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Abstract. SPARQL endpoints provide access to rich sources of data
(e.g. knowledge graphs), which can be used to classify other less struc-
tured datasets (e.g. CSV files or HTML tables on the Web). We propose
an approach to suggest types for the numerical columns of a collection of
input files available as CSVs. Our approach is based on the application
of the fuzzy c-means clustering technique to numerical data in the input
files, using existing SPARQL endpoints to generate training datasets.
Our approach has three major advantages: it works directly with live
knowledge graphs, it does not require knowledge-graph profiling before-
hand, and it avoids tedious and costly manual training to match val-
ues with types. We evaluate our approach against manually annotated
datasets. The results show that the proposed approach classifies most of
the types correctly for our test sets.
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1 Introduction

A massive number of data are stored and made publicly available on the Web
in semi-structured formats, such as spreadsheets. This is especially the case for
open data made available by public administrations, since the publication of
CSV data grants them three stars in the 5-star open data schemeﬂ

A major drawback of the publication of data in spreadsheets is the difficulty
for potential data consumers to understand and interpret their content. This is
because the terms used for column headings in these files are commonly not suf-
ficiently informative and lack a data dictionary where their meaning is provided.
Therefore, the automatic classification of such semi-structured data sources may
be useful to improve their usage. For example, such characterization may allow
search engines to improve the relevancy of results [4]. It may also be used to
(partially) automate the generation of mappings (e.g. RML [7] and R2RML [6])
that may be used to generate RDF on the fly without actually transforming the
data.

Meanwhile, data are also exposed on the Web by means of Linked Data
principles or via SPARQL endpoints, which can be considered as rich sources
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of more structured and well-described data. Our hypothesis is that such data
can be useful to train models that are able to characterize the numerical semi-
structured data sources that we were referring to in the previous paragraph.

In this paper, we describe an approach for the characterization of semi-
structured data sources (e.g., CSVs) that uses the content available in SPARQL
endpoints for such characterization. Our approach is based on the usage of the
fuzzy c-means clustering technique. We have identified the following advantages:

— It is domain agnostic. That is, it performs the semantic labeling of semi-
structured data sources regardless of their domain, what makes it applicable
to a wide range of datasets.

— No manual training is needed. It does not require users to manually type
samples of the data beforehand or to use a training dataset that has been
constructed before. Instead, it works with existing data available as SPARQL
endpoints.

— It does not require exact matches for the numerical values whose columns
it classifies. The correct typing of data sources is not prevented by having
values that are updated over time (e.g. max temperature observed in a city)
or entities/values that are not shared between training and testing data (e.g.
heights of a local sports team that are not in the knowledge graph).

— Works with live knowledge graphs. It does not require the knowledge graph
to be downloaded locally (which is not always feasible).

— No knowledge-graph profiling is required. It works directly with the data
and does not need the knowledge graph to be profiled before being able to
label the input data sources.

Several approaches have been proposed in the state of the art for the purpose
of classifying (a.k.a. semantic labeling) semi-structured data. They use a range of
techniques (e.g. graphical probabilistic models [SI9JI8I2T], linear regression [4l12],
decision trees [I7], etc.). These are described in the following section, where we
discuss their advantages and disadvantages when compared to the approach
presented in this paper.

Section 3 describes our approach, based on fuzzy clustering, to classify numer-
ical data sources, with a running example coming from the domain of Olympic
Games. In section 4, we describe the details of the data collection process from
SPARQL endpoints, which we use to obtain data for the classification task.
In section 5 we evaluate our approach and discuss the results obtained in our
experiments. Finally, section 6 includes a reference to our planned future work.

2 Related Work

Different approaches have been used in the literature to perform semantic la-
beling. We understand by semantic labeling the process of assigning types from
knowledge bases to values or a collection of values. In this section, we describe
some of the most relevant approaches that have been proposed in the past for
tackling semantic labeling of tabular data sources.
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Cafarella et al. [4] present an approach for semantic matching of Web tables
extracted from Web pages (from the Google crawl). Their approach exploits an
attribute correlation statistics database (ACSDDb) that contains the frequency of
occurrences of schemas and attributes to compute the occurrence probabilities
of an attribute given another. For relations retrieval, they use schema ranking
which is based on a linear regression estimator with different features such as
the number of hits on the table header. They also use a schema coherency score
based on Point-wise Mutual Information, which provides a sense on how strongly
two items are related.

