7→ c 〈 ®ℓ〉 }

put_tuple r4, 0; H ← H {{ℓ4 7→ 〈〉 }}, R ← R {r4 7→ ℓ4 }

close ret, r4, success/0; H ← H {{ℓ5 7→ close (ℓ4, success)}}, R ← R {ret 7→ ℓ5 }

jmp plus-zero/3; I ← C(plus-zero)

)

plus-zero/3 7→ code[r2 : nat, r2 : nat, r3 : nat, r4 : ¬{}](

put_tuple r4, 4; ®ℓ = 〈〉

set_val r2; ®ℓ = 〈ℓ1 〉

set_val r2; ®ℓ = 〈ℓ1, ℓ2 〉

set_val r3; ®ℓ = 〈ℓ1, ℓ2, ℓ3 〉
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set_val ret; ®ℓ = 〈ℓ1, ℓ2, ℓ3, ℓ5 〉

H ← H {{ℓ6 7→ 〈 ®ℓ 〉 }}, R ← R {r4 7→ ℓ6 }

push_bt r4, plus-succ/3; T ← (ℓ6, plus-succ/3, nil) :: nil

get_str r2, zero/0; c = zero, l = ℓ1, ®ℓ = 〈〉

H ← H {ℓ1 7→ zero}, T← (ℓ6, plus-succ/3, ℓ1) :: 〈〉

# This instruction fails, backtrack to plus-succ/3

get_val r2, r3; T ← nil, I ← plus-succ/3, H ← H {ℓ1 7→ FREE[nat]}

jmp ret;

)

plus-succ/3 7→ code[{env : x[nat, nat, nat, ¬{}]}] (
proj r1, env, 1; R ← R {r1 7→ ℓ1 }

proj r2, env, 2; R ← R {r2 7→ ℓ2 }

proj r3, env, 3; R ← R {r3 7→ ℓ3 }

proj ret, env, 4; R ← R {ret 7→ ℓ5 }

# Here we are replacing a free variable with a concrete term

get_str succ/1, r2; ℓ = ℓ1, ®ℓ = 〈〉

unify_var r2; H ← H {{ℓ4 7→ FREE[nat]}}, R ← R {r2 7→ ℓ4 }, ®ℓ = 〈ℓ4 〉

H ← H {ℓ1 7→ succ ®ℓ },

get_str succ/1, r3; ®ℓ = 〈ℓ2 〉

unify_var r3; R ← R {r3 7→ ℓ2 },

H ← H {ℓ1 7→ succ ®ℓ },

jmp plus-zero/3; I ← C(plus-zero)

)

plus-zero/3 7→ code[{r2 : nat, r2 : nat, r3 : nat, r4 : ¬{}}](

put_tuple r4, 4; ®ℓ = 〈〉

set_val r2; ®ℓ = 〈ℓ1 〉

set_val r2; ®ℓ = 〈ℓ1, ℓ2 〉

set_val r3; ®ℓ = 〈ℓ1, ℓ2, ℓ3 〉

set_val ret; ®ℓ = 〈ℓ1, ℓ2, ℓ3, ℓ5 〉

H ← H {{ℓ7 7→ 〈 ®ℓ 〉 }}, R ← R {r4 7→ ℓ6 }

push_bt r4, plus-succ/3; T ← (ℓ7, plus-succ, 〈〉) :: nil

get_str r2, zero/0; ℓ = ℓ4, ®ℓ = 〈〉, c = zero

H ← H {ℓ4 7→ c 〈 ®ℓ 〉 }

get_val r2, r3;

jmp r4; I ← C(R(r4)) = C(success)

)

success/0 7→ code[{}] (

succeed;

)

4.5 Formal Operational Semantics

The small-step operational semantics consists of three main judgements:m 7−→ m′,m done, and
m fails, where m fails indicates a negative result to a Prolog query, not a stuck state. There
are also numerous auxilliary judgements for unification, backtracking, trail management, etc. We
begin with conceptually simple cases and proceed to conceptually complex ones. The simplest
instructions are mov and succeed, requiring no auxilliary judgements:

R(rs ) = w

(T , S,R, mov rd , rs ; I ) 7−→ (T , S,R{rd 7→ w}, I )
Mov 7−→

(T , S,R, succeed) done
done
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4.5.1 Operands. The jmp op instruction takes at operand which allows us to jump either to a
literal location or a success continuation stored in a register. The operand evaluation judgement
R ⊢ op ⇓ w resolves an operand op into a word w by consulting the registers R if necessary. If the
operand is a code location, jmp simply transfers control, else if the operand is a closure, jmp also
loads the stored environment.

R ⊢ op ⇓ ℓC S (ℓC ) = code[Γ]I ′

(T , S, R, jmp op ; I ) 7−→ (T , S, R, I ′)
Jmp-ℓC

R ⊢ op ⇓ ℓH S (ℓH ) = close (wenv , ℓ
C ) S (ℓC ) = code[Γ](I ′)

(T , S, R, jmp op ; I ) 7−→ (T , S, R {env 7→ wenv }, I
′)

Jmp-ℓH

R ⊢ ℓC ⇓ ℓC
ℓC ⇓

R(r ) = w

R ⊢ r ⇓ w
r ⇓

4.5.2 Environments. Environment tuples are constructed with the twrite spinal mode. This
mode begins after put_tuple and ends when the count of remaining tuple elements reaches 0.
When the spine completes, the resulting tuple is stored in the destination register specified by the
initial put_tuple. As before, ϵ denotes an empty sequence. We also use the notation ®w :: w even
when adding an elementw to the end of a sequence ®w . Reading tuple elements with proj does not
require entering a spine.

(T , S,R, put_tuple r ,n; I ) 7−→ twrite(T , S,R, I , r ,n, ϵ)
PutTuple 7−→

R(rs ) = w n > 0

twrite(T , S,R, set_val rs ; I , rd ,n, ®w) 7−→ twrite(T , S,R, I , rd ,n − 1, ( ®w :: w))
SetVal 7−→

twrite(T , S,R, I , r , 0, ®w) 7−→ (T , S{{ℓH 7→ 〈 ®w〉}},R{r 7→ ℓH }, I )
TWrite 7−→

R(rs ) = ℓ
H S(ℓH ) = 〈w1, . . . ,wi , . . . ,wn〉

(T , S,R, proj rd , rs , i ; I ) 7−→ (T , S,R{rd 7→ wi }, I )
Proj 7−→

4.5.3 Continuations and Backtracking. The instructions close and push_bt allocate new suc-
cess and failure continuations, respectively. The close instruction puts the continuation in a reg-
ister rd for use by a future jmp, whereas push_bt puts the failure continuation in the trail. As
shown in Section 4.5.4, the trail maintains an invariant that the location of every free variable
bound since the last push_bt is stored in the current trail frame, which is necessary when back-
tracking. Because we have just created a new failure continuation, after a push_bt our new trail
frame contains the empty list ϵ . Backtracking is handled automatically when unification fails, thus
there is no need to make the failure continuation accessible via a register.

R(re ) = wenv

(T , S,R, close rd , re , ℓ
C ; I ) 7−→ (T , S{{ℓH 7→ close (wenv , ℓ

C )}},R{r 7→ ℓH }, I )
Close 7−→

R(re ) = wenv

(T , S,R, push_bt re , ℓ
C ; I ) 7−→ ((ϵ,wenv , ℓ

C ) :: T , S,R, I )
PushBT 7−→

The trail invariant is essential to the correctness of the backtrack operation, which succeeds
when there is failure continuation on the trail, or signals query failure when the trail is empty.
Trail unwinding has its inverse in trail updating, which adds a recently-bound variable to the trail
(or safely skips it if there are no failure continuations left).

unwind(S, t) = S ′ C(ℓC) = code[{env : τ }](I )

backtrack(S, (t ,w, ℓC ) :: T ) = (T , S ′, {env 7→ w}, I )
BT-Cons

backtrack(S,ϵ) = ⊥
BT-Nil

unwind(S, (ℓH : a) :: t) = unwind(S{ℓH 7→ FREE[a]}, t) unwind(S,ϵ) = S

update_trail(ℓH : a, (t ,wenv , ℓ
C ) :: T ) = ((ℓH : a) :: t ,wenv , ℓ

C ) :: T update_trail((ℓH : a),ϵ) = ϵ
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4.5.4 Unification, Occurs Checks, and Trailing. The get_val instruction unifies two arbitrary
Prolog terms stored at r1 and r2. It does so using the auxilliary judgement unify(S,T , ℓH1 , ℓ

H
2 ) =

(S ′,T ′), which computes the resulting store where ℓH1 and ℓH2 are unified, or ⊥ if unification fails.
It also must compute an updated trail, because unification binds free variables, and backtracking
must be able to undo those changes.

R(r1) = ℓ
H
1 R(r2) = ℓ

H
2 unify(S,T , ℓH1 , ℓ

H
2 ) = (S

′,T ′)

(T , S,R, get_val r1, r2; I ) 7−→ (T
′, S ′,R, I )

GetVal 7−→

The judgement unify(S,T , ℓH1 , ℓ
H
2 ) = (S

′,T ′) is defined by mutual recursion with the judgement

unify_args(S,T , ®ℓH , ®ℓ′H ) = (S ′,T ′) which simply unifies every ℓHi with the corresponding ℓ′Hi .

These lists ®ℓH and ®ℓ′H correspond to the push-down list (PDL) in other presentations of the WAM.
An additional judgement end(S, ℓH ) follows chains of BOUND ℓH pointers to their ends. Because
the typing invariant for heaps ensures absence of cycles, this is guaranteed to terminate. The basic
unification algorithm says to recurse if both unificands are structures, or if either is a free variable,
then bind it to the other unificand. However, unification must also maintain the invariant that the
heap is free of cycles, thus we employ an occurs check in our algorithm,writing ℓH1 ∈S ℓ

H
2 when ℓH1

occurs in ℓH2 (occurs check failure) and ℓH1 <S ℓ
H
2 otherwise (occurs check success).1 Additionally,

we employ the update_trail function tomaintain the trail invariants when binding free variables.

S (ℓH2 ) = c 〈ℓ
′H
1 , . . . , ℓ′Hn 〉 ℓH1 ∈S ℓ′H

i
(∃i ∈ [n])

ℓH1 ∈S ℓH2

∈ c 〈〉

ℓH1 = ℓH2

ℓH1 ∈S ℓH2

∈=
S (ℓH2 ) = BOUND ℓ′H2 ℓH1 ∈S ℓ′H2

ℓH1 ∈S ℓH2

∈ BOUND

ℓH1 , ℓH2 S (ℓH2 ) = FREE[a]

ℓH1 <S ℓH2

< FREE
S (ℓH2 ) = BOUND ℓ′H2 ℓH1 <S ℓ′H2

ℓH1 <S ℓH2

< BOUND

S (ℓH2 ) = c 〈ℓ
′H
1 , . . . , ℓ′Hn 〉 ℓH1 <S ℓ′H

i
(∀i ∈ [n])

ℓH1 <S ℓH2

< c 〈〉

S (ℓH2 ) = 〈ℓ
′H
1 , . . . , ℓ′Hn 〉 ℓH1 ∈S ℓ′H

i
(∃i ∈ [n])

ℓH1 ∈S ℓH2

∈ 〈〉
S (ℓH2 ) = 〈ℓ

′H
1 , . . . , ℓ′Hn 〉 ℓH1 <S ℓ′H

i
(∀i ∈ [n])

ℓH1 <S ℓH2

< 〈〉

S (ℓH2 ) = close (ℓ′H2 , ℓC ) ℓH1 ∈S ℓ′H2

ℓH1 ∈S ℓH2

∈ close
S (ℓH2 ) = close (ℓ′H2 , ℓC ) ℓH1 <S ℓ′H2

ℓH1 <S ℓH2

< close

S (ℓH ) = FREE[a]

end(S, ℓH ) = ℓH
end FREE

S (ℓH ) = c 〈ℓH1 , . . . , ℓHn 〉

end(S, ℓH ) = ℓH
end c 〈〉

S (ℓH ) = BOUND ℓ′H end(S, ℓ′H ) = ℓ′′H

end(S, ℓH ) = ℓ′′H
end BOUND

end(ℓH1 ) = ℓH end(ℓH2 ) = ℓH

unify(S, T , ℓH1 , ℓH2 ) = (S, T )
unify =

end(S, ℓH1 ) = ℓ′H1 end(S, ℓH2 ) = ℓ′
H

2 S (ℓ′H2 ) = FREE[a]

ℓ′H2 <S ℓ1 update_trail(T , (ℓ′H2 : a)) = T ′

unify(S, T , ℓH1 , ℓH2 ) = (S {ℓ
′H
2 7→ BOUND ℓH1 }, T

′)
unify FREE

S (ℓ′H1 ) = c 〈
®ℓH 〉 S (ℓ′H2 ) = c 〈

®ℓ′H 〉 end(S, ℓH1 ) = ℓ′H1

end(S, ℓH2 ) = ℓ′H2 unify_args(S, T , ®ℓH , ®ℓ′H ) = (S ′, T ′)

unify(S, T , ℓH1 , ℓH2 ) = (S
′, T ′)

unify c 〈〉

1Typing constraints ensure that at runtime, the occurs check is only ever invoked on Prolog terms. However, the occurs

check is also of broader use in the metatheory proofs, and there it is convenient to define the occurs check on closures and

tuples as well, such as in Lemma 8.
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unify(S, T , ℓH1 , ℓH2 ) = (S
′, T ′)

unify_args(S ′, T ′, (ℓH2 :: · · · :: ℓHn ), (ℓ
′H
2 :: · · · :: ℓ′Hn )) = (S

′′, T ′′)

unify_args(S, T , (ℓH1 :: · · · :: ℓHn ), (ℓ
′H
1 :: · · · :: ℓ′Hn )) = (S

′′, T ′′)
UA-Cons

unify_args(S, T , ϵ, ϵ ) = (S, T )
UA-Nil

The failure cases for unification are straightforward, but they are given here for completeness:

S (ℓ′H1 ) = FREE[a] ℓ′H1 ∈S ℓH2

end(S, ℓH1 ) = ℓ′H1 end(S, ℓH2 ) = ℓ′H2

unify(S, T , ℓH1 , ℓH2 ) = ⊥
U⊥1

S (ℓ′H2 ) = FREE[a] ℓ′H2 ∈S ℓH1

end(S, ℓH1 ) = ℓ′H1 end(S, ℓH2 ) = ℓ′H2

unify(S, T , ℓH1 , ℓH2 ) = ⊥
U⊥2

S (ℓ′H1 ) = c 〈 ®w 〉 S (ℓ′H2 ) = c
′ 〈 ®w ′〉 c , c ′

end(S, ℓH1 ) = ℓ′H1 end(S, ℓH2 ) = ℓ′H2

unify(S, T , ℓH1 , ℓH2 ) = ⊥
U⊥3

unify_args(S, T , ®ℓH , ®ℓ′H ) = ⊥ S (ℓ′H2 ) = c 〈
®ℓ′H 〉

end(S, ℓH1 ) = ℓ′H1 end(S, ℓH2 ) = ℓ′H2 S (ℓ′H1 ) = c 〈
®ℓH 〉

unify(S, T , ℓH1 , ℓH2 ) = ⊥
U⊥4

unify(S, T , ℓH , ℓ′H ) = ⊥

unify_args(S, T , (ℓH :: ®ℓH ), (ℓ′H :: ®ℓ′H )) = ⊥
UA⊥1

unify_args(S ′, T ′, ®ℓH , ®ℓ′H ) = ⊥

unify(S, T , ℓH , ℓ′H ) = (S ′, T ′)

unify_args(S, T , (ℓH :: ®ℓH ), (ℓ′H :: ®ℓ′H )) = ⊥
UA⊥2

Lastly, if unification fails, due to the above failure rules, get_val tries backtracking. If the trail is
non-empty, it backtracks successfully, else execution stops and the query has failed.

