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Abstract. In mobile edge computing, edge servers are geographically
distributed around base stations placed near end-users to provide highly
accessible and efficient computing capacities and services. In the mobile
edge computing environment, a service provider can deploy its service on
hired edge servers to reduce end-to-end service delays experienced by its
end-users allocated to those edge servers. An optimal deployment must
maximize the number of allocated end-users and minimize the number of
hired edge servers while ensuring the required quality of service for end-
users. In this paper, we model the edge user allocation (EUA) problem
as a bin packing problem, and introduce a novel, optimal approach to
solving the EUA problem based on the Lexicographic Goal Programming
technique. We have conducted three series of experiments to evaluate
the proposed approach against two representative baseline approaches.
Experimental results show that our approach significantly outperforms
the other two approaches.

Keywords: Optimization · Resource management · Edge computing ·
Bin packing.

1 Introduction

In recent years, the world has witnessed a surge in the number of cloud and mo-
bile network connected end-devices, including mobile phones, wearables, sensors
and a wide range of Internet of Things (IoT) devices. According to Ericsson’s
Mobility Report [4], it is predicted that there will be around 32 billion of such
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connected devices by 2023. This has produced a great challenge for online ser-
vice providers in terms of guaranteeing a reliable and low-latency connection to
end-users, which is one of the key quality-of-service (QoS) requirements [12].

To tackle this issue, Cisco [1] has proposed the fog computing paradigm – also
called edge computing – in which computation, storage, and networking resources
are pushed closer to the edge of the network by deploying a number of intermedi-
ate edge servers with closer proximity to end-devices. This paradigm offers lower
network latency and greater scalability than the conventional centralized cloud
computing paradigm. This is particularly important for high volume streaming
applications or critical systems such as autonomous traffic systems, health care,
or cloud gaming, which require real-time decision making. In edge computing,
online service providers hire existing edge servers to host their services to serve
their end-users. Thin clients – such as wearables, sensors or smart phones – all
that have limited storage and computing capability, benefit from this architec-
ture by the capability to offload intensive computing tasks to the distributed
edge servers near them [17]. In this way, the central cloud is not required to
perform all the computing tasks single-handedly, which is highly resource de-
manding and generally incurs long network latency for end-users. Usually, an
edge server covers a specific geographical area so that the users within its cov-
erage can connect to it via LTE, 4G or Radio Network [5]. A number of edge
servers would be deployed in a distributed fashion (usually near cellular base
stations [5]) so that they can cover different geographical areas. The coverages
of adjacent edge servers usually partially overlap to avoid blank areas not cov-
ered by any edge server. A user located in the overlapping area can connect to
one of the edge servers covering them (proximity constraint) that has sufficient
computing resource (capacity constraint) such as CPU, bandwidth, or memory.

Edge servers’ capacity, current workloads, coverages, the number of users
to allocate and their proximity to end-users can be obtained or calculated at
any time. Based on this information, while fulfilling the above constraints, an
optimization goal must be achieved from a service provider’s perspective – to
minimize the number of edge servers used – in order to attain an optimal solution
to the allocation of the service provider’s users due to the pay-as-you-go pricing
model applied in edge computing [17,12], which might incur higher costs when
the number of edge servers used increases. Additionally, due to the aforemen-
tioned constraints, there might be a number of users that cannot be assigned
to any edge servers. Those users will be connected directly to a central cloud
server. Therefore, another optimization objective is to maximize the number of
users allocated to hired edge servers.

We refer to the above problem as an edge user allocation (EUA) problem
then model it as a variable sized vector bin packing (VSVBP) problem, a non-
geometric generalization of the classical bin packing (BP) problem. The EUA
problem is critical in edge computing, however, has not been properly investi-
gated. Solutions to the task allocation problem in cloud computing have been
investigated in [8,14]. However, the edge computing architecture is different from
cloud computing, i.e., distributed vs. centralized. In addition, the various con-



Optimal Edge User Allocation in Edge Computing 3

straints and dynamic information discussed above significantly differentiate the
edge computing environment from the traditional cloud computing environment
with many unique characteristics. Thus, the approaches for task allocation in
cloud computing are not suitable for solving the EUA problem, hence the need
for a new approach. In this paper, we make the following major contributions:

– we have modeled and formulated the EUA problem as a VSVBP problem;
– we have developed an optimal approach for solving the EUA problem using

the Lexicographic Goal Programming technique; and
– we have evaluated our approach against two representative baseline ap-

proaches with extensive experiments to demonstrate its effectiveness.

The remainder of the paper is organized as follows. Section 2 motivates this
research with an example. In section 3, we give a background of the VSVBP
problem. Section 4 discusses the proposed approach, which is evaluated in section
5. Section 6 reviews the related work. Section 7 concludes this paper.

2 Motivating Example

A representative example of edge computing applications is large-scale mobile
gaming [6] - the fastest growing gaming model [10]. The cloud gaming model
has made online game platforms, such as Hatch5 and Sony PlayStation Now6,
more accessible for thin-client mobile players since the resource-expensive game
instance is running on a remote cloud server. Consider an increasingly popular
virtual reality game G, which requires a great amount of computing power for
graphic rendering. Employing the traditional centralized cloud model helps thin-
clients offload the heavy computation tasks; however, this approach introduces a
huge network delay due to the long distance between players and cloud servers.
Therefore, pushing the processing power closer to players with edge computing is
a promising solution to this problem. Fig. 1 shows an example of edge computing
architecture that can be implemented in this scenario.

Assume there are four edge servers in a specific area that can be used to host
game G. Each edge server covers a particular geographical area. Users who are
outside the coverage of an edge server will not be able to connect to it (prox-
imity constraint). For example, user u4 cannot be assigned to edge server s1
or s4 and has to be allocated to either server s2 or s3. Furthermore, we need
to take into account various capacity constraints such as bandwidth, memory,
processing power, etc. In Fig. 1, each edge server has a limited computing capac-
ity denoted as a vector 〈CPUcore,memory, V RAM, bandwidth〉. The aggregate
workload generated by users on a server must not exceed the remaining capacity
of that server. There are seven users within the coverage of edge server s2 with
a total workload of 〈7, 7, 3.5, 28〉, exceeding the remaining capacity of server s2
(〈7, 8, 4, 25〉). Thus, the game provider cannot assign all of these users to a single

5 https://www.hatch.live/
6 https://www.playstation.com/en-gb/explore/playstation-now/
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Fig. 1: Edge computing deployment example

server s2. Since users u1, u2,...,u5 are also covered by other edge servers, it is
possible to allocate them to other servers to share the workload with server s2.
One potential solution would be to allocate users u1, u2 to server s1, users u3,
u6 to server s3 and users u4, u5 stay with server s2. No proximity or resource
constraint is violated this way, but this might not be the optimal solution. If
we assign users u1, u2, u4 to server s2, users u3, u6 to server s3, and user u5 to
server s4, server s1 will no longer be required so the service provider can choose
not to hire it to lower the total cost of hiring edge servers. This solution satisfies
all the aforementioned constraints, uses the least servers to serve the most users,
as well as guarantees the QoS.

3 Background

Definition 1. Classical Bin Packing (BP) Problem. Given an infinite
supply of identical bins S = {s1, s2, ..., si} with maximum capacity C = 1 and a
set of n items U = {u1, u2, ..., uj}. Let a value wj ≡ w(uj) be the size of item uj

that satisfies 0 < wj ≤ C and 1 ≤ j ≤ n. The objective is to pack all the given
items into the fewest bins possible such that the total item size in each bin must
not exceed the bin capacity C:

∑
uj∈U(si)

wj ≤ C,∀si ∈ S.
In the classical BP problem, one can normalize C = 1 without loss of gen-

erality since the bin capacity is just a scale factor. Aggregating item sizes not
exceeding the capacity of the corresponding bin is the only constraint. This
problem is known to be an NP-hard combinatorial optimization problem [3].

Definition 2. Variable Sized Bin Packing (VSBP) Problem. Given a
limited collection of bin sizes such that 1 = size(s1) > size(s2) > ... > size(sk),
there is an infinite supply of bins for each bin type sk. Let L = {s1, s2, ..., sl}
be the list of bins needed for packing all items. Given a list of items U =
{u1, u2, ..., uj} with size(uj) ∈ (0, 1], the objective of the VSBP problem is to find
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an item-bin assignment so that the total size of the bins required
∑l

b=1 size(s
b)

is minimum.
In the classical BP problem, all bins are homogeneous with a similar bin

capacity. VSBP is a more general variant of the classical BP in which a limited
collection of bin sizes is allowed. VSBP aims at minimizing the total size of the
bins used, which is slightly different compared to the objective of the classical
BP problem as discussed above.

Definition 3. Vector Bin Packing (VBP) Problem. Given a set of n
items U = {u1, u2, ..., uj}, the size of an item uj is denoted as a d-dimensional
vector wj = 〈w1

j , w
2
j , ..., w

d
j 〉, wj ∈ [0, 1]d. One is given an infinite supply of

identical bins S = {s1, s2, ..., si} with maximum capacity C = 〈11, 12, ..., 1d〉.
The objective is to pack the set U into a minimum number of bin s such that
‖
∑

uj∈U(si)
wj‖∞ ≤ 1,∀si ∈ S.

In the classical BP problem, the size of an item is presented as a single
aggregation measure. By contrast, the size of an item in the VBP problem is
associated with a multi-dimensional vector. The objective remains similar, in
which the sum of packed item size vectors must not exceed the bin capacity
vector in each dimension, which is normalized to 1 without loss of generality. The
VBP problem is also known as multi-capacity BP problem in some literature.

In the EUA problem, a bin is referred to as an edge server with the maxi-
mum bin capacity being the remaining computing resource of that edge server.
An item is referred to as an edge user, which can be a mobile phone or any IoT
device; the size of an item is the amount of workloads generated by that user,
measured by the computing resource needed to perform the requested task. In
this paper, we tackle the EUA problem from a service provider’s perspective.
Thus, all users of an application generate the same amount of workload. In
the real world, different edge servers may have different hardware specifications
and host different applications for different numbers of users. Thus, they have
different remaining server capacities, or computing resources. In addition, a com-
puting task has various resource requirements such as CPU core, memory, video
RAM, bandwidth, and so forth. Therefore, the amount of computing resource
needed for a task should not be calculated by a just a single aggregate measure;
instead, it can be represented as a d−dimensional vector where each dimension
represents a resource type. The proposed VSVBP problem for EUA is NP-hard
since the classical BP, which is NP-hard [3], is a special case of VSVBP where
d = 1 and all the bins are identical in their capacity dimensionality.

4 Our Approach

4.1 Definitions

Edge servers have differentiated remaining capacity and multi-dimensional re-
source requirements for computation tasks. Therefore, the EUA problem can be
modeled as a mixture of the VSBP problem and the VBP problem, hence a vari-
able sized vector bin packing (VSVBP) problem. Our objective is to maximize
the number of allocated users and minimize the number of hired edge servers.
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We first introduce relevant notations and definitions used in our model in
Table 1. In the EUA problem, every user covered by any edge server must be
allocated to an edge server unless all the servers accessible to the user have
reached their maximum capacities. If a user cannot be allocated to any edge
servers, or is not positioned within the coverage of any edge servers, they will be
directly connected to a service provider’s central cloud server.

Table 1: Key Notations
Notation Description

S = {s1, s2, ..., si} finite set of edge server si, where i = 1, 2, ...,m

Ci = 〈C1
i , C

2
i , ..., C

d
i 〉 d−dimensional vector with each dimension Ck

i being a resource
type, such as CPU utilization or disk I/O, representing the re-
maining capacity of an edge server si, k ∈ {1, 2, ..., d}

U = {u1, u2, ..., uj} finite set of user uj , where j = 1, 2, ..., n

wj = 〈w1
j , w

2
j , ..., w

d
j 〉 d−dimensional vector representing the size of the workload in-

curred by user uj . Each vector component wk
j is a resource type,

k ∈ {1, 2, ..., d}
U(si) set of users allocated to server si. U(si) ⊂ U

dij geographical distance between server si and user uj

cov(si) coverage radius of server si

The total workload generated by all users allocated to an edge server must
not exceed its remaining capacity (1). Otherwise, the server will be overloaded,
causing service disruptions or performance degradation. Take Fig. 1 for instance.
The aggregate workload incurred by users u5 and u11 is 〈2, 2, 1, 8〉 does not exceed
the remaining capacity of server s4, 〈2, 3, 1.5, 10〉; therefore, this is a valid user-
server assignment. If we allocate users u1, u2, u3, u4, u5, u9, u10 to server s2, it
will be overloaded since the aggregate user workload 〈7, 7, 3.5, 28〉 exceed the
server’s remaining capacity 〈7, 8, 4, 25〉.∑

uj∈U(si)

wj ≤ Ci, ∀si ∈ S (1)

In the classical BP problem, an item can be placed in any bins as long as the
bin has sufficient remaining capacity. However, in our problem, an edge server
covers a limited surrounding geographical region. Thus, an item (user) can be
assigned to specific bins (edge servers) since an edge server can only serve users
who are located within its coverage (2). Take Fig. 1 for example. Server s4 can
serve users u5 and u11 only. Since users might position in the overlapping areas
of different edge servers, there is an optimal solution to allocate as many users
as possible to as few servers as possible, which is the main focus of our research.

dij ≤ cov(si),∀i ∈ {1, 2, ...,m};∀j ∈ {1, 2, ..., n} (2)

Our primary objective is to maximize the number of users allocated to all hired
edge servers, which ensures the QoS from the service provider’s perspective:

maximize
∑
si∈S

|U(si)|, (3)
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Our secondary objective is to find a user-server assignment {u1, ..., uj} −→
{s1, ..., si} such that the number of servers hired E is minimum:

minimize E = |{si ∈ S|
∑

uj∈U(si)

wj > 0}| (4)

4.2 EUA Model

In this paper, we address the EUA problem with two optimization objectives: 1)
maximizing the number of users allocated and 2) minimizing the number of edge
servers hired, while satisfying the capacity constraint and proximity constraint.
Accordingly, we model the EUA problem as a Lexicographic Goal Programming
(LGP) problem [9]. In a lexicographic goal program, there are multiple opti-
mization objectives with a number of constraints. These objectives are ranked
by their levels of importance, or priorities. The solver will attempt to find an
optimal solution that satisfies the primary objective and then proceed to find a
solution for the next objective without deteriorating the previous objective(s).
An LGP program can be solved as a series of connected integer linear programs.
The LGP formulation of the EUA problem is as follows:

maximize

n∑
j=1

m∑
i=1

xij (5)

minimize E =

m∑
i=1

yi (6)

subject to:

n∑
j=1

wk
j xij ≤ Ck

i yi,∀i ∈ {1, ...,m};∀k ∈ {1, ..., d} (7)

dij ≤ cov(si),∀i ∈ {1, ...,m};∀j ∈ {1, ..., n} (8)
m∑
i=1

xij ≤ 1,∀j ∈ {1, ..., n} (9)

yi ∈ {0, 1},∀i ∈ {1, ...,m} (10)

xij ∈ {0, 1},∀i ∈ {1, ...,m};∀j ∈ {1, ..., n} (11)

where:
yi = 1 if server si is hired.
xij = 1 if user uj is allocated to server si.
cov(si) is provided by edge computing providers.

The objective (5) maximizes the number of users that are assigned to hired
edge servers. The objective (6) minimizes the number of hired edge servers. Here,
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objective (5) is ranked higher than objective (6) in terms of priority. There are
two groups of binary variables, i.e., xij (11) and yi (10).

Capacity constraint : As described by (7), each edge server sj has a remaining
capacity of Ci = 〈C1

i , C
2
i , ..., C

d
i , 〉, a d-dimensional vector. The aggregate work-

load of each resource type incurred by all allocated users must not exceed the
corresponding remaining capacity of their assigned server. Take Fig. 1 for exam-
ple. Assigning users u5, u11 to server s4 is valid since 〈2, 2, 1, 8〉 < 〈2, 3, 1.5, 10〉.

Proximity constraint : As described by (8), only users located within the cov-
erage of an edge server can be allocated to the edge server. A user may be located
in the overlapping coverage of multiple edge servers. For instance, users u2, u3

can be allocated to servers s1, s2 or s3.
Constraint family (9) ensures every user is allocated to at most one edge

server. In other words, a user can be allocated to either an edge server or service
provider’s cloud server.

5 Experimental Evaluation

In this section, we evaluate the performance of our approach by extensive exper-
iments with a comparison to two baseline approaches. All the experiments were
conducted on a Windows machine equipped with Intel Core i5-7400T processor
(4 CPUs, 2.4GHz) and 8GB RAM. The LGP problem modeled in section 4.2
was solved using IBM ILOG CPLEX Optimizer.

5.1 Baseline approaches

Our approach will be benchmarked against two baseline approaches for user-to-
server assignment, namely random and greedy approaches:

– Random: Each user will be allocated to a random edge server as long as that
server has sufficient remaining capacity to accommodate the user and has
the user within its coverage.

– Greedy : Each user will be allocated to an edge server that has the most
remaining capacity and has the user within its coverage.

5.2 Experiment settings

In this paper, we conduct experiments on data of base stations and end-users
within the Melbourne central business district area in Australia, which has a
total area of 6.2 km2.

Experiment data: We collect the location data of edge servers and end-
users. Australian Communications and Media Authority (ACMA) publishes the
radio-comms license dataset that contains the geographical location of all cellu-
lar base stations in Australia, which we will use as the locations of edge servers
[5]. The coverage of each edge server is randomly set within a range of 450 -
750 meters. In terms of end-users’ locations, Asia Pacific Network Information
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Centre (APNIC) provides all IP address blocks allocated to Australia. We use an
IP lookup service7 to convert the obtained IP addresses into geographical loca-
tions. Since IP addresses in the last octet are likely to have identical geographical
addresses returned by the IP lookup service, more end-users are uniformly gener-
ated around each of the obtained geographical locations. The raw experimental
data has been made publicly available (EUA-dataset8).

Experimenting parameters: In the experiments, we vary three setting
parameters that may have an impact on our approach:

(1) Number of end-users: We randomly select different numbers of end-
users n = 4, 8, 16, ..., 512. For each setting, we run the experiment 100 times to
get 100 different random end-user distributions so that extreme cases, such as
overly dense or sparse user distributions, are properly neutralized.

(2) Number of edge servers: The n end-users are located within the
combined coverage of M edge servers. We assume that a total of m servers,
where m = 10%, 20%, ..., 100% ∗M , are available for accommodating those n
end-users.

(3) Remaining server capacity: We experiment various levels of remain-
ing server capacity based on the combined user workload. To be specific, we
calculate 100%, 150%, ..., 300% of the combined user workload, then normally
distribute it to M edge servers collectively covering the n end-users.

Performance metrics: We evaluate the three approaches, namely our VSVBP,
the random and the greedy baseline approaches, using the following metrics: (1)
the percentage of allocated end-users of all end-users, the higher the better; (2)
the percentage of hired edge servers of all available edge servers, the lower the
better; and (3) the execution time (CPU time), the lower the better.

Given the data and the experiment parameters, we conduct three sets of
experiments. The corresponding settings are described in Table 2. For each set,
we vary one parameter and keep the other two fixed to observe the impact of
each parameter on the approaches in the evaluation metrics.

Table 2: Experiment Settings
Factor Number of users Percentage of the

total number of
servers

Remaining server
capacity

Set #1 4, 8, ..., 512 100% 300%

Set #2 512 10%, 20%, ..., 100% 300%

Set #3 512 100% 100%, 150%, ..., 300%

In experiment set 1, the number of users vary from 4, 8, 16, 32, 64, 128, 256 to
512. All the edge servers, which have end-users within their coverage, can serve
those end-users. The total remaining server capacity is 300% of the combined
user workload. In experiment set 2, the number of users is fixed at 512, and the
total remaining server capacity is fixed at 300% of the combined user workload.

7 http://ip-api.com/
8 https://github.com/swinedge/eua-dataset



10 P. Lai et al.

We change the number of edge servers that would be used to accommodate end-
user, i.e., 10%, 20%, ..., 100% of all edge servers to be made available for hire.
In the last experiment set, we keep the number of users fixed at 512 and make
all edge servers available for hire. The changing factor is the remaining server
capacity – 100%, 150%,..., 300% of all users’ workload combined.

5.3 Experimental results and discussion

Figure 2, 3 and 4 show the results of the experiment set 1, 2 and 3, respectively.
The three performance metrics are depicted in each sub-figure: (a) percentage
of user allocated, (b) percentage of servers hired, and (c) execution time.

Figure 2 shows that in experiment set 1, as we increase the number of end-
users from 4 users to 512, the random approach performs poorly in terms of
allocated users percentage (only 20% - 25% of the users are allocated) compared
to the greedy approach and our approach, which give an equal performance with
all users having been allocated. However, in terms of the number of edge servers
hired, our approach starts to outperform the greedy approach as the number
of end-users exceeds 32. The percentages of servers hired by the greedy and
the random methods keep growing as the number of end-users increases, up to
around 87.04% when serving 512 end-users. By contrast, our approach stably
uses only around 32% of all available edge servers, 2.7 times less than that of
the greedy approach, and remains steady even when the number of end-users
increases from 32 to 512.
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In experiment set 2, we change the number of edge servers available for hire.
As depicted in Fig. 3(a), the allocated user percentage follows a similar trend as
in experiment set 1. Regarding the percentage of hired edge servers (Fig. 3(b)),
our approach continues to outperform the other two approaches as the number
of edge servers increases.
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Figure 4 shows that, in the last set of experiments, where the edge servers’
total remaining capacity increases, we can observe the same trending patterns
with our approach being the most effective out of the three approaches studied.
As we increase the combined user workload percentage from 100% to 300%, our
approach uses significantly fewer servers, dropping from 96.4% to 31.6% while
the greedy method has to use around 90% of the all available servers.

Note that in all three set of experiments, the random approach seems to per-
form better than ours with fewer hired servers on some occasions. For example,
when the number of users varies between 4 and 128 (Fig.2(b)), when the total
number of hired edge servers percentage varies between 10% and 50% (Fig. 3(b)),
and when the total remaining server capacity changes between 100% and 200%
(Fig. 4(b)). In fact, the random approach does not produce better results in these
scenarios because although it uses fewer servers, the number of users allocated
is extremely small (only 6% - 20% of all end-users experimenting) compared to
the other approaches, as shown in Fig. 2, 3, 4(a).

In terms of efficiency, the computation time of our approach increases con-
siderably as we increase any one of the three parameters. In experiment set 1
with 512 users, the greedy and random methods take only approximately 1.5
seconds while our approach takes around 23.1 seconds to solve an instance of
the EUA problem. This can also be observed in experiment sets 2 and 3, where
we increase the number of servers available for hired and the total remaining
server capacity respectively. Since the EUA problem is an NP-hard problem,
it is expected that our approach, which optimally solves the problem, will take
the most time as opposed to the other approaches, which can only make local
decisions without considering the problem globally.

In general, increasing one of the three experimental parameters will increase
the complexity of the EUA problem, which is an NP-hard problem, and thus
take more time to find an optimal solution. Our experimental results show that
the random approach is not able to maximize the number of users allocated (the
first optimization objective) as it can assign around only 20% of all the end-users
in the experiments. The greedy approach is able to assign a similar number of
end-users as our approach; the edge servers’ adequate remaining capacities allow
the greedy approach to find a capable edge server to accommodate most end-
users. However, as shown in Fig. 2, 3, 4(b), our approach hires much fewer
edge servers (the second optimization objective) than the greedy method to
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accommodate all the end-users. This is shown in all three experiment results,
especially as the EUA problem scales up.

5.4 Threats to Validity

Threats to construct validity. The main threat to the construct validity in our
study lies in the comparison with the two baseline methods, i.e., the random and
greedy methods. The EUA problem studied in this research is a problem that has
not been investigated before in this domain. Thus, we selected these two common
and intuitive methods as baselines in our evaluation. Their designs are simple,
especially the random method, which employs no heuristics. As a result, our
approach is likely to obtain better experimental results, leading to a threat where
the comparison with the selected baselines might not properly demonstrate the
effectiveness of our approach in solving the EUA problem. To minimize this
threat, we conducted experiments with three changing parameters as described
in Table 2 to simulate different service deployment scenarios in the real world.
This way, we could reliably evaluate our approach through both comparison with
the baseline methods and also impacts of varying each experimental parameters
on our approach.

Threats to external validity. A major threat to external validity is whether
our findings based on the experimental dataset can be generalized to other appli-
cation domains in edge computing. Since there is currently no real-world dataset
for this type of edge computing problems, we synthesized a dataset of edge servers
and end-users based on reliable real-world data sources (ACMA and APNIC).
However, this is a generic dataset, and it is possible that different application
domains might have different factors that could impact the experimental results,
such as the density and distributions of edge servers and end-users. Thus, our
approach was evaluated across a breadth of problem scoping, varying in size,
i.e., number of end-users, and complexity, i.e., number of edge servers and edge
servers’ remaining capacities, to simulate as many types of edge server and end-
user density and distribution as possible, as well as their combinations. This
helped reduce the threat to the external validity of our evaluation and increased
the generalizability of our results.

Threats to internal validity. A threat to internal validity of our work is the
comprehensiveness of our experiments and whether or not the results are not bi-
ased by the experimental parameter settings. To mitigate this threat, we carried
out extensive experiments with systematically selected parameters. The three
experimental parameters (discussed in section 5.2) are the three representative
parameters that directly impact the outcomes of the approaches. Also, for each
experiment set, we experimented with 100 different user distributions randomly
selected from the pool of users to eliminate the potential bias caused by highly
special scenarios such as overly dense or sparse distributions. Another threat to
the internal validity of our evaluation is where more sophisticated scenarios could
be simulated, e.g., those where two or more of those parameters change at the
same time. In those scenarios, the results can be predicted in general based on
the results that we have obtained. For example, if the total number of available
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edge servers and their total remaining capacities increase at the same time, the
percentage of used servers of all hired by our approach will decline with a trend
similar to but more significant than those shown in Fig. 3(b) and Fig. 4(b).

Threats to conclusion validity. The lack of statistical tests is the biggest threat
to our conclusion validity. Statistical tests will be included in our future work
to prove a statistically significant relationship between the experiment settings
and the results. In this paper, we have compensated for this with meaningful
comparison baselines and extensive experiments that cover many different sce-
narios, varying in both size and complexity. When an experimental parameter
changes, the results are averaged over 100 runs of the experiment.

6 Related Work

Resource management in cloud computing has been extensively investigated in
the last decade in many research tracks such as load balancing [7], virtual ma-
chine placement and provisioning [14], server and task allocation [8], etc.

Edge computing, or fog computing, is a new computing paradigm coined by
Cisco in 2012 [1]. Edge computing is a natural extension of cloud computing
with regard to the network topology and infrastructure deployment, where the
architecture is more geographically distributed compared to cloud computing.
This new architecture pushes the cloud resources closer to end-users. Barcelona,
Spain is one of the first cities implementing edge computing with many applica-
tions, including power monitoring in public spaces, access control and telemetry
of sensors, event-based video streaming, traffic analysis and regulation, and con-
nectivity on demand [15]. There are more than 3,000 edge servers deployed across
the city serving thousands of IoT devices. The sheer number of edge servers and
end-devices, with the horizontal scaling nature of edge computing, leads to the
need for effective and efficient resource allocation solutions.

Chen et al. [2] proposed a distributed game theoretic computation offloading
algorithm that was able to achieve a Nash equilibrium, minimizing the total
energy consumption and offloading latency in the multi-channel mobile edge
computing environment. By the proposed approach, they were able to optimally
decide whether the users should offload computing tasks to an edge server and if
yes, which wireless channel to be used for the computation offloading. In [16], Yao
et al. tackled the problem of cost-effective edge server deployment using integer
linear programming. They took into account the factors of resource capacity,
user-server latency, and deployment costs. In their research, each edge server
might not have the service installed to fulfill the requests from end-users. Thus,
users’ requests might have to travel across different edge servers until executed.
However, they assumed that each server covers a region exclusively with other
servers. They also assumed a predetermined edge server that first receives the
user request. Our research targets more realistic edge computing scenarios where
different edge servers’ coverages might partially overlap. The authors of [13]
also made an assumption that each small geographical area will only receive
coverage from only a single edge server, which will be unlikely to happen in real-
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world scenarios. In [11], the authors formulated a problem similar to the EUA
problem but with different objectives, which are to reduce task completion time
and energy consumption. Yin et al. [18] addressed the edge server placement
and provisioning problem with the objective of maximizing users coverage and
minimizing network latency.

To the best of our knowledge, our work is the first to tackle the EUA problem
in scenarios with multiple edge servers and end-users that possess and require
multi-dimensional computing capacities. We also realistically and innovatively
address this problem with respect to proximity constraints with the aims to max-
imize the number of allocated users and minimize the number of hired servers.

7 Conclusion

Edge computing is a promising new computing architecture, especially for high
volume, data processing-intensive, latency-sensitive applications and services.
However, when an edge computing scenario scales up, an ineffective edge user al-
location solution will greatly increase the operational costs for service providers.
To address this problem, we formulated the edge user allocation (EUA) prob-
lem as a variant of the bin packing problem named variable sized vector bin
packing, an NP-hard problem. We solved this problem using a Lexicographic
Goal Programming technique with two optimization objectives, i.e., to maxi-
mize the number of users allocated and minimize the number of edge servers
hired. We then conducted extensive experiments in scenarios with various ser-
vice deployment requirements. Our experimental results show that our approach
significantly outperforms two baseline approaches, greedy and random. It is ca-
pable of allocating the most end-users with significantly fewer edge servers –
nearly three times less than the greedy method – as the EUA problem scales up.

This research has established a basic foundation for the EUA problem and
opened up a number of research directions. In our future work, we will take into
account the users’ mobility as well as the dynamics of users’ computation tasks.
In addition, apart from the proximity and capacity constraints, there are sev-
eral elements that also play an important role such as network latency, service
availability, pricing, and security.
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