Limaye et al. [9] use probabilistic graphical models for semantic labeling,
entity detection and relation extraction using YAGO. They use three random
variables; column type, entity, and the relation between two columns, which are
used to construct the features. The features are based on cosine similarity of
the cell and column headers, compatibility of the entity and semantic types,
and relationship compatibility between different columns types and entity pairs.
They weight the features using a weight vector that learns using a generalized
Support Vector Machine method.

Syed et al. [I7] build an index from Wikipedia pages including the titles,
redirects, first sentences, categories, and types. They discover ontology properties
from Wikipedia articles and the class hierarchy is inferred from the slots and
fillers. Slots are predicted for different entities and compared with the DBpedia
infobox ontology and Freebase. Then, Wikitology is used to link entities to the
right Wikipedia entities. In addition to that, the relation between pairs of values
is discovered by querying DBpedia for pairs of values in each row and selecting
the maximum appearing relation.

Ventis et al. [I9] semantically label web tables using two databases: isA
database and relation database. They start with the isA database to identify
the class of each column. After identifying the classes of each column, they in-
spect the relation between two columns using the relation database, which is in
the form of (a, R, b), where a is an instance of class A , b is an instance of class
B, and R is the relation between a and b.

Goel et al. [§] semantically label source attributes using probabilistic graph-
ical models, namely Conditional Random Fields, exploiting the latent (hidden)
structure within the data. They tokenize the values and apply features depend-
ing on the token type. The features for alphabetic tokens are the token length,
the starting letter, whether the token is capitalized, all upper case and the token
value. For numeric tokens, the length of the number, the number of digits before
the decimal points, the number of digits after the decimal points, whether the
numeric token is negative, starting digits, the place of the unit and the tenth
place unit digit. For the symbol token, the feature is only the value itself. Be-
sides that, they consider the relationship between neighboring labels, tokens and
attribute labels.

Zhang et al. [2I] match and semantically annotate numeric time-varying at-
tributes in web tables using collective inference based on belief propagation. They
take into account tables’ headers and context (e.g. surrounding text). They use
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heuristics to find the subject column and split each table into (n-1) tables, the
subject column with each of the other columns. They connect attributes if they
have the same year and unit/scale. They also connect attributes if they have the
same year and they match after applying any of the conversion rules (e.g. Euro
= 1.3 * USD). Possible labels for each table are gathered from the header of the
table and its context information and inconsistent labels are eliminated by the
use of mutual exclusive labels.

Ritze et al. [I5] present T2K, an iterative matching algorithm to match Web
Tables to knowledge bases. This algorithm performs entity-level matching and
schema-level matching. Entity column is picked by examining columns with the
most distinct values and data types are detected using predefined regular ex-
pressions. Similarities are computed among values between the Web Tables and
DBpedia. Matches between Web Tables and DBpedia properties are aggregated
and classes that do not belong are eliminated.

Taheriyan et al. [I§] build a semantic model that represents the relationship
between fields in data sources rather than only annotating attributes as semantic
types. It types the data sources semantically, and then use that semantic labeling
with confidence intervals to construct the semantic model. Then, it builds a graph
with links that correspond to candidate types inferred by the ontology.

Pham et al. [I2] propose a semantic labeling approach based on logistic re-
gression. The features they rely on are similarity measures using Jaccard similar-
ity and TF-IDF besides the attribute name (in the header), Kolmogorov-Smirnov
test and Mann-Whitney test. The importance of each feature is computed for
each domain, and that importance weight (which depends on the training data)
is used afterwards for classifying the data sources.

Neumaier et al. [I1] notice that a semantic type can appear in different con-
texts, so they aim to create a context for the semantic labels instead of mapping
properties only. They represent that as a tree with each one of the children be-
ing a context. After that, they build a hierarchical background knowledge graph.
For constructing the background knowledge graph, they use the rdfs:subClassOf
and property-object pairs. For predicting the new data sources, they use the
Kolmogorov-Smirnov test and nearest neighbors over the background knowledge
graph.

From this initial analysis of the state of the art in semantic labeling we obtain
the following set of conclusions:

— Some approaches focus only on textual data [9I7] or numerical data [TTI21].
Zhang et al. [21] focus on straight numerical matching or numerical matching
after applying conversion rules.

— Some approaches use SPARQL endpoints as learning sources, such as YAGO
in [9] and DBpedia in [TTT15], what makes them applicable to changing learn-
ing sets. While others are more focused on learning from scraped web pages
which do not provide such ease to focus on a specific domain[4I8IT7UT9].
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SELECT distinct ?property ?class WHERE {

?property rdfs:domain ?class. ?property rdfs:range 7range.
FILTER(?range IN ( xsd:float, xsd:double, xsd:decimal,

xsd:int , xsd:nonPositivelnteger , xsd:negativelnteger , xsd:long,
xsd:integer , xsd:short, xsd:byte, xsd:nonNegativelnteger ,

xsd :unsignedLong, xsd:unsignedInt, xsd:unsignedShort,
xsd:unsignedByte, xsd:positivelnteger))}

Listing 1: query numerical properties and their corresponding classes using do-
main and range

— Despite the fact that these approaches may be automatic or semi—automati(ﬂ7
some of them require manual actions (e.g., provide predefined conversion
rules [I5I21], a blacklist of properties [11] to improve the accuracy and ab-
breviations resolution [I5I2T].

3 Approach

Our approach can be divided into three main steps. The first step is data ez-
traction for model training, where we extract the data of interest from a chosen
SPARQL endpoint. The next step is training the model using the extracted data
from the previous step. The third step is the classification (typing) of the input
data using the trained model. The last two steps are explained in section [3.2 as
both are closely related to the fuzzy clustering technique.

3.1 Training-Data Extraction

The data extraction step looks for numerical properties and its values. It extracts
them from a specified SPARQL endpoint. We explored three ways of getting
numerical properties.

Extraction method 1: the use of rdfs:domain and rdfs:range to extract classes
and properties with numerical objects. We query classes with properties’ range
matching any of the numerical data types [I4] (see Listing [I). This approach
is fast even with large knowledge bases like DBpedia. The problem is that the
obtained class/property pairs cover only a small subset of the actual data, which
concurs with the findings reported by Weise et al. [20].

Extraction method 2: We query the A-Box to get the numerical properties.
The query (Listing [2) proposed by Neumaier et al. [I1] to get all the numerical
properties times out as, reported in their paper. We modified the query to fetch
numerical properties for a single class (Listing, but that query was timing out
as well.

2 We are not referring here to the gold standards that are built manually or the
semantic models that are constructed by domain experts.
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SELECT ?p, COUNT(DISTINCT 7o) AS 7cnt
WHERE { ?s 7p 7o. FILTER (isNumeric(?0))} GROUP BY 7p

Listing 2: extract all numerical properties for all classes [11]

SELECT ?property WHERE {

?subject a dbo:SoccerPlayer.

?subject ?property ?val FILTER(isNumeric(?val))
} GROUP BY ?property

Listing 3: extract numerical properties for a given class

Extraction method 3: query all properties for a given class and then filter
the numerical properties on the client-side (Listing ?7?). After getting the list of
properties, we query the endpoint to get the list of objects for each class/property
combination. The added value of filtering numerical properties on the client side,
besides overcoming the timeout problem, is distinguishing between numerical
properties and properties that are not numerical but happen to have numerical
values as a wrong entry (which happen often).