R(r1) = ℓ
H
1 R(r2) = ℓ

H
2 unify(S,T , ℓH1 , ℓ

H
2 ) = ⊥ backtrack(S,T ) =m′

(T , S,R, get_val r1, r2; I ) 7−→m′
GetVal-BT

R(r1) = ℓ
H
1 R(r2) = ℓ

H
2 unify(S,T , ℓH1 , ℓ

H
2 ) = ⊥ backtrack(S,T ) = ⊥

(T , S,R, get_val r1, r2; I ) fails
GetVal-⊥

4.5.5 Term Constructors and Occurs Checks. The put_var instruction immediately allocates a
free variable. Structures are constructed with a write spine, initiated by put_str. For symmetry
with get_str, we first allocate a free variable and replace it with a structure when the spine
completes. Within a write spine, unify_var allocates free variables while unify_val copies a
value into the structure. In the typical case, a write spine finishes when enough arguments have
been computed (one for each constructor argument, i.e. arity(c)) by replacing the free variable
with a complete structure. However, the formalism technically allows us to refer to the destination
r within its own write spine. To prevent a cycle, we perform an occurs check (ℓH <S ℓ

H
i ) and

backtrack on failure. The choice to use an occurs check here was made for its resulting proof
simplicity. For implementation purposes, an equally correct and more efficient choice is to enforce
a syntactic restriction that prohibits references to r within its own write spine.

(T , S,R, put_var [a]r ; I ) 7−→ (T , S{{ℓH 7→ FREE[a]}},R{r 7→ ℓH }, I )
PutVar 7−→

Σ(c) = ®a → a

(T , S,R, put_str c, r ; I ) 7−→ write(T , S{{ℓH 7→ FREE[a]}},R{r 7→ ℓH }, I , c, ℓH , ϵ)
PutStr 7−→

write(T , S,R, unify_var [a]rs ; I , c, ℓ
H
d
, ®ℓH ) 7−→

write(T , S{{ℓH 7→ FREE[a]}},R{rs 7→ ℓ
H }, I , c, ℓH

d
, ( ®ℓH :: ℓH ))

UnifyVar 7−→W

R(rs ) = ℓ
H

write(T , S,R, unify_val rs ; I , c, ℓ
H
d
, ®ℓH ) 7−→ write(T , S,R, I , c, ℓH

d
, ( ®ℓH :: ℓH ))

UnifyVal 7−→W

S(ℓH ) = FREE[a] ℓH <S ℓ
H
i | ®ℓH | = arity(c)

write(T , S,R, I , ℓH , c, ®ℓH ) 7−→ (T , S{ℓH 7→ c〈®ℓH 〉},R, I )
Write 7−→
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ℓH ∈S ℓ
H
i | ®ℓH | = arity(c) backtrack(S,T ) =m′

write(T , S,R, I , ℓH , c, ®ℓH ) 7−→m′
Write-BT

ℓH ∈S ℓ
H
i | ®ℓH | = arity(c) backtrack(S,T ) = ⊥

write(T , S,R, I , ℓH , c, ®ℓH ) fails
Write-⊥

4.5.6 Term Destructor get_str. The instruction get_str c, r starts a spine which unifies the
content of register r with a structure c〈ℓH1 , . . . , ℓ

H
n 〉 where each wi is provided by the i’th spinal

instruction. In the case where r contains a free variable, this amounts to building a new structure,
and thus the write case of get_str simply reuses the write spines of put_str.

R(r ) = ℓH end(S, ℓH ) = ℓ′H S(ℓ′H ) = FREE[a]

(T , S,R, get_str c, r ; I ) 7−→ write(T , S,R, I , c, ℓ′H , ϵ)
GetStr 7−→W

When r contains a structure, we perform structure-to-structure unification. This can fail in two
ways: either the head constructor c does not match or one of the argument positions does not
unify. The first conditon is checked during get_str itself, the other during the ensuing spinal
instructions. In both cases, errors are handled by backtracking if possible:

R(r ) = ℓH end(S, ℓH ) = ℓ′H S(ℓ′H ) = c〈ℓH1 , . . . , ℓ
H
n 〉

(T , S,R, get_str c, r ; I ) 7−→ read(T , S,R, I , ®ℓH )
GetStr 7−→ R

R(r ) = ℓH end(S, ℓH ) = ℓ′H

S(ℓ′H ) = c ′〈ℓ1, . . . , ℓn〉 c , c ′ backtrack(S,T ) =m′

(T , S,R, get_str c, r ; I ) 7−→m′
GetStr-BT

R(r ) = ℓH end(S, ℓH ) = ℓ′H

S(ℓ′H ) = c ′〈ℓ1, . . . , ℓn〉 c , c ′ backtrack(S,T ) = ⊥

(T , S,R, get_str c, r ; I ) fails
GetStr-⊥

read(T , S,R, unify_var [a]r ; I , (ℓH :: ®ℓH )) 7−→ read(T , S,R{r 7→ ℓH }, I , ®ℓH )
UnifyVar 7−→ R

R(r ) = ℓ′H unify(S,T , ℓH , ℓ′H ) = (S ′,T ′)

read(T , S,R, unify_val r ; I , (ℓH :: ®ℓH )) 7−→ read(T ′, S ′,R, I , ®ℓH )
UnifyVal 7−→ R

R(r ) = ℓ′H unify(S,T , ℓH , ℓ′H ) = ⊥ backtrack(T ) =m′

read(T , S,R, unify_val r ; I , (ℓH :: ®ℓH )) 7−→m′
UnifyVal-BT

R(r ) = ℓ′H unify(S,T , ℓH , ℓ′H ) = ⊥ backtrack(T ) = ⊥

read(T , S,R, unify_val r ; I , (ℓH :: ®ℓH )) fails
UnifyVal-⊥

4.6 Metatheory

In both the SWAM and dependently-typed TWAM, the main metatheorems are progress and
preservation.

Theorem (Progress). If · ⊢m ok then eitherm done orm fails orm 7−→m′.

Theorem (Preservation). If · ⊢m ok andm 7−→m′ then · ⊢m′ ok.
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Wherem failsmean that a Prolog query terminated normally, but the query had no solution.
In Section 6.4, the progress and preservation results for the TWAMwill be strong enough to en-

able certifying compilation. In the SWAM, progress and preservation amount to type and memory-
safety. Because the theorem of Section 6.4 subsumes progress and preservation for SWAM, we re-
strict ourselves here to the commonalities and present the differences in Section 6.4. For the sake
of readability, both this section and Section 6.4 give proof sketches where the reader might find a
detailed proof tedious. For the sake of exhaustiveness, an extended proof for the dependent system
is given in the electronic appendix, however.
The metatheory for SWAM begins with standard preliminary lemmas such as canonical forms

and weakening. This is followed with the heart of the metatheory: our treatment of the occurs
check and unification.
The key lemma Heap Update (Lemma 9) shows that binding free variables preserves the acyclic

heap invariant when the occurs check passes, which gives us preservation for unification and thus
every instruction that depends on unification.

4.6.1 Preliminaries.

Lemma 1 (Canonical Forms). Canonical forms consists of a subclaim for each relevant class of

values.

• Code Values: If Ψ ⊢ vC : τ then τ = ¬Γ and vC = code[Γ](I )

• Word Values: If Ψ ⊢Σ;Ξ w : τ and (C,H ) : (Ξ;Ψ) thenw has form ℓH or ℓC where ℓH ∈ Dom(H )
or ℓC ∈ Dom(C).

• Heap Values: If Ψ ⊢ vH : τ then

– Either τ = x[®τ ] and v = 〈 ®w〉 and Ψ ⊢ ®w : ®τ
– Or τ = a and either v = BOUND w or v = FREE[a] or v = c〈 ®w〉 where Ψ ⊢ ®w : ®a and

Σ(c) = ®a → a.

– Or τ = ¬Γ and v = close (w, ℓC ) where Ψ ⊢ w : ¬Γ(env).

Proof. Each claim is by inversion on the typing rules. �

Lemma 2 (Weak Unicity of Heap Value Typing). For any value v , at most one of the following

holds:

(1) Ψ ⊢ v : a
(2) Ψ ⊢ v : x[®τ ]
(3) Ψ ⊢ v : ¬Γ

Proof. By cases on Ψ ⊢ v : τ . Each rule requires v to have a specific form. If Ψ ⊢ v : a then
v = FREE[a],BOUND ℓH , or c〈ℓH1 , . . . , ℓ

H
n 〉. In each case the only rules that apply produce type

a (the type annotation enforces unicity for FREE[a]). If Ψ ⊢ v : x[®τ ] then v = 〈 ®w〉 and the only
rule that applies produces type x[®τ ]. Otherwise Ψ ⊢ v : ¬Γ and the rules force v = code[Γ] or
v = close(wenv , ℓ

C ). In either case the only rule that applies produces Ψ ⊢ v : ¬Γ, because the
type is restricted by either the annotation Γ or by Ξ(ℓC ). �

Lemma 3 (Weakening). In SWAM we need weakening for word and heap value typing and occurs

check:

• Word Values: If Ψ ⊢ w : τ then Ψ{{ℓH : τ ′}} ⊢ w : τ .
• Occurs Check: For fresh ℓH , (a) If ℓH1 ∈H ℓ

H
2 , then ℓ

H
1 ∈H {{ℓH 7→v }} ℓ

H
2 and (b) If ℓH1 <H ℓ

H
2 ,

then ℓH1 <H {{ℓH 7→v }} ℓ
H
2 .

• Heap Typing: For all fresh ℓH and even ill-typed vH , if · ⊢ H : Ψ then · ⊢ H {{ℓH 7→ vH }} : Ψ.
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Proof. By induction on the derivation Ψ ⊢ w : τ , ℓH1 ∈H ℓ
H
2 , ℓ

H
1 <H ℓ

H
2 , or · ⊢ H : Ψ respectively,

using the fact that for fresh ℓH , H {{ℓH 7→ v}}(ℓ′H ) = H (ℓ′H ) for all ℓ′H ∈ Dom(H ). Heap Typing
weakening uses the fact that · ⊢ H : {} for all H , i.e. heaps may contain inaccessible values not
assigned types by Ψ. �

Lemma 4 (Register File Subtyping). If Γ ⊢ I ok and · ⊢ Γ ≤ Γ
′ then Γ

′ ⊢ I ok.

Proof. By induction on the derivation Γ ⊢ I ok. �

4.6.2 Occurs Check. The following theory of occurs checks is used in the theory of unification.

Lemma 5 (Occurs is a total function). If · ⊢ H : Ψ and Ψ ⊢Σ;Ξ ℓ
H
2 : a then:

• Total: For all ℓH1 , either ℓ
H
1 ∈H ℓ

H
2 or ℓH1 <H ℓ

H
2 .

• Function: If ℓH1 <H ℓ
H
2 is derivable, then ℓH1 ∈H ℓ

H
2 is not derivable.

Proof. Totality is by induction on typing derivation of · ⊢ H : Ψ, appealing to Lemmas 3 and
1. Functionhood is by induction on the derivation ℓH1 <H ℓ

H
2 . In the cases H (ℓH2 ) = FREE[a],

H (ℓH2 ) = BOUND w, and close (wenv , ℓ
C ), clearly no rules apply for ℓH1 ∈H ℓ

H
2 . Consider the

case c〈ℓH1 , . . . , ℓ
H
n 〉 (the tuple case is symmetric):

case

H (ℓH2 ) = c〈ℓ
′H
1 , . . . , ℓ

′H
n 〉 ℓ

H
1 <H ℓ

′H
i (∀1 ≤ i ≤ n)

ℓH1 <H ℓ
H
2

< c〈〉

By the IH, ∀i .(ℓH1 ∈H ℓ
′H
i is not derivable), so ¬∃i .(ℓH1 ∈H ℓ

′H
i is derivable). But becauseH (ℓ2) =

c〈ℓH1 , . . . , ℓ
H
n 〉, the only rule that might apply requires ∃i .(ℓ1 ∈H ℓ

′
i is derivable). �

Lemma 6 (Transitivity of Occurs). If · ⊢ H : Ψ, ℓH1 ∈H ℓ
H
2 , and ℓ

H
2 ∈H ℓ

H
3 , then ℓ

H
1 ∈H ℓ

H
3 .

