Skip to main content

Bone Fracture Visualization and Analysis Using Map Projection and Machine Learning Techniques

  • Conference paper
  • First Online:
Smart Health (ICSH 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10983))

Included in the following conference series:

Abstract

Understanding intertrochanteric fracture distribution is an important topic in orthopaedics due to its high morbidity and mortality. The intertrochanteric fracture can contain high dimensional information including complicated 3D fracture lines, which often make it difficult to visualize or to obtain valuable statistics for clinical diagnosis and prognosis applications. This paper proposed a map projection technique to map the high dimensional information into a 2D parametric space. This method can preserve the 3D proximal femur surface and structure while visualizing the entire fracture line with a single plot. A total of 100 patients are studied based on the original radiographs acquired by CT scan. The comparison shows that the proposed map projection representation is more efficient and richer in information visualization than the conventional heat map technique. Using the proposed method, a fracture probability can be obtained at any location in the 2D parametric space, from which the most probable fracture region can be accurately identified. Based on the 2D parametric map, the principal component analysis is carried out to investigate the correlations of the fracture lines among different proximal femur regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mundi, S., Pindiprolu, B., Simunovic, N., Bhandari, M.: Similar mortality rates in hip fracture patients over the past 31 years. Acta Orthop. 85(1), 54–59 (2014)

    Article  Google Scholar 

  2. Cole, P.A., Mehrle, R.K., Bhandari, M., Zlowodzki, M.: The pilon map: fracture lines and comminution zones in OTA/AO type 43C3 pilon fractures. J. Orthop. Trauma 27(7), e152–e156 (2013)

    Article  Google Scholar 

  3. Armitage, B.M., et al.: Mapping of scapular fractures with three-dimensional computed tomography. J. Bone Jt. Surg. - Ser. Am. 91(9), 2222–2228 (2009)

    Article  Google Scholar 

  4. Molenaars, R.J., Mellema, J.J., Doornberg, J.N., Kloen, P.: Tibial plateau fracture characteristics: computed tomography mapping of lateral, medial, and bicondylar fractures. J. Bone Jt. Surg. - Am. 97(18), 1512–1520 (2015)

    Article  Google Scholar 

  5. Sendra, G.H., Hoerth, C.H., Wunder, C., Lorenz, H.: 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs. Sci. Rep. 5(July), 1–6 (2015)

    Google Scholar 

  6. Nevitt, M.C., Curnrnings, S.R.: Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J. Am. Geriatr. Soc. 41, 1226–1234 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Y., Liu, R., Liu, Y., Lu, J. (2018). Bone Fracture Visualization and Analysis Using Map Projection and Machine Learning Techniques. In: Chen, H., Fang, Q., Zeng, D., Wu, J. (eds) Smart Health. ICSH 2018. Lecture Notes in Computer Science(), vol 10983. Springer, Cham. https://doi.org/10.1007/978-3-030-03649-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03649-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03648-5

  • Online ISBN: 978-3-030-03649-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics