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Abstract. Even if a software is proven sound and secure, an attacker
can still insert vulnerabilities with fault attacks. In this paper, we propose
HAPEI, an|Instruction Set Randomization|scheme to guarantee
[Execution Integrity] even in the presence of hardware fault injection. In
particular, we propose a new solution to the multi-predecessors problem.
This scheme is then implemented as a hardened CHIP-8 virtual machine,
able to ensure program execution integrity, to prove the viability and to
explore the limits of HAPEI.
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1 Introduction

In order to ensure the security of an application, developers have to do every
thing they can to reduce the number of bugs that could lead to vulnerabilities.
But for the most critical applications, software must be proven correct. Yet one
bug missed and an attacker can, in some cases, execute arbitrary code. Moreover,
this bug can be absent in the binary but created at runtime with a hardware
fault injection, breaking software proofs assumptions.

Motivation The problem is illustrated below with a simple example.

Listing 1.1. A simple loop in C.

int count 0;
for(int i = 0; i < 100; i++) {
count ++;

}

The assembly code corresponding with the loop in listing can be seen in
listing



Listing 1.2. The same loop in x86 assembly.

movl $0, -8(%rbp) // count = 0

movl $0, -4(Chrbp) // i =0

jmp .L2

.L3:

addl $1, -8(%rbp) // count++

addl $1, -4(krbp) // i++

.L2:

cmpl $99, -4(%rbp) // compare i and 99

jle .L3 // if i <= 99, jump to .L3 else continue

In this case the program execution must ensure:

— instructions are executed in order,

— it is not possible to jump to an arbitrary instruction of the loop. Only the
“landing” instructions can be jumped to (first ones after L2 or L3).

— When executing a “landing” instruction, the previous state of the program
must be correct. E.g. the program state is one of the two authorized ones (a
proper definition of program state is given in section . This implies that
the jumps are all legitimate.

— No instruction can be overwritten, no instruction can be skipped.

These guarantees must be valid even if the attacker is able to arbitrarily
modify instructions at runtime. In this case, execution must stop to prevent
further damages.

Contribution This work proposes HAPEI to ensure that the intended software
is what is actually running on the chip. Inspired by SOFIA [13], the solution is a
hardware [Instruction Set Randomization| (ISR)) scheme that ensures|Instructions
Integrity| and [Control Flow Integrity] (CFI)), even in the case ofﬁ
Fault Attacks on Instructions| (HFAol)). We demonstrate that we can harden a
binary without any modification in the compilation chain with a CHIP-8 vir-
tual machine implementation. It means that the [[nstruction Set Architecture]
does not have to change in the compiler’s view: HAPEI is transparent
at the software level. During application installation (also called packing), the
instructions are encrypted. The encryption scheme encodes the authorized pro-
gram states and the transitions from one state to the next (effectively encoding
the [Control Flow Graph (CFG)|). During execution, instructions are decrypted
on-the-fly. The decryption is correct only if the program state is correct and the
control flow graph is followed.

Organization In this paper, we start with the context and the necessary defi-
nitions in section [2] After a review of similar relevant works in section [3] the
theory behind HAPEI is presented in section [4. A discussion on the security
of the scheme follows in section [5| We propose an implementation detailed in
section [6] and finally our conclusion is drawn in section [7]



2 Context

In order to specify and verify our proposal, we must precisely define the capacities
of the attacker and the integrity guarantees we provide.

Attacker models Several models are considered:

— [Code Injection Attack (CIA)f an attacker tries to divert the control flow to
execute its own malicious payload.

— [Code-Reuse Attack (CRA)} an attacker tries to execute a malicious payload
composed by a sequence of legitimate pieces of programs (often called widgets
in Return-Oriented Programming).

— [Hardware Fault Attacks on Instructions (HFAol)f the attacker can edit the
program, at runtime, by modifying instruction values.

— [Hardware Fault Attacks on Data (HFAoD)t the attacker can edit the pro-
gram, at runtime, by modifying data values.

Integrities To protect against these attacks, the execution of the software must
enforce guarantees:

— [Control Flow Integrity (CFI)} the control flow cannot be modified (no arbi-
trary jumps). The control flow follows the valid

— [Instructions Integrity (II); the instruction values must not be altered.

— Data Integrity (DI)f the data handled by the program must not be altered.

— [State Integrity (StI)i the processor state (configuration, registers, program
counter, ...) must not be altered.

Often, [DI} [[I] and are considered together under the name of
Integrity Here we call [Program Execution Integrity (PEI)|the combination

of and [[Il

Our scheme, HAPEI, ensures [PE]|in order to protect against [CTA] [CRA] and
[HFAGll Yet to be complete, a solution should also ensure [DIl In our opinion,
one of the best solution would be to encrypt all data with one secret key per
application. Since in the following we consider only one application executing,
we suppose that data integrity is guaranteed at a higher level.

is probably the most difficult to guarantee in presence of an attacker
with hardware fault injection means. It is also very implementation specific, we
discuss in section how an attack can be achieved on our implementation
because is not guaranteed.

If numerous works discuss how to ensure integrities, most consider only [CTA]
and [CRA] attacker models. Yet, hardware fault attacks are a reality and must be
mitigated. Unfortunately, [HFAo]| is a much more powerful attacker model and
most previous schemes do not protect against it (cf section .



3 Previous works

This work inherits from a long list of proposals to ensure [CF]| and [S]] in the
literature. In this section, we present the most relevant works (that we know of)
and show where they differ with HAPEL In most cases, [CF] and [S]] are viewed
as orthogonal and protected with different solutions.

CF1|[3] consists in ensuring that the control flow cannot be tampered with. A
large literature exists on the subject, a recent review article by Burrow et al. [4]
compares many solutions. Paraphrasing Burrow et al. [4], usually have two
forward control-flow transfers: jumps and routine calls. We consider separately
direct jumps (where the destination address is static) and indirect jumps where
the destination address can only be determined at runtime. Most [CF]| solutions
try to verify that jumps can only reach legitimate addresses (forward edges).
A special case is the RETURN instruction that jump to the value on top of the
stack, to return from a routine call (backward edges). As a consequence, a part
of the[CFG]can be determined statically, but another part cannot due to indirect
jumps.

Abadi et al. [3] shows softwareimplementations: they propose code snip-
pets to replace dangerous instructions (indirect jumps...) in order to guarantee
[CHTl

Tice et al. [T5] demonstrate a software solution that leverages the compiler
to automatically insert the appropriate protections at jump sites (forward edges
only). In particular, they tackle the problem caused by virtual method tables,
necessary in some programming languages (e.g. C++) to enforce runtime poly-
morphism. In this situation, the method to call is decided at runtime and thus
requires an indirect call.

Backward edges (e.g. RETURN instruction) are traditionally protected with
a shadow stack [9]: the call stack is duplicated. On a RETURN instruction, the
return address on both stacks are read then compared. If they differ, an alarm
is triggered. Another possibility explored by Davi et al. [7J6] is to add instruc-
tions to the ISA for the sole purpose of validating function calls and returns.
On any indirect function call, the processor switch to a particular state. The
next instruction must be a special CFIBR label instruction in order to con-
tinue execution. The label is used to keep track of which functions are currently
executing.

These methods are efficient but focus on preventing [CRAs| Because they are
more difficult to achieve, Hardware Fault Attacks are not considered. However,
hardware fault attacks have been known for some time. Dehbaoui at al. [§]
shows that electromagnetic pulses allow to recover a cryptographic secret key.
Then Moro et al. [12] describes the faulting mechanism and how it translates
in a software model. Hardware fault attacks can be generated by software. The
recent CLKSCREW work by Tang et al. [14], where the authors modify a phone’s
energy and clock controller to inject faults, demonstrates such an attack. Another
illustration is given by the RowHammer attack [16]. These attacks are relevant
and must be mitigated: HAPEI must ensure [CF] even in the presence of [HFAol



[CET] ensures that jumps, routine calls and returns are legitimate, but it does
not prevent an attacker to alter any other instruction. New mitigation techniques
should be used for that: [Il and [DIl must be ensured.

Most system integrity techniques rely on the encryption of memories, prefer-
ably with dedicated hardware. Danger at al. [5] introduce a new instruction
to selectively randomize parts of a program. Closer to us, Hiscock et al. [I0]
propose a scheme that encrypt the whole application using a stream cipher. In
order to deal with multi-predecessors (where one instruction may have several
predecessors, thus breaking the stream pattern), the authors re-init the stream
cipher.

When specifically applied to instructions, which must be therefore decrypted
on-the-fly at execution, the technique is called [[nstruction Set Randomization|
(ISR) [1I]. Without the secret key, the attacker is unable to alter an instruc-
tion and predict the result after decryption. One of the most complete solution,
ensuring both and [T is SOFIA [13]. This work is the main inspiration for
HAPEL

In SOFIA, to ensure[CFI we must encode the authorized state of the program.
The solution, proposed in [I3], is to mask the instructions with a key stream
depending on the Program Counter (PC) and the previous Program Counter
PClrey (for the previous instruction). Let ¢ be an opcode (instruction value)
and i’ the corresponding encrypted opcode. Let Ej, be an symmetric encryption
function with secret k.

i = Ep(PCyreo||PC|...) @ i (1)

This elegant solution ensure that an instruction can be decoded only if
PC and PCp,e, are correct. Effectively, it encodes all the possible successions
of instructions and the correct instruction can be decoded only upon correct
PC and PCpe, values. In order to ensure E a [Message Authentication Code
is computed and verified per batch of up to 6 instructions. The MAC
value is stored as two words at the beginning of each block. If an instruction
has two predecessors, a special case must be made: the multiplexor block. In
this block, the two first words correspond to the encrypted [MAC] values for
the two possible predecessors: M/, = E,(PC}. . ||PC||...) ® M1 and M, =
Ew(PC2,.,||PC||...) & M1. The encrypted value not used (corresponding
to the wrong predecessor) must be skipped in a software transparent way.

We acknowledge the power of this solution, and build our own upon it. Our
main issue with SOFIA is the separation between [CF] and [[Il Since the [CF]]
mechanism relies on the Program Counter and not on the instruction value, an
additional mechanism is needed to ensure[[Il Finally the multiplexor block must
deal with possible predecessors in a non trivial way. It modifies the control flow
according to the actual predecessor where it should be predecessor agnostic (all
legitimate predecessors must be dealt with in the same way).

Our paper proposes an new solution to these problems, by relaxing the effi-
ciency requirements.



4 HAPEI

4.1 Phases

In order to harden the application, a preparatory step is required to encrypt the
instructions. Only then, the application can be executed.

Packing Packing is required to create the encrypted program, enriched with the
necessary metadata, following the scheme detailed below. It must be done on
the final device, since it requires a device-specific secret key k.

FEzecution During execution, the encrypted instructions are deciphered on-the-
fly and executed. The decryption can only occur if the program state is correct.

4.2 |Program Execution Integrity|

SOFIA encodes the state of the program as the succession of PCp,.,, and PC. We
propose instead to encode the state of the program as the history of all previous
executed instructions. Our proposal does not depend on the PC value (apart
when encoded in an instruction value). As such, the machine code is ensured
to be executed correctly: instructions integrity is ensured together with control
flow integrity.

Secondly, it becomes easy to check at anytime during execution that the
current state of the program is valid.

We suppose that the [Control Flow Graph| (CFG]) of our program is perfectly
defined at compile time. There is no ambiguity on the destination address of
jumps and calls. This condition is trivially satisfied if there are no indirect jumps
or calls in our program. In the other case, it can be more tricky.

Let ace,, (standing for accumulator at instruction n) be a value representing
the state of the program when instruction i, is about to be executed (n uniquely
identify one instruction). i, and acc, can be seen as values in Fow and Fgs
respectively for some w and b. b is the instruction size (considered fixed) and w
is the security parameter.

Bootstrap To bootstrap the encoding, one has to use an initialization vector IV
as input for the first executed instruction.

acCinit = HMACK(IV) (2)

accinit is considered as a predecessor program state to the entry instruction. It
may be used in a multi-predecessor scheme or in the 1-predecessor one.

1-predecessor The easy case is the 1-predecessor case. Our program snippet is a
succession of instructions [i1, 49, ,ip, -] where all instructions are executed
in order.

The instructions are encoded as

-/

ir, = C (accy) @ ip, (3)



where C' is a compression function: a projection from Fy to Fow. C must ensure
that = cannot be deduced from C(z).
Obviously the state of the program must be updated, using secret key k:

accpt1 = HMACy (acey||in). (4)

You can see that the state of the program is encoded with a hash chain
depending on all previous instructions. The encoded instruction 4, can only be
decoded when the previous state of the program acc, is correct. This is possible
only when instruction i, is due. Decoding necessitates the same operations:

acc, = HMACy(accn—1|lin—1), (5)
in = C (accy) ® i (©6)

2-predecessors, a naive and limited solution Most programs necessitate branch-
ing. As a consequence, some instructions have 2 predecessors (2 possible previous
instructions at two different locations in the program).
As a consequence the previous state of the program may have 2 different
values: accl or acc?. 1 out of the 2 possible values is required to decode iy,.
Let ¥ = accl, @ acc?, we can encode our instruction as:

{X,i, = C (acc) - acc?) ®in}, (7)

i.e. the previous state is encoded as acc} - acc?.
1 2

Two cases are possible: the previous state is acc, = acc,, or acc, = acc;,.
Either case, the decoding is:

in = C (accy, - (acc, ® X)) d i, (8)

Yet this scheme has a huge weakness: it is impossible to encrypt the program
if cycles are present in the control flow. E.g. a loop’s first instruction has two
predecessors accl and acc? where acc? is the state of the program at the end of
the loop. Then it becomes infeasible to compute acc?: it depends on accl, - acc?.
The self-reference cannot be solved, since in this case it would violate
[based Message Authentication Code (HMAC)|security requirements: one should
not be able to find a preimage given an output.

So this scheme works only if the control flow graph is a[Direct Acyclic Graph|
which is very limiting in real life scenarios. Instead two solutions (A and

B) are proposed below with different security implications developed in section

p-predecessors, solution A It is possible to generalize in order to allow up to p
predecessors for an instruction and for a control flow with cycles.

In order to allow cycles, we must “rebase” our program state for all in-
structions having several predecessors. In this case, the program state is a new
uniformly random value (noted r below). The problem is now to map valid pre-
decessor states to this same new state.

Let 7 be a random value in Fqs. Let acct,,i € [1,p] be the allowed previous
accumulator values for current instruction i,. A polynomial P can be defined



such that Vi € [1,p], P(acci) = r using Lagrange interpolation. Since the gen-
erated polynomial is minimal, it is constant if we do not define an additional
point. P(0) = d for d a random value (different than r) in Fas.

The p coefficients of P are stored as program metadata with the correspond-
ing instruction i,,. At packing, HAPEI encrypts with i/, = C(r) @1, To decrypt
instruction i,, we use acc, = P(acc,—1). Note that the polynomial evaluation
replaces the HMAC call.

p-predecessors, solution B Fos can be decomposed in different subgroups
where
Vo € pp,af =1 (9)

(subgroup of pth-root of unity). Such subgroups exist for all p such that p | 2° —1.

For all valid p (depending on b), we can define a scheme that allows p prede-
cessors. For example, b = 16 allows a scheme with 5 predecessors (p = 5 divides
65535 = 216 —1).

Let accl,,i € [1,p] be the allowed previous accumulator values for current
instruction 4,. Let r be a random value in Fy.. Let m € p, be a generator
value for the subgroup. We construct a polynomial P (in Fg) using Lagrange
interpolation such that Vi € [1,p], P(acc’) = r-m'. The p — 1 coefficients of
P are stored as program metadata with the corresponding instruction i,. At
packing, HAPEI encrypts with i/, = C(r?) & i,,. To decrypt instruction i,, we
use acc, = P(ace,—1)P. Indeed, by construction

Vi € [1,p], P(accl)? = (r- mi)p =P (mP)" =P, (10)

In this scheme, polynomials have degree p — 1 instead of p in solution A: the
memory overhead is lower.

Ensuring Instruction Integrity To check the [[} it is enough to check an
acc, against a truth value pre-generated at packing time. The more frequent
the check, the sooner a tempering is detected but the bigger is the required
metadata.

A second strategy is to have valid instructions forming a set I, C Fouw. If
card(I,) << card(Faw) a wrongly decoded instruction will have a very low
probability of belonging to I,,, of being valid.

4.3 Key management

In this scheme, the component responsible for managing the secret key k is crit-
ical. In most cases, the binary encryption cannot be performed at compilation
on the binary provider machine since it would requires to ship the (then shared)
secret along with the binary. As a consequence, any [[nstruction Set Randomiza-|
scheme using a secret key must have a packing phase that transform
an unmodified binary (or extended with the information) into a hardened

one.




The only other possibility is for the binary provider to encrypt the application
for each intended recipient, then to use public-key cryptography to share the
corresponding secret key with the targeted hardware.

4.4 Limitations

Apart from the performances overhead, our solution has severe limitations. Since
the [CFG| must be perfectly known at packing time, indirect jumps and calls
should be avoided. In particular, the scheme is not compatible with virtual
method tables required for runtime polymorphism in several languages (C++,
java, ...). Additionally, the scheme is tailored for self-contained applications. If
the program must call external code (shared library, OS system call), things do
not play well. How to lift these limits should be investigated by the community.

5 Security Assessment

In this section, the security of the solution is analysed. As with most equivalent
schemes, the details are critical. In section [5.I} we discuss about the security of
the proposed schemes. In section we analyse the security problems due to
the use of a stream cipher and how to overcome it. Finally, in section the
limits of the [Program Execution Integrity] (PEI) guarantees are shown.

5.1 Scheme security

The scheme security relies on the secrecy of the key stream, the accumulator
values must remain secret. Can the attacker gain information on one accumulator
value, given she knows the encrypted instructions, the clear instructions (in the
most advantageous case for her) and the polynomials ? If she learn a given
accp_1, then no information is gained on acc, without the knowledge of the
secret key k per the cryptographic properties of the [IMAC]

First, she can deduce C(acc,) = i), @ i,. If C is a cryptographically secure
hash function, then no information is gained on acc,. Lower constraints on C
are possible, since we only care about the correct preimage security: the attacker
must find the correct preimage, not just a satisfying one.

p-predecessors, solution A Let i,, be a p-predecessors instruction:
3P € Fy [X]|Vi € [1,p], P(acc) =r (11)

with r a random value. P is a public non-constant polynomial but all acc!, and
T are secret.

Knowing P, the attacker cannot find any acc, nor r: r can be any value in
Fy» and for most 7 she can find corresponding valid acc’,. Yet if she learn r, then
finding the roots of P(X) — r is trivial. If she learn a given acc’,, then she can
compute 7 = P(acct)), then find the other accumulator values. As a consequence,



a polynomial links all corresponding secrets together. If one value is discovered,
all the others are too.

A same accumulator value can be used as a legitimate input to several polyno-
mials. Yet the resulting systems of equation are always underdetermined. There
is one unknown per polynomial corresponding to the random r value, plus at
least 1 secret acc!, value. But there again, in this case all secrets are linked:
discovering one may mean discovering the others.

The problem with solution A is that P is constructed in a very specific way:
Lagrange interpolation ensures that P(X) —r has p distinct roots (P has degree
p), the maximum possible. The attacker can use the peculiarity to gain informa-
tion on r and acct,, Vi. Given a random polynomial @ of degree p, the probability
that @ has p distinct roots corresponds to the number of combinations to dis-
tribute p roots over 2° values divided by the total number of polynomials of

degree p.
b
)

Since in our case, p << 2%, equation becomes
1
_ 13
pl (207 19)

As a conclusion, a proportion of i, random polynomials have p roots. The
greater the p, the better for the attacker that becomes able to discriminate 7.
In most cases, p is low and 2° is high (b > 128) so the security should not be
compromised since the attacker cannot possibly enumerate all possible r.

p-predecessors, solution B This possibility for the attacker to discriminate r given
P is the main motivation for the alternative solution B. In this proposition, r
is not a special value with respect to P: P(X) — 7 - m’ may have any number
of roots (> 1). But then, it means that additional roots may be considered
valid program states. Some random illegitimate accumulator values could be
mapped to the legitimate one. Since the attacker should not be able to control
the accumulator value, the security is not compromised.

Finally, the choice between solutions A and B depends on the attacker model:
if she can control accy,, then solution A must be chosen. If not but she has a
huge computation power, solution B should be preferred.

5.2 Differential Attack

If the attacker is able to see the plain/decrypted instructions (or deduce from
observed behaviour), she can execute one arbitrary instruction i,.

in®e=C(accy,) i, De (14)



To execute i, simply choose e = i, ® i,. But the next state of the program
is
accpr1 = HMACy(acey||ia)

which is unpredictable for the attacker by the required properties of HM ACY.
This attack is present in all schemes using a key stream (xoring a secret data
with the text).

The mitigation is to wait for 4,1 valid decryption before executing i,. In
this case, if the attacker tries to force execution of i, instead of iy, [[] detects
the bad behaviour (cf section [4.2)).

5.3 Multi-successors attack

In the proposed scheme, several instructions can have the same associated pro-
gram state. An example is given in listing [T.3]

Listing 1.3. A pseudo assembly program
i0: CMP RO, #0 // Compare register RO with O
il: BEQ 3 // Go to i3 if equal
i2: JUMP 4 // Go to i4
i3:

In this example, the possible transitions from instruction i, are i; = iy or
11 = i3. 41 has two successors but both i, and i3 have one predecessor. As a
consequence, acco = accy and encrypted instructions differential is conserved:
gy .
1y D13 = 12 D 13.

The attacker can switch these instructions at will and they will be correctly
decoded. A mitigation would require to includes a unique identifier in the accu-
mulator update formula:

accp11 = HM ACk(acey||in||n). (15)

But such an attack does not break [Program Execution Integrityf the exe-
cution where the attacker switches the instructions is indistinguishable from a
legitimate execution apart from instruction addresses. The program is seman-
tically correct. And if the next instructions do not correspond to a legitimate
program execution, they cannot be correctly decrypted. In conclusion, this at-
tack illustrates the limits of the [PEI] guarantees. The Program Counter PC is
part of the processor state: is the guarantee that should prevent this attack.

6 Implementation

In order to test HAPEI, we implement it by modifying a CHIP-8 virtual ma-
chine to run hardened programs. The sources for the reference and the hardened
implementations can be found at https://gitlab.inria.fr/rlasherm/HAPET.
Licenses are MIT for software and CC-BY-4.0 for non-software.


https://gitlab.inria.fr/rlasherm/HAPEI

6.1 CHIP-8

CHIP-8 is an [[nstruction Set Architecture| (ISA]) initially intended to be run in
a virtual machine on 8-bits microcomputers (from the 1970s). Its purpose is to
run the same video games on different hardware. It is a good candidate for a
hardened implementation because of its simplicity: 35 instructions with only 1
indirect branch instruction. Binaries (called roms in the video game emulation
tradition) can be freely found on the internet. Additionally, its age means that it
can easily be run on any modern computer, even with additional cryptographic
computations, in real-time.

Our goal is therefore to run these roms in a hardened virtual machine. A
simulated fault injection process, a key press modifies the next opcode by a
randomly valid one, must be detected. In order to validate the hardened imple-
mentation, we compare it to a reference implementation (without the hardening)
and compare the behaviours.

The implementation is modularized: chip8lib contains all common struc-
ture definitions and the machinery to parse opcodes into instructions (sum type
values). chip8ref is the reference implementation, able to run, display and in-
teract with emulated video games. chip8hard is the hardened implementation,
it packs the current rom at startup then executes its encrypted version according
to the scheme presented in this paper (solution A).

6.2 Reference implementation

The two implementations have been done in the rust language. Rust has great
performances and allows a simple representation of the virtual machine by using
sum types. The implementation has been inspired by the previous work at [2], but
modularized to factor code between the reference and hardened implementations.
The virtual machine is a 8-bit machine (word size) with 16-bit addresses.

6.3 Hardened implementation

Packing The hardened implementation must pack the application before execu-
tion. This step requires a precise control flow graph extraction. This extraction
is done in a classical way. First we define a method cfg_next that given an in-
struction, its address and the call stack (stack to keep track of routine calls and
returns) return all addresses that can possibly be executed next (and update
the call stack). Then starting from the first address, we recursively call cfg_next
on the next instruction for all possible call stacks. Meaning that if the next in-
struction has already been included in the [CEG| previously but the call stack
is different than the one during the previous [CFG| inclusion, we continue the
analysis with the new call stack.

The difficulty lies in indirect branches that make [CFG| extraction difficult.
In the CHIP-8, there is only one such instruction JP VO, addr that jumps to
address addr plus the content of register VO (8-bit register). In our extrac-
tion, we consider that the possible successors for this instruction are all addresses
between addr and addr + 255. Fortunately, all roms do not use this instruction.



Once the has been extracted, we compute all accumulator values (pro-
gram states), polynomials and finally encrypt our instructions in the following
order:

—_

accing¢ from IV.

N

For all multi-predecessors instructions, draw a new random accumulator
value. accinqt is a predecessor for the entry instruction.

Compute recursively all remaining accumulator values.

Compute and store polynomials for all multi-predecessors instructions.

For all instructions, encrypt it using corresponding accumulator value.

o Ot W

Delete all accumulator values, we have to compute them on-the-fly at exe-
cution.

Execution At execution, the binary is already encrypted. At each tick of the
virtual machine, the following actions are performed in order to execute instruc-
tion 4,, at address PC:

1. Is there a polynomial P associated with address PC' 7

2. If yes, then its a multi-predecessors case: update the accumulator state acc =
P(acc).

3. If there is no polynomial, then simply update the accumulator with the
function: acc = HM ACy(accl|iprevious)

4. Then decrypt the instruction to be executed: i,, = i, @& C(acc).

5. If 4,, is valid we can execute it, in the other case we are under attack.

Only one accumulator value must be remembered throughout the computa-
tion, lowering the cost of our solution. This cost is both a big performance hit
due to the on-the-fly decryption and accumulator update, and a memory over-
head required to store the polynomials. Since our implementation is a virtual
machine, the performance overhead cannot be meaningfully measured. But the
memory overhead can be precisely measured as shown on table

In this table, the hardening is performed for a set of binaries found in [I]. We
can see that the memory requirements at the 128-bit security level (size of one
field element) is important: more memory is required to store the polynomials
than the initial binary size.

Additionally, the roms are run in the reference virtual machine and in the
hardened virtual machine to confirm functional equivalence. Then a simulated
hardware fault injection mechanism is inserted. When a specific key is pressed,
the next opcode is replaced in memory with a random valid opcode. On the
reference implementation, the results of this fault injection is unpredictable:
strange patterns are displayed on screen, nothing happen, another game screen
is unlocked or we get a crash. In the hardened machine, the fault injection means
that all subsequent instructions will be wrongly decoded: a crash always follows
because of an invalid instruction value.



Table 1. Hardening memory usage for a set of CHIP-8 roms found in [I] (solution A).

ROM name ROM | Instructions | Polynomials| Field | Polynomials
byte size count count elements | byte size
count (128-bit)

INVADERS 1283 202 28 99 1584
GUESS 148 49 8 25 400
KALEID 120 59 10 32 512
CONNECT4 194 67 5 19 304
WIPEOFF 206 101 15 47 752
PONG2 264 126 19 60 960
15PUZZLE 384 116 17 54 864
TETRIS 494 189 32 106 1696
BLINKY 2356 856 84 310 4960
VBRIX 507 218 27 93 1488
SYZYGY 946 414 44 149 2384
BRIX 280 134 17 57 912
TICTAC 486 194 23 89 1424
MAZE 34 13 3 10 160
PUZZLE 184 87 10 34 544
BLITZ 391 121 15 47 752
VERS 230 103 24 73 1168
PONG 246 117 18 57 912
UFO 224 106 15 48 768
TANK 560 236 42 139 2224
MISSILE 180 75 12 37 592
HIDDEN 850 258 24 81 1296
MERLIN 345 124 13 45 720

7 Conclusion

In this paper, a solution to ensure |[Program Eixecution Integrity|is presented.
More precisely, [Control Flow Integrity] and [nstructions Integrity] are guaranteed

against [Code Injection Attack] [Code-Reuse Attackl and [Hardware Fault Attacks|
on Instructions] This solution uses the program state, a hash chain of all previ-
ously executed instructions, in order to encrypt the program. Correct decryption
can only be achieved if the program state is correct.

The difficulty lies in the multi-predecessors case: how to handle the stream
cipher when an instruction has several predecessors 7 Here, the program state is
reinitialized with a random value and a polynomial is computed that maps all
previous program states to this new value.

An implementation has been proposed as a CHIP-8 virtual machine. It shows
that the memory overhead is important and validates that the proposed scheme
is functional.

Further work can be done to optimize the performances: can we find better
mapping function than polynomials 7 Is there a more compact representation of
the program state, offering the same security level 7




This work shows that instruction set randomization has a lot to offer in order

to provide guarantees at the hardware level.
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