Proof. By induction on the derivation ℓH2 ∈H ℓ
H
3 . �

Lemma 7 (Occurs Strengthening). If · ⊢ H : Ψ, ℓH2 ∈ Dom(H ), ℓ
′H
< Dom(H ), and ℓH1 <H {{ℓ′H 7→v ′ }}

ℓH2 then ℓH1 <H ℓ
H
2 .

Proof. By induction on the derivation ℓH1 <H {{ℓ′H 7→v ′}} ℓ
H
2 , appealing to Lemma 1. �

4.6.3 Heap Modification. The simply-typed metatheory culminates in the treatment of heap
modification. We begin with a strengthening lemma:

Lemma 8 (Heap Value Strengthening). If Ψ{{ℓH1 : τ1}} ⊢ v2 : τ2 and ℓ
H
1 <H ℓ

H
2 , then Ψ ⊢ v2 : τ2.

Proof. By cases on Ψ{{ℓH1 : τ1}} ⊢ v2 : τ2. The case c〈ℓ
H
1 , . . . , ℓ

H
n 〉 is representative:

case

Σ(c) = ®a → τ2 Σ;Ψ{{ℓH1 : τ1}} ⊢ ℓ
′H
i : ai

Ψ{{ℓH1 : τ1}} ⊢ c〈ℓ
H
1 , . . . , ℓ

H
n 〉 : τ2

HV-Str

Then for each ℓ′Hi the typing derivation has form

Ψ{{ℓH1 : τ1}}(ℓ
′H
i ) =S(Mi : ai )

Ψ{{ℓH1 : τ1}} ⊢ ℓ
′H
i : S(Mi : ai )

WV-ℓH
. Note

ℓ′Hi , ℓ
H
1 . Otherwise we would have

ℓ′Hi = ℓ
H
1

ℓH1 ∈H ℓ
′H
i (∃i)

∈=
H (ℓH2 ) = c〈ℓ

′H
1 , . . . ℓ

′H
n 〉

ℓH1 ∈H ℓ
H
2

∈ c〈〉
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Which would contradict ℓH1 <H ℓ
H
2 because occurs is a function (Lemma 5). Because ℓH1 , ℓ

′H
i and

ℓ′Hi ∈ Dom(Ψ{{ℓ
H
1 : τ1}}) we have ℓ

′H
i ∈ Dom(Ψ) and

Σ(c) = a1 · · · → an → τ2

Ψ(ℓ′Hi ) = S(Mi : ai ) (∀i)

Ψ ⊢Σ;Ξ ℓ
′H
i : ai

WV-ℓH

Ψ ⊢Σ;Ξ c〈ℓH1 , . . . , ℓ
H
n 〉 : τ2

HV-Str

�

Lemma 9 (Heap Update). If · ⊢ H : Ψ and Ψ(ℓH1 ) = a then

(a) If Ψ(ℓH2 ) = a and ℓH1 <H ℓ
H
2 , (the occurs check passes) then · ⊢ H {ℓH1 7→ BOUND ℓ

H
2 } : Ψ.

(b) If for all i , Ψ(ℓ′Hi ) = ai and ℓ
H
1 <H ℓ

′H
i and Σ(c) = ®a → a, then · ⊢ H {ℓH1 7→ c〈ℓ′H1 , . . . , ℓ

′H
n 〉} : Ψ.

The simple statement of Heap Update belies the complexity of its proof. Recall that heaps and
heap types are unordered (identified up to permutation), while heap typing derivations are ordered,
serving as awitness that the heap is acyclic. The proof of HeapUpdatemust show that no cycles are
introduced, which requires exhibiting a new acyclic ordering in, e.g. the derivation of · ⊢ H {ℓH1 7→

BOUND ℓH2 } : Ψ.

Heap Typing Proof Terms. In the interest of rigor, we introduce proof term notation for heap
typing derivations, which allows us to give a concise, explicit construction of the topological or-
derings required by Heap Update. The reader may wish to skip this section on a first reading, as
it introduces significant proof machinery that is not needed elsewhere. Recall the typing rules for
heaps:

· ⊢ H : {}
HT-Nil

· ⊢ H : Ψ H (ℓH ) = vH Ψ ⊢ vH : τ ℓH < Dom(Ψ)

· ⊢ H : Ψ{{ℓH : τ }}
HT-Cons

These rules result in list-structured proof terms:

D ::= nilH | D;dℓH

WewriteD : (· ⊢ H : Ψ)whenD is a proof term of · ⊢ H : Ψ. In this notation nilH is the proof term
for HT-Nil applied to heap H and D;dℓH is the proof term for HT-Cons applied to subderivations
D : (· ⊢ H : Ψ) and dℓH : (Ψ ⊢ vH : τ ) and it is a proof of · ⊢ H : Ψ{{ℓH : τ }}. To state the key lemma
precisely, we exploit several functions over proof terms.
The notation pred(D, ℓH ) denotes the set of heap locations assigned types by D that appear

before ℓH within D and succ(ℓH ) denotes the set of locations that appear after it. The notation
elems(D) denotes all locations assigned types by D. They can be defined recursively by:

elems(nilH ) = ∅ elems(D;dℓH ) = {ℓ
H } ∪ elems(D)

pred(nilH , ℓ
H ) = ∅ pred((D;dℓH ), ℓ

H ) = elems(D) pred((D;dℓ′H ), ℓ
H ) = pred(D, ℓH )

succ(nilH , ℓ
H ) = ∅ succ((D;dℓH ), ℓ

H ) = ∅ succ((D;dℓ′H ), ℓ
H ) = succ(D, ℓH ) ∪ {ℓ′H }

We now have the machinery to state a subclaim which entails both claims of Heap Update.

subclaim 1 (Heap Reordering). If D : (· ⊢ H : Ψ),H (ℓH1 ) = FREE[a], ℓH1 ∈ Dom(Ψ), ℓH2 ∈

Dom(Ψ), ℓH1 <H ℓ
H
2 then existsD ′ : (· ⊢ H : Ψ)where succ(D ′, ℓH1 ) ⊆ succ(D, ℓH1 ) and pred(D

′, ℓH2 ) ⊆

pred(D, ℓH2 ) and ℓ
H
2 ∈ pred(D

′, ℓH1 )

Proof. By lexicographic induction on |D| and |succ(D, ℓH1 )|. We give an explicit construction

of the proof term D ′ as a function of D, ℓH1 , and ℓ
H
2 in functional pseudocode, then show the

construction obeys the desired properties in each case. Here str (dℓH ) and weak(dℓH ) refer to the
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typing derivations that result from appeals to the heap value strengthening andweakening lemmas,
respectively (Lemmas 8 and 3).

Case D ′(D, ℓ1, ℓ2) =

caseD of

1 nil ⇒ D
2 | nil′,dℓ ⇒ D

3 | D1;dℓ ;dℓ1 ⇒ D
4 | D1;dℓ1;dℓ2 ⇒ D1; str(dℓ2); weak(dℓ1)
5 | D1;dℓ ;dℓ2 where ℓ , ℓ1 ⇒

if (ℓ′1 < ℓ2) then
5a D ′((D1; str(dℓ2)), ℓ1, ℓ2); weak(dℓ)

else

5b let D2 = D
′((D1;dℓ), ℓ1, ℓ) in

D ′((D2;dℓ2), ℓ1, ℓ2)
| D1;dℓ ;dℓ′ where ℓ

′
, ℓ1, ℓ

′
, ℓ2 ⇒

D ′((D1;dℓ), ℓ1, ℓ2);dℓ′

• Cases 1 and 2 hold vacuously because our preconditions only hold for |D| ≥ 2.
• Case 3: In this case ℓH2 ∈ pred(D, ℓH1 ) (either ℓ

′H
= ℓH2 or ℓH2 appears elsewhere in H ), so

there is no work to be done.
• Case 4: By the assumption that ℓH1 <H ℓ

H
2 , we can apply Lemma 8, yielding · ⊢ H ′{{ℓH2 7→

v2}} : Ψ
′{{ℓH2 : τ2}}. By Lemma 3, Ψ′{{ℓH1 : v1}} ⊢ v1 : τ1, so · ⊢ H

′{{ℓH2 7→ v2, ℓ
H
1 7→ v1}} :

Ψ
′{{ℓH2 : τ2, ℓ

H
1 : τ1}}, which satisfies the requirements.

• Case 5: By Lemma 5, either ℓ′H ∈H ℓ
H
2 or ℓ′H <H ℓ

H
2 .

• Case 5a: By Lemma 8, H {{ℓH2 7→ v2}} : Ψ{{ℓ
H
2 7→ τ2}} so we can apply the IH on H ′{{ℓH2 7→

v2}} giving a derivation D1. The result follows in combination with Lemma 3 on ℓH .
• Case 5b: By Lemma 5, ℓH1 ∈H ℓ

′H or ℓH1 <H ℓ
′H . In this case ℓH1 <H ℓ

′H . Otherwise

by Lemma 6 ℓH1 ∈H ℓ
H
2 , but we assumed ℓH1 <H ℓ

H
2 and this is a contradition because

occurs is a function (Lemma 5). Thus we can apply the IH on H ′{{ℓ′H 7→ v ′}} (because
|H ′{{ℓ′H 7→ v ′}}| < |H |) to swap ℓH1 with ℓ′H resulting in a derivation D2. The IH tells us

|succ(D2, ℓ
H
1 )| < |succ(D, ℓ

H
1 )|, allowing us to apply the IH a second time on the derivation

D2;d2. The second IH implies the result.
• Case 6: This case is direct by the IH.

�

Given Heap Reordering, the first claim of Heap Update follows directly with the following
derivation for BOUND ℓH2

Ψ
′(ℓH2 ) = τ

Ψ
′ ⊢ ℓH2 : τ

WV-ℓH

Ψ
′ ⊢ BOUND ℓH2 : τ

HV-Bound

where Ψ′ is the heap type assigned by D ′ to the prefix of ℓH2 , which must contain ℓH1 .
The second claim follows by iterating Heap Reordering, and because Heap Reordering preserves

the predecessors of ℓH1 .

4.6.4 Trails.
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Lemma 10 (Trail Update). Introducing and binding free variables both preserve the validity of

the trail:

(a)If S ⊢ T ok and S(ℓH ) = FREE[a] then S{ℓH 7→ w} ⊢ update_trail(ℓH : a,T ) ok.

(b)If S ⊢ T ok and ℓH is fresh then S{{ℓH 7→ FREE[a]}} ⊢ T ok.

First consider the typing rule for nonempty trails:

· ⊢ S ′ : (Ξ,Ψ′) Ψ
′ ⊢ wenv : τ unwind(S, t) = S ′ S ′ ⊢ T ′ ok Ψ

′ ⊢ ℓC : ¬{env : τ }

S ⊢ (t ,wenv , ℓ
C ) :: T ′ ok

Trail-Cons

Trails are well-typed so long as unwinding (as used in backtracking) results in a well-typed state.
Claim (a) says binding a free variable X to a term represented by word value w , then adding X

to the trail, results in a well-typed trail. S(ℓH ) = FREE[a] then S{ℓH 7→ w} ⊢ update_trail(ℓH :
a,T ) ok iff unwinding results in a well-typed store. Because it unwinds to the same store as does
T , this is true by assumption.

Claim (b) is weakening principle for trails, which follows from weakening for stores. This claim
shows that the trail does not need to be modified when a fresh variable is allocated, only when it
is bound to a term. Claim (b) follows from the following subclaim:

subclaim 2. unwind(S{{ℓH 7→ FREE[a]}}, t) = (S ′{{ℓH 7→ FREE[a]}})

The subclaim holds by induction on t , completing the proof of Lemma 10.

Lemma 11 (Backtracking Totality). For all trailsT , if · ⊢ S : (Ξ;Ψ) and S ⊢Σ;Ξ T ok then either

backtrack(S,T ) =m′ and · ⊢m′ ok or backtrack(S,T ) = ⊥

Proof. By cases on S ⊢ T ok. �

4.6.5 Dynamic Unification. Unification uses a simple lemma on pointer following:

Lemma 12 (End Correctness). If Ψ ⊢ ℓH : a and · ⊢ H : Ψ then end(H , ℓH ) = ℓ′H and Ψ ⊢ ℓ′H : a

and either H (ℓ′H ) = FREE[a] or H (ℓ′H ) = c〈 ®w〉

Proof. By induction on the derivation Ψ ⊢ ℓH : a. �

Runtime unification is total and results in a well-typed store and trail.

Lemma 13 (Soundness of unify). If · ⊢ H : Ψ,Ψ ⊢ w1 : a,Ψ ⊢ w2 : a, then unify(S,T ,w1,w2) =
⊥ or unify(S,T ,w1,w2) = (S

′,T ′) where · ⊢ S ′ : (Ψ;Ξ) and S ′ ⊢ T ′ ok

Proof. We prove the claim by simultaneous induction with the following subclaim:

claim 1. For all argument lists (push-down lists) (w1 :: · · · :: wn) and , (w
′
1 :: · · · :: w

′
n), if for all i ,

Ψ ⊢ wi : ai and Ψ ⊢ w
′
i : ai then unify_args(S,T , (w1 :: · · · :: wn), (w

′
1 :: · · · :: w

′
n), . . . , (wn,w

′
n)) =

⊥ or

unify_args(S,T , (w1 :: · · · :: wn), (w
′
1 :: · · · :: w

′
n)) = (S

′,T ′) where · ⊢ S ′ : (Ξ;Ψ) and S ′ ⊢ T ′ ok.

Proof. Lemma 13 is by induction on the size of the type Ψ and Claim 1 is by induction on the
argument lists (w1 :: · · · :: wn), (w

′
1 :: · · · :: w

′
n). The inductive case proceeds by cases on the form

of end(S, ℓH1 ) and end(S, ℓ
H
2 ) using Lemma 12. We present only a few of the success cases here, for

the remaining cases are straightforward.
case (FREE[a], FREE[a]) :

Case on end(S, ℓH1 ) = end(S, ℓH2 ) holds. If it does, we apply the first rule, else by case assumption

we have end(S, ℓH2 ) <S ℓ
H
1 and apply the second, then apply Lemma 9 to get S{ℓH1 7→ BOUND ℓH2 } :

(Ψ;Ξ) and Lemma 10 to get S{ℓH1 7→ BOUND ℓH2 } ⊢ T
′ ok. :
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end(ℓH1 ) = ℓH end(ℓH2 ) = ℓH

unify(S, T , ℓH1 , ℓH2 ) = (S, T )
unify =

end(S, ℓH1 ) = ℓ′H1 end(S, ℓH2 ) = ℓ′H2 S (ℓ′H2 ) = FREE[a]

Ψ(ℓ′H1 ) = a ℓ′H2 <S ℓH1 update_trail(T , (ℓ′H2 : a)) = T ′

unify(S, T , ℓH1 , ℓH2 ) = (S {ℓ
′H
2 7→ BOUND ℓH1 }, T

′)
unify FREE

case (c〈ℓH1 , . . . , ℓ
H
n 〉, c〈ℓ

′H
1 , . . . , ℓ

′H
n 〉)

We apply the IH on the subclaim for unify_args and the result follows immediately (and simi-
larly if unify_argswere to fail).

S(ℓ′H1 ) = c〈
®ℓH 〉 S(ℓ′H2 ) = c〈

®ℓ′H 〉 end(S, ℓH1 ) = ℓ
′H
1

end(S, ℓH2 ) = ℓ
′H
2 unify_args(S,T , ®ℓH , ®ℓ′H ) = (S ′,T ′)

unify(S,T , ℓH1 , ℓ
H
2 ) = (S

′,T ′)
unify c〈〉

�

�

The essential cases of progress and preservation for the simply-typed system are instructions
such as get_val and unify_val that rely on unification. Those cases of progress and preservation
follow from the unification soundness lemma above. Moreover, progress and preservation for the
simply-typed system are subsumed by their dependently-typed equivalents. Most of the proofs
above carry over readily. Any important differences are covered in Section 6.4.

5 TYPED COMPILATION IN PROOF-PASSING STYLE

Our certification approach is based on specifying the semantics of a T-Prolog program as an LF
signature. Before we can certify the correctness of compilation, we give a mechanical translation
from T-Prolog programs to LF signatures (see Figure 5.1 for example):

– A type a in T-Prolog translates to an LF constant a : type.
– A constructor c : ®a → a translates to an LF constant of the same type.
– A predicate p : ®a → prop translates to an LF constant p : ®a → type.
– A clauseC of formG :- SG1, . . . , SGn . translates to an LF constant (of dependent function

type) C : Π ∆.Π ®SG.G where ∆ consists of the free variables of Π ®SG.G .
– Executing a query ?-G . translates to searching for a proof ofG .

Example 5.1 (T-Prolog Program with its LF Signature).
nat:type. nat:type.

zero:nat. zero:nat.

succ:nat → nat. succ:nat → nat.

plus:nat → nat → nat → prop. Plus:nat → nat → nat → type.

plus(zero,X,X). Plus-Z:ΠX:nat. plus zero X X.

plus(succ(X),Y,succ(Z)) :- Plus-S:ΠX:nat. ΠY:nat. ΠZ:nat.

plus(X,Y,Z). ΠD:plus X Y Z.

plus (succ X) Y (succ Z).

Now that we have defined the semantics of a Prolog program in LF, we can describe our certifi-
cation approach. The TWAM certification approach can be summed up in the following slogan:

Proof-Carrying Code + Programming As Proof Search = Proof-Passing Style

Proof-carrying code is the technique of packaging compiled code with a formal proof that the
code satisfies some property. Previous work [18] has used proof-carrying code to build certifying
compilers which produce proofs that the programs they output are memory-safe. Our insight is
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that by combining this technique with the programming-as-proof-search paradigm that underlies
logic programming, our compiler can produce proofs of a much stronger property: partial dynamic
correctness.
The programming-as-proof-search paradigm tells us that partial dynamic correctness consists

of the following theorem, stated informally here and formally in Section 6.4:
Theorem 1: If a query ?-G . succeeds, there exists a proofM of G in LF.
Our compiler need only output enough information that the TWAM typechecker can recon-

struct the proof of Theorem 1. This requires statically proving that whenever any proof search
procedure p would return, the corresponding predicate P would have a proof in LF. This proof
boils down to accumulating facts when unification succeeds and annotating all return points with
the resultant LF proof terms. This proof-passing style of programming is essential to the type sys-
tem of the TWAM. It is worth noting also that proof-passing style is needed only at compile-time,
because TWAM also supports proof-erasure. Thus the only runtime cost of certifying compilation
with TWAM is the cost of using SWAM vs. other variants of the WAM; TWAM introduces no
additional overheads compared to SWAM.

6 DEPENDENTLY-TYPED WAM

The simply-typed system presented in Section 4 is insufficient to prove that compiled programs
implement a given LF signature. The succeed instruction

Γ ⊢ succeed; I ok

trivially typechecks in any context, but we wish to prove that a program only succeeds if a proofM
of some query A exists in LF. We begin our dependently-typed development by requiring exactly
that in the typing rule:

∆ ⊢ M : A
∆; Γ ⊢ succeed[M : A]; I ok

Yet if this was the only change we made, we could never compile meaningful programs because
the premise would be too difficult to fulfill. We make this premise easier to meet by introducing
the ability for continuations to accept LF proof terms as arguments. Because the succeed[M:A]
instruction generally occurs in the top-level success continuation for a query, we can make this
continuation accept a proof of M as an argument x and supply x as the proof term for succeed,
passing the burden of proof onto the caller.
In this way, we can decompose the proof argument forM into one argument for each basic block

of the proof search algorithm. This too is nontrivial: whether the proofM exists for a given query
A cannot be known until A is executed at runtime, but certification occurs at compile-time. In
order to reason statically about runtime proof search, the type system must connect LF terms with
runtime constructs such as registers and heap values. Whenever a unification succeeds at runtime
(i.e. we learn that we can apply a particular rule), we need some way to say the same terms should
be unified in the statics. Without a mechanism for translating between the runtime values and the
static LF terms, we have no mechanism by which to learn new facts during proof search, and thus
no way to construct nontrivial LF proofs.
The simplest possible relation between an LF termM and a heap valuev is the notion of equality.

Since heap values can also contain pointers and can exhibit sharing structures not visible in the
LF term, we might more accurately think of this equality relation as “v encodes M”. We add this
notion to our type system by introducing singleton typesS(M : a) for values that encode an LF term
M which itself has type a. This is the only fundamentally new value type, though other aspects of
the type system will change as well to accommodate the presence of proofs.
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In particular, we introduce a context ∆ that contains the types of all LF variables in scope, which
are introduced either in the parameters of a code value or by the put_var instruction. Furthermore,
we introduce a notion of static unificationM1 ⊓M2 which allows us to import knowledge learned
from runtime unification into an LF proof.
To see the interaction between runtime and static unification concretely, consider the zero case

of plus, which (using the proof terms of Example 5.1) compiles to

Example 6.1 (TWAM Compilation).
plus-zero/3 7→ code[Π X ,Y ,Z : nat .{r1 : S(X ), r2 :S(Y ), r3 :S(Z ), r4 : Π_ : (Plus X Y Z). ¬{}}](
put_tuple r4, 4;
set_val r1;
set_val r2;
set_val r3;
set_val ret;

# plus-succ/3, not shown, has the same three natural number

# parameters X, Y, Z, so we pass them in when constructing

# the failure continuation

push_bt r4, (plus-succ/3 X Y Z);

get_str r1, zero/0;
get_var r2, r3;
jmp (ret (Plus-Z Y));

)

The syntax code[∆.Γ](I ) denotes a code value with body I which expects the register file to
have type Γ and where Γ may refer to the LF variables in ∆. The line jmp (r4 (Plus-Z Y)) is
an example of proof passing in action. Here the success continuation r4 expects a proof of the
relevant predicate: in this case plus X Y Z. The jmp instruction constructs a proof Plus-Z Y

to satisfy this requirement. The proof Plus-Z Y has type plus zero Y Y, so this code only
typechecks if X = zero and Y = Z , which is exactly what we learn when get_str and get_var

succeed, respectively.

6.1 Instruction Statics and Dynamics

In this section we detail the type system changes made to support LF terms and singleton types.
The instruction set and dynamic judgements are fundamentally identical to that of the SWAM,
but both are augmented with additional annotations as needed by the addition of LF. For example,
because the put_var instruction introduces an LF variable x , we now write put_var r , x : a. I
instead of put_var [a]r ; I to indicate that there is an LF variable x : a in scope for the remaining
instructions I , a feature we will use to write proof terms. Complete dynamics for the dependent
TWAM are given in the electronic appendix. In the following sections we detail the judgements
that differ significantly from the simply-typed system. A listing is given in Table 1.

6.1.1 LF Terms. The typing rule for succeed is as given in Section 6:

∆ ⊢ M : A
∆; Γ ⊢ succeed[M : A]; I ok

Succeed

HereM is an LF term andA is an LF type (we write A for arbitrary LF type families and a for types
corresponding specifically to Prolog terms). Thus we extend the syntax of TWAMwith the syntax
of LF (here c stands for type family constants and term constants):
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Judgement(s) Meaning Defined In

∆; Γ ⊢Σ;Ξ I ok Basic Block Well-Typed 6.1
∆; Γ ⊢ I :s Σ;Ξ J , I :t Σ;Ξ J Spine Well-Typed 6.1.5, 6.1.6
∆ ⊢ M1 ⊓M2 = σ ,⊥ Static Unification 6.1.4

∆ ⊢ M1 ∈ M2,M1 < M2 Static Occurs Check 6.1.4
∆; Γ ⊢ op : τ Operand Well-Typed 6.1.2
∆ ⊢ M : A LF Term Well-Typed [10]
∆ ⊢ A : K LF Type Family Well-Kinded [10]

∆; Γ ⊢ v : τ Heap Value Well-Typed 6.2
∆ ⊢ H : Ψ Heap File Well-Typed 4.3
∆; Γ ⊢ w : τ Word Value Well-Typed 6.1.2
∆;Ψ ⊢ R : Γ Register File Well-Typed 6.3
· ⊢ (∆; µ) : H Heap Mapping Unique 6.3
∆ ⊢ T ok Trail Well-Typed 6.3

∆;Ψ ⊢ ®ℓH reads Js Prolog Read Spine Invariant 6.3

∆;Ψ ⊢ (®ℓH , ℓH , c) writes Js Prolog Write Spine Invariant 6.3

∆;Ψ ⊢ (n, r , ®ℓH ) writes Jt Tuple Spine Invariant 6.3
· ⊢m ok Machine Well-Typed 6.3

R ⊢ op ⇓ w Operand Evaluation 6.1.2
R ⊢ op  w Operand Resolution 6.1.2
w ⇓ w ′ Word Evaluation 6.1.2

w path,w canon Word Canonical Forms 6.1.2
end(S, ℓH ) Pointer Following 4.5.4
ℓH1 ∈S ℓ

H
2 Dynamic Occurs Check 4.5.4

unify(S,T , ℓH1 , ℓ
H
2 ) Dynamic Unification 4.5.4

unify_args(S,T , ®ℓH , ®ℓ′H ) Dynamic Unification 4.5.4
update_trail(x@ℓH : a,T ) = T ′ Trail Update 6.3

unwind(S,∆, t) = (∆, S) Trail Unwinding 6.3
backtrack(S,T ) =m,⊥ Backtracking 4.5.3

m 7−→m′,m fails,m done Stepping 4.5

Table 2. Index of Typing and Evaluation Judgements

LF Kinds K ::= type | Πx : A.K
LF Type Families A ::= c | Πx : A.A | A M

LF Terms M ::= x | c | M M | Πx : A.M

Note that the TWAM need not be instrumented with LF proof terms at runtime: LF proofs are
merely given as type annotations as an aid to establishing the metatheorem of Section 6.4. LF
terms make numerous appearances in TWAM. For example, because Putvar introduces a free
variable at runtime, it introduces an LF variable x : a in the statics as well:

∆, x : a; Γ{r : S(x : a)} ⊢ I ok

∆; Γ ⊢ put_var r , x : a. I ok
Putvar

6.1.2 Words and Operands. The typing rules Jmp andMov appear as before:

Ξ(ℓC ) = ¬Γ′ · ⊢ Γ′ ≤ Γ

∆; Γ ⊢Σ;Ξ jmp op, I ok
Jmp

∆; Γ ⊢ op : τ ∆; Γ{rd : τ } ⊢ I ok

∆; Γ ⊢ mov rd ,op; I ok
Mov
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However, both instructions rely on operands. In TWAM, we generalize operands (and word values)
so they can accept LF terms as arguments:

operands op ::= ℓC | r | op M | λx : A. op
word values w ::= ℓC | ℓH | w M | λx : A. w

With this change we also update the statics and (big-step) dynamics for operands and word values.
The main dynamic judgement is still R ⊢ op ⇓ w (Operand Evaluation), but we add auxilliary
judgements R ⊢ op  w (Operand Resolution) andw ⇓ w ′ (Word Evaluation).

ℓC ⇓ ℓC
ℓC ⇓

w ⇓ w ′

(λx : A. w ) ⇓ (λx : A. w ′)
λ ⇓

op ⇓ (λx : A. w ′) [M/x ]w ′ ⇓ w ′′

op M ⇓ w ′′
β ⇓

op ⇓ w w path

op M ⇓ w M
op M ⇓

R ⊢ op  w

R ⊢ op M  w M
op M  

R ⊢ op  w

R ⊢ (λx : A. op) (λx : A. w )
λ  

R(r ) = w

R ⊢ r  w
r  

R ⊢ op  w w ⇓ w ′

R ⊢ op ⇓ w ′
op ⇓

Γ(r ) = τ

∆; Γ ⊢ r : τ
op r

∆; Γ ⊢ w : Πx : A. τ ∆ ⊢ M : A

∆; Γ ⊢ (w M ) : [M/x ]τ
op (w M )

∆ ⊢ A : type ∆, x : A; Γ ⊢ w : τ

∆; Γ ⊢ (λx : A. w ) : (Πx : A. τ )
op λ

Ψ(ℓH ) = τ

∆;Ψ ⊢ ℓH : τ
w ℓH

∆;Ψ ⊢ w : Πx : A. τ ∆ ⊢ M : A

∆;Ψ ⊢ (w M ) : [M/x ]τ
w (w M )

∆ ⊢ A : type ∆, x : A;Ψ ⊢ w : τ

∆;Ψ ⊢ (λx : A. w ) : (Πx : A. τ )
w λ

In Jmp, the generalization of operands supports proof-passing. In Mov, it supports tail-call opti-
mization as used in Section 6.5. As in LF, we have a notion of canonical forms for words, written
w canon, with an auxilliary judgementw path:

ℓ path
ℓ path

w path

w M path
w M path

w path

w canon
w canon

w canon

(λx : A. w) canon
λ canon

To simplify the proofs, the typing invariants for machine states require canonicity. However, be-
cause canonical forms always exist [10] and involve only static-level computation, the choice of
when to require canonical forms is irrelevant.

6.1.3 Continuations. The rules Close and BT also use operands to track LF proof terms in

closures, but those operands are syntactically restricted to ℓC ®M in order to avoid closures within
closures, which would needlessly complicate the dynamics. Furthermore, we see in Close that the

type of continuations has been generalized to Π®x : ®A. ¬Γ′: a continuation can take any number

of LF terms, which may freely mix Prolog terms and proof terms. Here the terms ®M are a static
component of the environment, stored in the closure, while the ®x are static arguments supplied by
the caller:

Γ(rs) = τ ∆; Γ{rd : Π®x : ®A. ¬Γ′} ⊢ I ok

∆; Γ ⊢ (ℓC ®M) : Π®x : ®A. ¬Γ′{env : τ }

∆; Γ ⊢ close rd , rs , (ℓ
C ®M); I ok

Close
∆; Γ ⊢ I ok Γ(r ) = τ ∆; Γ ⊢ (ℓC ®M) : ¬{env : τ }

∆; Γ ⊢ push_bt r , (ℓC ®M); I ok
BT

6.1.4 Static Unification. We arrive now at what is arguably the most novel and surprising tech-
nical result of the TWAM type system: Static unification as used in the TWAM type system is not
only in harmony with Prolog-style runtime unification, but is strong enough to enable the type-
checking of LF proofs. Without our static unification mechanism, it would in general be impossible
to show the proof-terms returned by a clause were well-typed (consider the jmp in Example 6.1).
As before, get_val unifies two Prolog terms stored in registers r1, r2. Thanks to the addition of

singleton types, the type system now has access to LF terms M1,M2 : a describing the values of
r1, r2. The subtlety of static unification lies in the fact that because the exact values of r1 and r2 are
unknown until runtime, the termsM1 andM2 cannot be the exact values of r1 and r2. Rather, they
will merely be some terms that unify with the eventual values of r1 and r2. What we find novel
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and surprising is that this partial knowledge represented by M1 and M2 is simultaneously strong
enough to certify proof search, yet consistent with the actual behavior at runtime.
To typecheck get_val, we unify the termsM1,M2 at compile-time. We write ∆ ⊢ M1 ⊓M2 = σ

to say they successfully unify with most-general unifier σ . We apply the substitution σ while type-
checking the remaining instructions I . The substitution notation [[σ ]]∆ indicates that σ substitutes
for an arbitrary set of variables from ∆ (i.e. Dom(σ ) ⊆ Dom(∆)) and that the replacees Dom(σ )
should be removed from ∆ in the process: the need for this variant of substitution arises because
the variables of a most-general unifier Dom(σ ) may appear at arbitrary positions throughout ∆.
The rule Getval-F says it is also possible that we statically detect unification failure, written

∆ ⊢ M1 ⊓ M2 = ⊥, in which case the program is vacuously well-typed because unification will
certainly fail at runtime, leading to backtracking. In practice, this rule should not be necessary for
useful programs, as it indicates the presence of dead code. However, it is absolutely essential in
the theory to ensure preservation in the presence of predicate calls.

Γ(r1) =S(M1 : a) Γ(r2) =S(M2 : a)
∆ ⊢ M1 ⊓M2 = σ [[σ ]]∆; [σ ]Γ ⊢ [σ ]I ok

∆; Γ ⊢ get_val r1, r2; I ok
Getval-S

∆ ⊢ M1 ⊓M2 = ⊥
Γ(r1) = S(M1 : a) Γ(r2) =S(M2 : a)

∆; Γ ⊢ get_val r1, r2; I ok
Getval-F

All unification in T-Prolog and TWAM is first-order, thus the unification judgements ∆ ⊢ M1 ⊓
M2 = σ and ∆ ⊢ M1⊓M2 = ⊥ correspond closely to standard algorithms in the literature [23]. As in
dynamic unification, unification uses auxilliary occurs-check judgementsx ∈ M and x < M . Substi-
tutions in TWAM are capture-avoiding and simultaneous. For example, we write [M1/x1,M2/x2]
for a simulateous subtitution on x1 and x2 or [σ1,σ2] for simultaneous composition of arbitrary
substitutions σ1,σ2:

∆ ⊢ x ⊓ x = ·
⊓·

x < M

∆ ⊢ x ⊓M = [M/x ]
⊓x1

x < M

∆ ⊢ M ⊓ x = [M/x ]
⊓x2

x , x ′

x < x ′
< x

x < Mi (∀i)

x < c ®M
< x ®M

∆ ⊢ M1 ⊓M
′
1 = σ1

.

.

.
[σn−1, . . . , σ1]∆ ⊢ [σn−1, . . . , σ1]Mn ⊓ [σn−1, . . . , σ1]M

′
n = σn

∆ ⊢ c M1 . . . Mn ⊓ c M
′
1 . . . M ′n = σn, . . . , σ1

⊓c
x ∈ x

∈ x

∆ ⊢ M1 ⊓M
′
1 = σ1

.

.

.
[σi−1, . . . , σ1]∆ ⊢ [σi−1, . . . , σ1]Mi ⊓ [σi−1, . . . , σ1]M

′
i
= ⊥

∆ ⊢ c M1 . . . Mn ⊓ c M
′
1 . . . M ′n = ⊥

⊥c1
x ∈ Mi (∃i)

x ∈ c ®M
∈ x ®M

c , c ′

∆ ⊢ c M1 . . . Mn ⊓ c
′ M ′1 . . . M ′m = ⊥

⊥c2
x ∈ M

∆ ⊢ x ⊓M = ⊥
⊥x1

x ∈ M

∆ ⊢ M ⊓ x = ⊥
⊥x2

6.1.5 Spines. Recall that a Prolog spine serves to unify some terms M1 ⊓ M2, the distinction
being that unlike in get_val, the outermost shape of M2 is known statically. As above, this uni-
fication must be made explicit in the type system. As before, a spine type expresses a typing pre-
condition on each unificand and a typing postcondition. Previously the postcondition was trivial,
but in our generalized dependent spine types, the postcondition says that some unification problem
∆ ⊢ M1 ⊓M2 has succeeded. We write dependent spine types as Πx1 : a1. · · ·Πxn : an . (M1 ⊓M2)
to say that M1 and M2 will be unified if the spine succeeds, where the xi stand for the unificand
subterms associated with each instruction of the spine.
In Putstr, we temporarily introduce a fresh LF variable x for our new Prolog term, which

is then unified with the concrete term resulting from the spine. In Getstr, the unificand is the
existing term stored in r . In Unifyvar we extend ∆ with a fresh unification variable standing for
the given argument (because this variable may be needed later in a proof term), while in Unifyval
we do not extend ∆ but rather supply an existing term as the spinal argument. At the end of the
spine, if the terms unify, then the rule ⊓σ applies the unifier σ while typechecking I , else ⊓⊥ says
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typechecking is vacuous because unification will fail at runtime. As in get_val, if ⊓⊥ applies at
compile-time, it indicates the presence of dead code, but it is of essential use in the preservation
proof.

Σ(c) = ®a → a

∆,x : a; Γ{r : S(x : a)} ⊢ I :s Π®x : ®a. (x ⊓ c ®x)

∆; Γ ⊢ put_str c, r ; I ok
Putstr

Σ(c) = ®a→ a Γ(r ) =S(M : a)
∆; Γ ⊢ I :s Π®x : ®a. (M ⊓ c ®x)

∆; Γ ⊢ get_str c, r ; I ok
Getstr

∆,x : a; Γ{r : S(x : a)} ⊢ I :s J

∆; Γ ⊢ unify_var r ,x : a. I :s Πx : a. J
Unifyvar

Γ(r ) =S(M : a) ∆; Γ ⊢ [M/x]I :s [M/x]J

∆; Γ ⊢ unify_val r ,x : a. I :s Πx : a. J
Unifyval

∆ ⊢ M1 ⊓M2 = σ [[σ ]]∆; [σ ]Γ ⊢ [σ ]I ok

∆; Γ ⊢ I :s M1 ⊓M2
⊓σ

∆ ⊢ M1 ⊓M2 = ⊥

∆; Γ ⊢ I :s (M1 ⊓M2)
⊓⊥

6.1.6 Environments. The typing rules for environment tuples are unchanged, since tuples are
orthogonal to Prolog terms and LF in general:

∆; Γ ⊢ I :t (®τ → {rd : x[®τ ]}) (where n = |®τ |)

∆; Γ ⊢ put_tuple rd ,n; I ok
PutTuple

Γ(rs) = x[®τ ] Γ{rd : τi } ⊢ I ok (where i ≤ |®τ |)

∆; Γ ⊢ proj rd , rs , i ; I ok
Proj

Γ(r ) = τ ∆; Γ ⊢ I :t J

∆; Γ ⊢ set_val r ; I :t (τ → J )
SetVal

6.2 Code and Heap Value Typing Invariants

In dependent TWAM, code values can accept LF terms as arguments, as reflected in Code. Fur-
thermore, because heap values can now have dependent types, the heap value typing judgement
is now ∆; Γ ⊢ vH : τ , where the added context ∆ contains an LF variable for each free variable on
the heap. The rule Close is generalized to close over LF terms, while the rules FREE,BOUND ,
and c〈〉 are generalized to singleton types. As with register files, tuples and closures enforce that
words are canonical for simplicity:

∆;Ψ ⊢ wenv : τ ∆;Ψ ⊢ ℓC ®M : Π®x : ®A. ¬Γ{env : τ } wenv canon

∆;Ψ ⊢ close (wenv , ℓ
C ®M) : Π®x : ®A. ¬Γ

Close

∆;Ψ ⊢ w1 : τ1 w1 canon · · · ∆;Ψ ⊢ wn : τn wn canon

∆;Ψ ⊢ 〈w1, . . . ,wn〉 : x[τ1, . . . , τn]
〈〉

∆(x) = a

∆;Ψ ⊢ FREE[x : a] :S(x : a)
FREE

∆;Ψ ⊢ ℓH : S(M : a)

∆;Ψ ⊢ BOUND ℓH :S(M : a)
BOUND

Σ(c) = ®a → a ∆;Ψ ⊢ ℓHi : S(Mi : ai )

∆;Ψ ⊢Σ;Ξ c〈ℓH1 , . . . , ℓ
H
n 〉 : S(c ®M : a)

c〈〉
(®x : ®A); Γ ⊢ I ok

· ⊢ code[®x : ®A. Γ](λ®x : ®A. I ) : Π®x : ®A. ¬Γ
Code

6.3 Machine Typing Invariants

The runtime behavior of a TWAM program does not depend on type information, i.e. TWAM is
easily executed by first type-erasing it to SWAM and then executing the SWAMprogram. However,
just as TWAMadds typing and proof term annotations to instructions, our theoretical presentation
of the machine states is annotated with LF variables and proof terms, as well.

LF Contexts and Mappings. When we prove soundness for TWAM (Theorem 1) in Section 6.4,
we will show that for each successful execution trace, an LF proof term exists in some context ∆.
For convenience, we make that context an additional field of the machine state, but this is not
strictly necessary because it contains one variable for each free variable in the heap H and could
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thus be computed as a function of H . For Theorem 1 to be meaningful, it is essential that ∆ only
contains Prolog terms and not arbitrary LF propositions. Otherwise, if we wished to find a proof
term for some query A, we could simply add A to the context with put_var and obtain a trivial
“proof”. Consider the following example (which assumeswe have successfully defined the Riemann
Hypothesis in Prolog):

put_var r1, x:Riemann_hypothesis.

succeed[x:Riemann_hypothesis]

Luckily, we easily enforce that ∆ contains only Prolog terms by adding a syntactic restriction in
put_var.
The addition of LF variables affects the heap aswell: free variables are now annotated as FREE[x :

a] because they are in correspondence with LF variables x . As a technical device to support our
progress and preservation theorems, we maintain the invariant that this correspondence is unique
with a mapping µ between each variable and its unique location on the heap.

LF Mappings µ ::= · | x@(ℓH : a), µ

The syntax x@(ℓH : a) says the LF variable x has type a and is located at ℓH . The judgement
· ⊢ (∆; µ) : H says that µ correctly mediates ∆ and H (i.e. assigns a unique location in H to each
variable of ∆):

∆ = · µ = ·

· ⊢ (∆; µ) : {}
µ-Nil

· ⊢ (∆; µ) : H v , FREE[x : a]

· ⊢ (∆; µ) : H {{ℓH 7→ v}}
µ-Skip

· ⊢ (∆; µ) : H

· ⊢ (∆, x : a; µ :: (x@ℓH : a)) : H {{ℓH 7→ FREE[x : a]}}
µ-Cons

Trails. Trails are generalized in two straightforward ways. First, failure continuations are now
allowed to close over LF terms. Second, trail typing annotations ℓH : a are now generalized to
remember the corresponding LF variable name (x@ℓH : a) so that ∆ can be updated accordingly
in unwinding:

unwind(S, ∆, t ) = (∆′; S ′) ∆
′; S ′ ⊢ T ′ ok ∆

′;Ψ′ ⊢ w : τ

· ⊢ (∆′; µ′) : H ′ ∆
′ ⊢ S ′ : (Ξ, Ψ′) ∆

′;Ψ′ ⊢ ℓC ®M : ¬{env : τ }

∆; S ⊢ (t, w, ℓC ®M ) :: T ′ ok
Trail-Cons

∆; S ⊢ ϵ ok
Trail-Nil

unwind(S, ∆, (x@ℓH : a) :: t ) = unwind(S {ℓH 7→ FREE[x : a]}, (∆, x : a), t ) unwind(S, ∆, ϵ ) = (∆, S )

update_trail(x@ℓH : a, (t, wenv , ℓ
C ) :: T ) = ((x@ℓH : a) :: t, wenv , ℓ

C ) :: T update_trail((x@ℓH : a), ϵ ) = ϵ

Register File Types. Register file typing now requires that words are canonical, for the sake of
simplicity:

∆;Ψ ⊢ w1 : τ1 w1 canon · · · ∆;Ψ ⊢ wn : τn wn canon

∆;Ψ ⊢ {r1 7→ w1, . . . , rn 7→ wn} : {r1 : τ1, . . . , rn : τn}
RF

Machine States. The machine state typing invariants are updated to use the dependent forms of
existing judgements in addition to the new invariant · ⊢ (∆, µ) : H . As before, spinal states each
appeal to an auxilliary invariant.
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∆; (C,H ) ⊢ T ok · ⊢ (∆, µ) : H
∆ ⊢ (C,H ) : (Ξ;Ψ) ∆;Ψ ⊢ R : Γ ∆; Γ ⊢ I ok

· ⊢ (T ,∆, (C,H ),R, I ) ok
Mach

∆; (C,H ) ⊢ T ok · ⊢ (∆, µ) : H ∆;Ψ ⊢ R : Γ
∆ ⊢ (C,H ) : (Ξ;Ψ) ∆; Γ ⊢ I :t J ∆;Ψ ⊢ ( ®w, r ,n) writes J

· ⊢ twrite(T ,∆, (C,H ),R, I , ®w, r ,n) ok
Mach-TWrite

∆; (C,H ) ⊢ T ok · ⊢ (∆, µ) : H ∆;Ψ ⊢ R : Γ

∆ ⊢ (C,H ) : (Ξ;Ψ) ∆; Γ ⊢ I :s J ∆;Ψ ⊢ ®ℓH reads J

· ⊢ read(T ,∆, (C,H ),R, I , ®ℓH ) ok
Mach-Read

∆; (C,H ) ⊢ T ok · ⊢ (∆, µ) : H ∆;Ψ ⊢ R : Γ

∆ ⊢ (C,H ) : (Ξ;Ψ) ∆; Γ ⊢ I :s J ∆;Ψ ⊢ (®ℓH , ℓH , c) writes J

· ⊢ write(T ,∆, (C,H ),R, I , c, ℓH , ®ℓH ) ok
Mach-Write

However, the auxilliary invariants for Prolog spines have become more complex. The read spine

invariant considers a term sequence ®M for the arguments already read and a second sequence ®M ′

for those remaining. The invariant holds if (a) every xi can still unify with M ′i and (b) every ℓHi
has the type expected by the spine type. The write spine invariant requires that (a) the destination

ℓH matches the result type of the constructor c , (b) the existing arguments ®ℓH match the initial
argument types, and (c) the remainder of the spine matches the remaining argument types.

∆;Ψ ⊢ ®ℓH : ®τ1 | ®τ2 | = n

∆;Ψ ⊢ (n, r, ®ℓH ) writes (®τ2 → {r : x[®τ1 ®τ2])}
TWrites

∆ ⊢ c ®M ®x ⊓ c ®M ®M ′ = σ
∆;Ψ ⊢ ℓH

i
: S(M ′

i
: [M ′1, . . . , M

′
i−1/x1, . . . , xi−1]Ai )

∆;Ψ ⊢ ®ℓH reads Π ®x : ®A.(c ®M ®M ′ ⊓ c ®M ®x )
Reads

Σ(c) = ®a1 → ®a2 → a ∆;Ψ ⊢ ®ℓH : S( ®M : ®a1)

Ψ(ℓH ) =S(x ′ : a)

∆;Ψ ⊢ ( ®ℓH , ℓH , c) writes Π ®x : ®a2 .x
′ ⊓ c ®M ®x

Writes

6.4 Metatheory

In the dependent setting, we show our primary result that all TWAM programs are sound proof
search procedures in the following sense:

Theorem 1 (Soundness). If · ⊢m ok andm 7−→∗ m′ andm′ done then

m′ = (T ,∆, S,R, succeed[M : A]; I ) and ∆ ⊢ M : A.

This theorem is an immediate corollary of progress and preservation, by inversion on the typing
rule for succeed.
Thus it suffices to show progress and preservation and their supporting lemmas. We present

here only the lemmas that are new or significantly different from the simply-typed versions. A
detailed proof for the dependently-typed system is in the electronic appendix.

6.4.1 Static Occurs Check.

Lemma 14 (Static Occurs Check Totality). For all terms M and all variables x , either x ∈ M
or x < M

Proof. By induction on the structure ofM . �
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6.4.2 Static Unification.

Lemma 15 (Static UnificationTotality). For all LF termsM1,M2, if ∆ ⊢ M2 : A and ∆ ⊢ M1 : A
then ∆ ⊢ M1 ⊓M2 = σ or ∆ ⊢ M1 ⊓M2 = ⊥.

Proof. By lexicographic induction on |∆| and the structure of M1. The base cases hold by

Lemma 14. The inductive caseM1 = c ®M ,M2 = c ®M
′ (where |M | = |M ′ |) relies on a subclaim:

claim 2. For each 1 ≤ i ≤ | ®M |, consider σ = [σi−1, . . . ,σ1]. Then [σ ]∆ ⊢ [σ ]Mi ⊓ M ′i = σi for

some σi or [σ ]∆ ⊢ [σ ]Mi ⊓ [σ ]M
′
i = ⊥.

Proof. By cases on i .
case i = 1

By IH becauseM1 is structurally smaller than c ®M .
case i > 1

By IH: if σ = · then Mi is structurally smaller than c ®M , else σ = [ ®M ′′/®x] where xi ∈ Dom(∆)
and thus |[σ ]∆| < ∆. �

�

Lemma 16 (Static UnificationCorrectness). If∆ ⊢ M : A and∆ ⊢ M ′ : A and∆ ⊢ M⊓M ′ = σ ,

then

• [σ ]M = [σ ]M ′

• For all substitutions σ ′, if [σ ′]M = [σ ′]M ′ then there exists some σ ∗ such that σ ′ ≡α σ ∗,σ .

Proof. Analogous to standard results from the literature. �

As a technical device for Lemma 22 we introduce a judgementM1 ⊏ M2 meaning “M1 is a strict
substructure ofM2”:

Mi ⊏ c ®M
⊏ -Base

M ⊏ Mi

M ⊏ c ®M
⊏ -Ind

The following lemmas support the proof of Lemma 22.

Lemma 17 (Occurs to Substructure). If x ∈ M and x , M then x ⊏ M

Proof. By induction on the derivation x ∈ M . �

Lemma 18 (Substructure to Occurs). If x ⊏ M then x ∈ M .

Proof. By induction on the derivation x ⊏ M . �

Lemma 19 (Substitution Preserves Substructure). IfM1 ⊏ M2 then [M/x]M1 ⊏ [M/x]M2

Proof. By induction on the derivation M1 ⊏ M2. �

Lemma 20 (Transitivity of Substructure). IfM1 ⊏ M2 and M2 ⊏ M3 then M1 ⊏ M3.

Proof. By induction on the derivation M2 ⊏ M3. �

Lemma 21 (Substructures Don’t Unify). If ∆ ⊢ M : A,∆ ⊢ M ′ : A and M ⊏ M ′ then ∆ ⊢

M ⊓M ′ = ⊥.
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Proof. By lexicographic induction on |∆| and the structure of M .

Consider the cases forM ⊏ M ′. The case x ⊏ c ®M holds by Lemma 18.

case

(because c ®M = M ′i )

c ®M ⊏ c ′ ®M ′
⊏ -Base

If c ′ , c, then unification fails immediately, so assume c , c ′. Observe Mi ⊏ c ®M by rule

⊏-Base. Since M ′i = c ®M , we have Mi ⊏ M ′i . By Lemma 19, for any substitution σ , we have

[σ ]M ⊏ [σ ]M ′. Note that when we unify c ®M and c ®M ′ we either fail before Mi or attempt to
compute [σ ]M ⊓ [σ ]M ′ for some σ . If we failed already, the case is done. If we succeeded, then by
the IH [σ ]∆ ⊢ [σ ]M ⊓ [σ ]M ′ = ⊥ and we fail here.

case

c ®M ⊏ M ′i

c ®M ⊏ c ′ ®M ′
⊏ -Ind

As in the previous case, AWLOG c = c ′. Now since c ®M ⊏ c ®M ′ then by Lemma 20,Mi ⊏ M ′i for

the i such that c ®M ⊏ Mi . The rest of the case is analogous to the last one. �

Lemma 22 (Unification Lemma of Doom). Unifications that fail are doomed to fail forever. That

is, if ∆, x : A ⊢ M1 ⊓M2 = ⊥ and ∆ ⊢ M : A then [M/x]∆ ⊢ [M/x]M1 ⊓ [M/x]M2 = ⊥.

Proof. By lexicographic induction on |∆| and the unification derivation ∆, x : A ⊢ M1⊓M2 = ⊥.

case

x ′ , M2 x ′ ∈ M2

∆, x : A ⊢ x ′ ⊓M2 = ⊥
⊥x1

Case on whether x = x ′.
case x , x ′

In this case, [M/x]x ′ = x ′ and x ′ ∈ [M/x]M2 so the unification still fails.
case x = x ′

This case reduces to the following claim:

claim 3. If x ∈ M and ∆ ⊢ M ′ : A and ∆, x : A ⊢ M : A then [M/x]∆ ⊢ M ′ ⊓ [M/x] = ⊥.

Proof. By Lemma 17, x ⊏ M . By Lemma 19, M ′ ⊏ [M ′/x]M . By Lemma 21, [M ′/x]∆ ⊢ M ′ ⊓
[M ′/x]M = ⊥. �

case

x ′ , M x ′ ∈ M
∆, x : A ⊢ M ⊓ x ′ = ⊥

⊥x2

This case holds by symmetry.

case

c , c ′

∆, x : A ⊢ c M1 . . . Mn ⊓ c
′ M ′1 . . . M

′
m = ⊥

⊥c2

This case holds because substitution preserves head constructors.

case

M1 ⊓M
′
1 = σ1
.
..

[σi−1, . . . ,σ1]∆ ⊢ [σi−1, . . . ,σ1]Mi ⊓ [σi−1, . . . ,σ1]M
′
i = ⊥

∆ ⊢ c M1 . . . Mn ⊓ c M
′
1 . . . M

′
n = ⊥

⊥c1

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2017.



1:34 Rose Bohrer and Karl Crary

If some i ′ < i fails to unify, we’re done. Otherwise we attempt to unify [σ ]Mi ⊓ [σ ]M2 where
σ = σ ′i−1, . . . ,σ

′
1,M/x . By Lemma 16, σ = σ ∗,σi−1, . . . ,σ1 so we can apply the IH to get and

[M/x]M1 ⊓ [M/x]M
′
1 = σ ′1

...
[σ ′i−1, . . . ,σ

′
1,M/x]∆ ⊢ [σ

′
i−1, . . . ,σ

′
1,M/x]Mi ⊓ [σ

′
i−1, . . . ,σ

′
1,M/x]M

′
i = ⊥

[M/x]∆ ⊢ [M/x]c M1 . . . Mn ⊓ [M/x]c M
′
1 . . . M

′
n = ⊥

⊥c1

�

6.4.3 Substitution.

Lemma 23 (Substitution). All appropriate typing judgements support substitution.

(1) LF terms: If ∆, x : A ⊢ M1 : A
′, ∆ ⊢ M2 : A then [M2/x]∆ ⊢ [M2/x]M1 : [M2/x]A.

(2) Operands: If∆1, x : A;∆2; Γ ⊢ op : τ ,∆1 ⊢ M : A then ∆1, [M/x]∆2; [M/x]Γ ⊢ [M/x]op : [M/x]τ .
(3) Word values: If∆1, x : A,∆2;Ψ ⊢ w : τ ,∆1 ⊢ M : A then ∆1, [M/x]∆2; [M/x]Ψ ⊢ [M/x]w : [M/x]τ .
(4) Register Files: If∆1, x : A,∆2;Ψ ⊢ R : Γ,∆1 ⊢ M : A then ∆1, [M/x]∆2; [M/x]Ψ ⊢ [M/x]R : [M/x]Γ.
(5) Heap values: If ∆1, x : a,∆2;Ψ ⊢ v

H : τ ,∆1 ⊢ M : a, vH , FREE[x : a] then
∆1, [M/x]∆2; [M/x]Ψ ⊢ [M/x]v

H : [M/x]τ
(6) Basic blocks: If ∆1, x : A,∆2; Γ ⊢ I ok, ∆1 ⊢ M : A then ∆1, [M/x]∆2; [M/x]Γ ⊢ [M/x]I ok.

Proof. Each claim holds by lexicographic induction on |∆| and the structure of the typing
derivation. The first five claims are straightforward. The interesting cases of the final claim are
the unification instructions, because there is a subtle interaction between static and dynamic uni-
fication. The case for get_val r1, r2 is representative:

case
[σ ]∆1, x : A, ∆2; [σ ]Γ ⊢ [σ ]I ok ∆1, x : A, ∆2 ⊢ M1 ⊓M2 = σ Γ(r1) = S(M1 : a) Γ(r2) = S(M2 : a)

∆1, x : A, ∆2; Γ ⊢ get_val r1, r2; I ok
GetVal-S

By claim 1, ∆1, [M/x]∆2 ⊢ [M/x]M1 : a and ∆1, [M/x]∆2 ⊢ [M/x]M2 : a so by Lemma 15, either
∆1, [M/x]∆2 ⊢ [M/x]M1 ⊓ [M/x]M2 = σ ′ or ∆1, [M/x]∆2 ⊢ [M/x]M1 ⊓ [M/x]M2 = ⊥.
subcase ∆1, [M/x]∆2 ⊢ [M/x]M1 ⊓ [M/x]M2 = σ ′

ByLemma16, [σ ′]([M/x]M1) = [σ
′]([M/x]M2)whichwe can rewrite as [σ

′,M/x]M1 = [σ
′,M/x]M2.

Also by Lemma 16, σ is a most general unifier of M1 and M2. Thus there exists σ ∗ such that
σ ′,M/x = σ ∗,σ (they need not be syntactically equal, but must be alpha-equivalent). In partic-
ular, alpha-vary σ ∗ such that it substitutes for x . Then by iterating the IH (we can do this because
|∆| decreases every time), [σ ∗,σ ](∆1, x : A,∆2); [σ

∗,σ ]Γ ⊢ [σ ∗,σ ]I ok. By the assumption that σ ∗,σ
substitutes for x , we have [σ ∗,σ ](∆1,∆2); [σ

∗,σ ]Γ ⊢ [σ ∗,σ ]I ok which suffices to show the result:

([M/x]Γ)(r1) = S([M/x]M1 : a)
∆1, [M/x]∆2 ⊢ [M/x]M1 ⊓ [M/x]M2 = σ ∗,σ

([M/x]Γ)(r2) = S([M/x]M2 : a)
[σ ∗,σ ]∆; [σ ∗,σ ]Γ ⊢ [σ ∗,σ ]I ok

∆1, [M/x]∆2; [M/x]Γ ⊢ get_val r1, r2; [M/x]I ok
GetVal-S

subcase ∆1, [M/x]∆2 ⊢ [M/x]M1 ⊓ [M/x]M2 = ⊥

In this case, since the unification failed, the result is vacuously well-typed:

([M/x ]Γ)(r1) = S([M/x ]M1 : a) ([M/x ]Γ)(r2) =S([M/x ]M2 : a) ∆1, [M/x ]∆2 ⊢ [M/x ]M1 ⊓ [M/x ]M2 = ⊥

∆1, [M/x ]∆2; [M/x ]Γ ⊢ get_val r1, r2; [M/x ]I ok
GetVal-F

case

Γ(r1) = S(M1 : a) Γ(r2) = S(M2 : a)
∆1, x : A,∆2 ⊢ M1 ⊓M2 = ⊥

∆1, x : A,∆2; Γ ⊢ get_val r1, r2; I ok

By Lemma 22. �
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6.4.4 Soundness of Unification.

Lemma 24 (Soundness of unify). If ∆ ⊢ M1 : a, ∆ ⊢ M2 : a, ∆ ⊢ S : (Ξ;Ψ), ∆; S ⊢ T ok, · ⊢

(∆; µ) : S , ∆;Ψ ⊢ ℓH1 : S(M1 : A), ∆;Ψ ⊢ ℓ
H
2 : S(M2 : A) then

• If ∆ ⊢ M1 ⊓M2 = ⊥ then unify(∆, S,T , ℓH1 , ℓ
H
2 ) = ⊥

• If ∆ ⊢ M1 ⊓ M2 = σ then unify(∆, S,T , ℓH1 , ℓ
H
2 ) = (∆

′, S ′,T ′) where ∆′ = [σ ]∆ and [σ ]∆ ⊢
H ′ : [σ ]Ψ and ∆′, S ′ ⊢ T ′ ok.

Proof. As in SWAM, with the additional use of Lemma 23. �

6.4.5 Words and Operands.

Lemma 25 (Word Totality). If ∆;Ψ ⊢ w : τ then w ⇓ w ′ andw ′ canon.

Proof. By induction on size(w), defined by size(ℓ) = 0, size(w M) = 1+size(w), size(λx : A.w) =
1 + size(w), appealing to Lemma 23 and the fact that substitution preserves size(M). �

Lemma 26 (Operand Resolution). For all operands op, if ∆; Γ ⊢Ξ op : τ and ∆;Ψ ⊢ R : Γ then

R ⊢ op  w for some word w and ∆;Ψ ⊢Ξ w : τ .

Proof. By induction on ∆; Γ ⊢Ξ op : τ and inversion on register file typing. �

Lemma 27 (Word Preservation). If ∆;Ψ ⊢ w : τ andw ⇓ w ′ then ∆;Ψ ⊢ w ′ : τ .

Proof. By induction on the tracew ⇓ w ′ and Lemma 23. �

Lemma 28 (Operand Preservation). If ∆;Ψ ⊢ R : Γ and ∆; Γ ⊢ op : τ and R ⊢ op ⇓ w then

w canon and ∆;Ψ ⊢ w : τ .

Proof. Follows directly from Lemmas 26 and 27. �

Lemma 29 (Operand Canonicalization). If ∆;Ψ ⊢ R : Γ and ∆; Γ ⊢ op : τ then R ⊢ op ⇓ w and

w canon and ∆;Ψ ⊢ w : τ .

Proof. By Lemma 26, R ⊢ op ⇓ w ′ and ∆;Ψ ⊢ w ′ : τ . By Lemma 25,w ′ ⇓ w , so by rule op ⇓ we
have R ⊢ op ⇓ w and by Lemma 27, ∆;Ψ ⊢ w : τ . �

Lemma 30 (Word Inversion). If ∆;Ψ ⊢ ℓ ®M : τ then ∆;Ψ ⊢ ℓ : Π®x : ®A.τ ′ where [ ®M/®x]τ ′ = τ

and ∆ ⊢ Mi : [M1, . . . ,Mi−1/x1, . . . , xi−1]Ai .

Proof. By induction on the derivation ∆;Ψ ⊢ ℓ ®M : τ . �

6.4.6 Progress and Preservation.

Theorem 2 (Progress). If · ⊢m ok then eitherm done orm fails orm 7−→m′.

Proof. By cases on m (specifically, cases on I ), and by Lemmas 1, 11, 12, 13, 15, 28, 29, and
30. �

Theorem 3 (Preservation). If · ⊢m ok andm 7−→m′ then · ⊢m′ ok.

Proof. By cases onm 7−→m′, using the assumptions of · ⊢m ok. First consider simulatenously
all the cases that end in backtracking. Those cases hold by Lemma 11. Thus it suffices to show the
cases that do not backtrack.

case

R ⊢ op 7→ ℓH ®M C(ℓH ) = close (w, ℓC ®M ′)

(T ,∆, S,R, jmp op; I ) 7−→ (T ,∆, S,R{r1 7→ w}, [ ®M ®M ′/®x ®x ′]I ′)
Jmp-ℓH
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By Lemma 28, ∆;Ψ ⊢ ℓH ®M : ¬Γ′. By typing assumption, ℓC ®M : Π®x ′ : ®A′.¬Γ′′{r1 7→ τ } so by

Lemma 30, ∆;Ψ ⊢ ℓC : Π®x ®x ′ : ®A ®A′.¬Γ′′′ where [ ®M ′/®x ′]Γ′′′ = Γ
′′. By Lemma 1, C(ℓC ) = code[®x ′®x :

®A′ ®A](λ®x ′®x : ®A′ ®A.I ′) and ®x ′®x : ®A′ ®A; {r1 : τ } ⊢ I
′ ok. By Lemmas 3 and 23, ∆; [ ®M ®M ′/®x ®x ′]Γ′{r : τ } ⊢

[ ®M/®x]I ′ ok where ∆;Ψ ⊢ w : τ = [ ®M ′ ®M/®x ′®x]τ . By assumption, ∆ ⊢ Γ
′ ≤ Γ, so by Lemma 4,

∆; Γ{r1 : τ } ⊢ [ ®M
′ ®M/®x ′®x]I ′ ok. By assumption w canon so ∆;Ψ ⊢ R{r1 7→ w} : Γ{r1 : τ }, then

· ⊢m′ ok.

case

R ⊢ op 7→ ℓC ®M C(ℓC ) = code[®x : ®A.Γ′](λ®x : ®A.I ′)

(T ,∆, S,R, jmp op; I ) 7−→ (T ,∆, S,R, [ ®M/®x]I ′)
Jmp-ℓC

By Lemma 28, ∆;Ψ ⊢ ℓH ®M : ¬Γ′. By assumption, (®x : ®a); Γ′ ⊢ I ′ ok and by Lemmas 3 and 23,

∆; [ ®M/®x]Γ′ ⊢ [ ®M/®x]I ′ ok. Since ∆ ⊢ [ ®M/®x]Γ′ ≤ Γ, by Lemma 4, ∆; Γ ⊢ [ ®M/®x]I ′ ok, so · ⊢m′ ok.

case

R(rs ) = w

(T ,∆, S,R, close rd , rs , ℓ
C ®M ; I ) 7−→ (T ,∆, S{{ℓH 7→ close (w, ℓC ®M)}},R{r 7→ ℓH }, I )

Close

By assumption and inversion on Γ(r ) = τ , we have ∆;Ψ ⊢ close (w, ℓC ®M) : (Π®x : ®A. ¬Γ′), so

∆ ⊢ S{{ℓH 7→ close [Γ′](w, λ®x : ®A.I ′)}} : Ψ{{ℓH : Π®x : ®A. ¬Γ′}} and ∆;Ψ{{ℓH : Π®x : ®A. ¬Γ′}} ⊢

R{r 7→ ℓH } : Γ{r : Π®x : ®A. ¬Γ′} and thus, · ⊢m′ ok.

case

R(r ) = w

(T ,∆, S,R, push_bt r , ℓC ®M ; I ) 7−→ ((ϵ,w, ℓC ®M) :: T ,∆, S,R, I )
PushBT 7−→

By ϵ case of unwind, we have unwind(∆, S, ϵ) = (∆; S) so let ∆′ = ∆, S ′ = S, µ ′ = µ . By Lemma 1
and inversion, ∆′;Ψ′ ⊢ w : τ andw canon and the rest holds by assumption:

unwind(∆, S, ϵ) = (∆′; S ′) ∆
′; S ′ ⊢ T ok · ⊢ (∆′; µ ′) : H ′ · ⊢ H ′ : Ψ′

∆
′;Ψ′ ⊢ w : τ ∆

′;Ψ′ ⊢ ℓC ®M : ¬{r1 : τ } w canon

∆; S ⊢ (ϵ,w, ℓC ®M) :: T ok
Trail-Cons

so · ⊢m′ ok as well by the assumption ∆; Γ ⊢ I ok.

case

R(r1) = w1 R(r2) = w2 unify(∆, S,T ,w1,w2) = (∆
′, S ′,T ′)

(T ,∆, S,R, get_val r1, r2; I ) 7−→ (T
′,∆′, S ′,R, I )

GetVal 7−→

By assumption ∆ ⊢ M1 ⊓ M2 = σ where ∆;Ψ ⊢ w1 : S(M1 : a) and ∆;Ψ ⊢ w2 : S(M2 : a). By
Lemma 13, ∆′ = [σ ]∆, ∆ ⊢ S ′ : [σ ]Ψ and · ⊢ (∆′, [σ ]µ) : H ′ and ∆

′; S ′ ⊢ T ′ ok. By substitution,
[σ ]∆; [σ ]Ψ ⊢ R : [σ ]Γ and by assumption [σ ]∆; [σ ]Γ ⊢ I ok so · ⊢m′ ok.

case

R ⊢ op ⇓ w

(T ,∆, S,R, mov rd ,op; I ) 7−→ (T ,∆, S,R{rd 7→ w}, I )
Mov 7−→

By Lemma 28, ∆;Ψ ⊢ w : τ andw canon so ∆;Ψ ⊢ R{rd 7→ w} : Γ{rd : τ } and · ⊢m
′ ok.

case (T , ∆,S,R, put_var r ,x : a.I ) 7−→ (T , (∆,x : a),S{{ℓH 7→ FREE[x : a]}},R{r 7→ ℓH }, I )
PutVar 7−→

Let µ ′ = (x@ℓH : a, :: µ), then have · ⊢ ((x : a,∆), ((x@ℓH : a) :: µ)) : H {ℓH 7→ FREE[x : a]}
by rule µ-Cons. We also have ∆, x : a ⊢ S{{ℓH 7→ FREE[x : a]}} : Ξ;Ψ{{ℓH : S(x : a)}} and
∆, x : a;Ψ{{ℓH : S(x : a)}} ⊢ R{r 7→ ℓH } : Γ{r : S(x : a)}. By Lemma 10, ∆, x : a; S{{ℓH 7→
FREE[x : a]}} ⊢ T ok which together with the previous statements gives us · ⊢m′ ok.

case

R(r ) = ℓH end(S, ℓH ) = ℓ′H S(ℓ′H ) = FREE[x : a]

(T ,∆, S,R, get_str c, r ; I ) 7−→ write(T ,∆, S,R, I , c, ℓ′H , ϵ)
GetStr 7−→W

By assumption, suffices to show ∆;Ψ ⊢ (®ℓH , r , c) writes J . Since ®ℓH is empty, we need only
know Σ(c) = ®a2 → a where J accepts ®a2 which is true by assumption. We also need S(ℓ′H ) =

FREE[x : a] which is true by case.
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case

R(r ) = ℓH end(S, ℓH ) = ℓ′H S(ℓ′H ) = c〈ℓH1 , . . . , ℓ
H
n 〉

(T ,∆, S,R, get_str c, r ; I ) 7−→ read(T ,∆, S,R, I , ®w)
GetStr 7−→ R

Suffices to show ®ℓH reads J , and in particular ∆ ⊢ M1 ⊓M2 = σ . Since M1 = x ,M2 = c ®x and
x < ®x (because x fresh), the unification succeeds with x ⊓ c ®x = [c ®x/x].

case

Σ(c) = ®a → a

(T , ∆, S, R, put_str c, r ; I ) 7−→ write(T , (x : a, ∆), S {{ℓH 7→ FREE[x : a]}}, R {r 7→ ℓH }, I, c, ℓH , ϵ )
PutStr 7−→

Similar to the write case of getstr. Define µ ′ = (x@ℓH : a), µ, then · ⊢ (((x@ℓH : a) :: µ), (∆, x :
a)) : S{{ℓH 7→ FREE[x : a]}}. Now S(ℓH ) = FREE[x : a] as needed, and by assumption, J accepts
®a2.

case (T ,∆, S,R, put_tuple r ,n; I ) 7−→ twrite(T ,∆, S,R, I , r ,n, ϵ)
PutTuple 7−→

Suffice to show ∆;Ψ ⊢ ( ®w, r ,n) writes J where in this case ®w is empty and J = ®τ → {r : x[®τ ]}.
Since n = |τ |, we have ∆;Ψ ⊢ (ϵ, r ,n) writes ®τ → {r : x[®τ ]}.

case

R(rs )ℓ
H S(ℓH ) = 〈w1, . . . ,wi , . . . ,wn〉

(T ,∆, S,R, proj rd , rs , i ; I ) 7−→ (T ,∆, S,R{rd 7→ wi }, I )
Proj 7−→

By inversion and Lemma1,R(rs ) = ℓ
H and∆;Ψ ⊢ ℓH : x[®τ ] so by Lemma1, S(ℓH ) = 〈w1, . . . ,wi , . . . ,wn〉

and ∆;Ψ ⊢ wi : τi . Therefore ∆;Ψ ⊢ R{rd 7→ wi } : Γ{rd : τi } so · ⊢m ok.

case

R(rs ) = w n > 0

twrite(T ,∆, S,R, set_val rs ; I , rd ,n, ®w) 7−→ twrite(T ,∆, S,R, I , rd ,n − 1, ( ®w :: w))
SetVal 7−→

Consider ®τ1, ®τ2 from the derivation · ⊢ ( ®w, r ,n) writes J . Observe by assumption ®τ2 has form
τ , ®τ ′2 . Now let ®τ ′1 = ®τ1, τ . This gives us ∆;Ψ ⊢ ( ®w :: w) : ®τ ′1 and |®τ ′2 | = n − 1 and ®τ ′1®τ

′
2 = ®τ1®τ2 so

∆;Ψ ⊢ (( ®w :: w), r ,n − 1) writes (τ ′2 → {r : x[®τ
′
1®τ
′
2]}). The rest is by assumption.

case twrite(T ,∆, S,R, I , r , 0, ®w) 7−→ (T ,∆, S{{ℓH 7→ 〈®ℓH 〉}},R{r 7→ ℓH }, I )
TWrite 7−→

Since n = 0, the instruction typing derivation has form ∆; Γ ⊢ I : {r : x[®τ ]} where ∆;Ψ ⊢ ®ℓH : ®τ

(from the derivation ∆;Ψ ⊢ (®ℓH , r , 0) writes J ). This derivation must contain ∆; Γ{r : x[®τ ]} ⊢ I ok.
We also have ∆;Ψ ⊢ 〈 ®w〉 : x[®τ ] so ∆ ⊢ S{{ℓH 7→ 〈 ®w〉}} : (Ξ;Ψ{{ℓH : x[®τ ]}}) and ∆;Ψ{{ℓH : x[®τ ]}} ⊢
R{r 7→ ℓH } : Γ{r : x[®τ ]} so · ⊢m′ ok.

case read(T ,∆, S,R, I , ϵ) 7−→ (T ,∆, S,R, I )
Read 7−→

Then J = c ®M ⊓ c ®M which unifies under the empty substitution, so by assumption, ∆; Γ ⊢ I ok
so · ⊢m′ ok.

case

S(ℓ′H ) = FREE[x : a] ℓ′H < c〈®ℓH 〉

| ®ℓH | = arity(c) update_trail(T , x@ℓ′H : a) = T ′ end(S, ℓH ) = ℓ′H

write(T ,∆, S,R, I , ℓH , c, ®ℓH ) 7−→ (T ′, [c ®M/x]∆, S{ℓH 7→ c〈®ℓH 〉},R, [c ®M/x]I )
Write 7−→

By Lemma 10, [M/x]∆, S{ℓ′H 7→ c〈®ℓH 〉} ⊢ T ′ ok. Then by assumption, ∆;Ψ ⊢ ®ℓH :S( ®M : ®a) and

Σ(c) = ®a → a so ∆;Ψ ⊢ c〈®ℓH 〉 : S(c ®M : a). By assumption and Lemma 12, S(ℓ′H ) = FREE[x : a].
The typing derivation for J has the form

∆ ⊢ x ⊓ c ®M = σ [σ ]∆; [σ ]Γ ⊢ [σ ]I ok

∆; Γ ⊢ I :s (x ⊓ c ®M)
⊓σ

By inversion, σ = [c ®M/x]. Therefore [c ®M/x]∆; [c ®M/x]Γ ⊢ [c ®M/x]I ok so it suffices to show

∆ ⊢ S{ℓH 7→ c〈®ℓH 〉} : (Ξ; [c ®M/x]Ψ) which it does by Lemma 9.
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case

R(r ) = w

read(T ,∆, S,R, (unify_var r , x : a.I ), ®ℓH ) 7−→ read(T ,∆, S,R, I , ( ®ℓH :: w))
UnifyVar 7−→ R

By inversion, Γ(r ) = S(M : a) so by Lemma 23, ∆; Γ ⊢ [M/x]I :s [M/x]J and · ⊢m
′ ok.

case

R(r ) = ℓ′H unify(∆, S,T , ℓH , ℓ′H ) = (∆′, S ′,T ′)

read(T ,∆, S,R, (unify_val r , x : a.I ), (ℓH :: ®ℓH )) 7−→ read(T ′,∆′, S ′,R, I , ®ℓH )
UnifyVal 7−→ R

By assumption ∆ ⊢ x ⊓ M = σ for some σ = [M/x]. By Lemma 13, ∆′ ⊢ S ′ : (Ξ;Ψ′) and

∆
′; S ′ ⊢ T ′ ok. By Lemma 23, ∆; Γ ⊢ [M/x]I : [M/x]J . We now also have ∆ ⊢ ®ℓH reads Π®x :
®A.(c ®M M ®x ′ ⊓ c ®M M ®M ′′) as desired, so · ⊢m′ ok.

case

write(T ,∆, S,R, (unify_var r , x : a.I ), c, ℓH
d
, ®ℓH ) 7−→

write(T , (x : a,∆), S{{ℓH 7→ FREE[x : a]}},R{r 7→ ℓH }, I , c, ℓH
d
, ( ®ℓH :: ℓH ))

UnifyVar 7−→W

By Lemma 10, ∆, x : a; S{{ℓH 7→ FREE[x : a]}} ⊢ T ok. Let µ ′ = ((x@ℓH : a), :: µ). Now
· ⊢ ((∆, x : a), ((x@ℓH : a) :: µ)) : H {{ℓH 7→ FREE[x : a]}}. Take ®a1, ®a2 from the derivation

∆;Ψ ⊢ (®ℓH , ℓH
d
, c) writes Π®x : ®τ .(M1 ⊓ M2). Note ®a2 has form a, ®a′2. Let ®a

′
1 = (®a1 :: a′). Now

(∆, x : a);Ψ{{ℓH : FREE[x : a]}} ⊢ (®ℓH , ℓH ) : ®a′1 so · ⊢m
′ ok.

case

R(r ) = ℓH

write(T , ∆,S,R, (unify_val r ,x : a.I ),c, ℓH
d
, ®ℓH ) 7−→ write(T ,∆, S,R, I , c, ℓH

d
, ( ®ℓH :: ℓH ))

UnivyVal 7−→W

Take ®a1, ®a2 from the derivation ∆;Ψ ⊢ (®ℓH , ℓH
d
, c) writes Π®x : ®τ .(M1 ⊓M2). Note ®a2 has form

a′, ®a′2. Let ®a
′
1 = (®a1,a

′). Now ∆;Ψ ⊢ (®ℓH , ℓH ) : ®a′1 so · ⊢m
′ ok. �

6.5 Operands, mov and Tail Calls

Now that we have proven TWAM sound, we illustrate its optimization potential by describing our
implementation of tail-call optimization (TCO), a common and performance-critical optimization.
We take as an example the predicate f :

f : t -> prop.

f(X) :- g(X).

where the definition of д is irrelevant. In our LF translation, this predicate has one proof term
constructor: F-X:Π X:t.ΠD:g X.f X. If we compile this program naïvely, it would produce the
following code:

Example 6.2 (Before Tail-Call Optimization).
f_main 7→ code[X:nat. {r1:S(X ), r2: ΠD : f X . ¬{}}(
λX : nat .
mov f_tail, r2;

jmp (g X)

),

# The following code value should not be necessary

f_tail 7→ code[X:nat, D:g X. {r1:S(X ), r2: ΠD : f X . ¬{}}(
λX : nat ,D : д X .
jmp (r2 (F-X D))

)

The problem is that to find a proof of f X we must first find a proof D : g X and then apply
F-X X D. Because F-X uses D we must apply it after g has succeeded, which means we must
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apply it in g’s success continuation. This is a problem: g is supposed to be a tail call, so its success
continuation should be the one passed to f.
Since LF proofs are completely unnecessary at runtime, our ideal solution would be no-op of

sorts: an instruction that allows us to perform simple proof steps in LF, but which can trivially be
deleted after typechecking to avoid any runtime cost. This no-op is easily expressed as a special
case of the mov instruction. The following mov instruction takes the success continuation and pre-
composes an LF term that converts proofs of g X into proofs of f X as needed by the continuation.

Example 6.3 (After Tail-Call Optimization).
f_main 7→ code[X:t.{r1 :ΠD : f X.¬{}, r2 : S(X)}](

λX:t.

mov r1 (λ D: g X. r1 (f/X X D));

jmp (g X)

)

7 IMPLEMENTATION

The full source code for our compiler implementation is available from the author upon request,
along with a small test suite. The compiler consists of approximately 5000 lines of Standard ML,
and has the following phases:

• Parsing and Elaboration: T-Prolog is parsed with ML-Lex and ML-Yacc, then check T-Prolog
types.
• Flattening: Terms with nested constructors are flattened.
• Main Translation: Generates a variant of TWAM where failure continuations are stored in-
line.
• Hoisting: Lifts failure continuations to the top level.
• Certification: Runs the TWAM typechecker on hoisted code. On failure, signals a compile
error.
• Type Erasure: Trivial conversion from TWAM code to SWAM code.
• Rechecking: As a sanity check, type-check the SWAM code.If this fails, signals a compiler
error.
• Interpretation: The SWAM code is interpreted, following the operational semantics.

The primary goal of this implementation, which it achieved, was to validate the design of TWAM,
especially to show that it is expressive enough to support an interesting source language. For
this reason, we intentionally omitted most optimizations except tail-call optimization, which we
deemed too essential to ignore. That being said, there are a number of avenues available to build
a compiler with more competitive performance:

• Compile to machine code instead of interpreting TWAM code.
• Replace our trivial register allocator with an efficient (e.g. graph-coloring-based) one.
• Implement existing WAM optimizations (e.g. optimized switch statements).
• Investigate the cost of continuation-passing style. Implement optimizations to reduce the
number of environments allocated, or develop a stack-based system should that be insuffi-
cient.
• Reduce the use of the occurs check by adding a mode system.

Among these, the first two options can be implemented with no changes to the instruction set
or type system, and the third can be implemented by adding new instructions without modifying
the existing instructions. The final two optimizations are more fundamental in nature, requiring
changes to existing instructions or changes that affect the entire type system.
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8 CONCLUSION

We have designed and implemented a typed compiler for T-Prolog by first creating a certifying

abstract machine for logic programs, called the TWAM. Our implementation demonstrates that
the TWAM is expressive enough to use as a compilation target for real programs, and that the
implementation burden of TWAM is acceptable. This implementation result supports our primary
contributions: the development of the TWAM and its metatheory. The metatheory shows that
TWAM typechecking suffices to enable certifying compilation in theory, and our compiler shows
it in practice.
Our work differs from previous work on Prolog compilation because we are the first to take a

typed compilation approach. We have also produced a working compiler with a formal guarantee,
whereas previous efforts stopped before implementing a compiler [2, 4, 22, 24]. Several optimizing
compilers have been verified in proof assistants [11, 12] and some of them use proof-producing
compilation [17], but these do not address logic programming languages. Typed compilation is
from our perspective an instance of certifying compilation[18], and proof-passing style specifically
is a variant that allows us reason about semantic preservation.
Our type system relies on the logical framework LF [10], and is inspired by other languages with

dependent type systems [27], though the languages differ greatly. Our formalisms are inspired by
typed assembly languages, but wemakemajor changes to provide stronger guarantees and support
logic programming [16].
Future work includes developing a production-quality optimizing compiler and runtime, includ-

ing any changes to the core TWAM language to enable greater efficiency. We also wish to extend
our abstract machine to support logic programming languageswith advanced type system features
and investigate whether certifying abstract machines can provide equally strong guarantees for
non-logic programming languages.
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