3.2 Fuzzy Clustering

Fuzzy c-means clustering is an unsupervised machine learning technique that
generalizes k-means clustering [3]. In k-means, each data point belongs to a
single cluster, while in fuzzy c-means each data point may belong to multiple
clusters. The belonging of each data point is represented as a vector of values
between 0 and 1, inclusively. This vector is often referred to as the membership
vector. The values in each membership vector should sum to 1. The values in the
membership vectors reflect how much it belongs to the corresponding cluster;
the closer the value to 1 the stronger the belonging is to that cluster.

Notation and Variable Names: [l

m: weighting exponent to control fuzziness.

— d;j: the distance between a datapoint k£ and a cluster center i.
— N: the number of data points.

— yg: the data point value at index k.

c: number of clusters.

v;: cluster at index 3.
— wu;: the membership value of a data point at index k to cluster i

 We use the same notation and variable names as in [3] (Bezdek et al.) 1984.
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Learning: learning from the data extracted from the SPARQL endpoint, clus-
ters are formed. Each cluster represents a class/property pair (e.g. <dbo: Soc-
cerPlayer, dbo:height>). From the data extraction step, the number of clusters
and their class/property pairs are fetched, but not the centers of clusters. In
the learning step, the cluster centers (centroids) are the values of the computed
features.

Features: there are two features used to calculate the centers of the clusters,
the mean and the standard deviation. They are calculated for each cluster values
(objects of a numerical property of a class) to become the center of it.

Clusters Centroids: computing the cluster centers (centroids) in fuzzy c-
means requires the initial values for the membership matrix (which is composed
of the membership vectors). We set the initial membership values to zero except
for the class/property cluster they belong to, which would be 1. We apply Equa-
tion [I| which uses the initial membership matrix and the computed features to
compute the center of each cluster [3].

N N
v; = (Z(Uik)myk Z(uik)m> 1<i<c (1)
k=1

k=1

Classification: using the centroids, semantic properties from the SPARQL end-
point are assigned to numerical columns in the input file. This is performed using
the fuzzy c-means clustering technique. The features of each numerical column
in the input file are computed. The set of features are fed to the model (which
contains the clusters) and results in a membership matrix. The membership ma-
trix is computed using Equation [2| by Bezdek et al. [3]. The membership matrix
is composed of a list of membership vectors where each numerical column in
the input file has a membership vector. Each membership vector contains the
belonging to each of the corresponding clusters.

°L [ di 2/(m-1)
Ui = Z(Z> i 1<kE<N;1<i<c¢ (2)
1

Overall approach: after extracting numerical properties and their values from
the endpoint, the features for each class/property pair is computed for their val-
ues. These features will be the centers for their corresponding class/property
cluster. A model is then created using the clusters (centers) and their corre-
sponding class/property combinations. The membership matrix is initialized ac-
cordingly (with value 1 to the matching cluster and 0 elsewhere). The model
is used next to classify each numerical column in the input file(s) using the



8 A. Alobaid et al.

Equation 2] The classification of each column will result in a membership vec-
tor showing the fuzzy belonging for each column in the input file(s) to clusters
computed from the endpoint (see the algorithm in Figure [4).

Looking at the algorithm in Listing[4] the data extraction function starts by
getting classes and properties (lines 1-2). Then, the values for each class/property
combination (lines 4-5) are extracted and stored if the values are numerical
(lines 6-7). Then, the values and the class/property pairs are returned (line
10). The variable list_of values (line 3) is a list of columns where a column
from the function getValues is appended to the list in each iteration. Next, the
learning function is called (line 31) with the list of values for each class/property
combinations and the list of numerical class/property pairs as arguments. After
that, the features for the list of values for each class/property pair is computed
(line 15). The features are considered the center of the cluster. The cluster is then
created containing the class/property pair and center (line 15) and appended to
the list of clusters (line 16). The membership matrix is then calculated from the
clusters centers and then returned with the list of clusters (lines 18-19). The
last part of the algorithm is to classify the input files with computed clusters.
It sends the clusters, the membership matrix, and the input files as arguments.
The first step in the classify function is getting numerical columns from the
input files (line 22). Each of the numeric columus is then classified in the form
of membership vector and indexed by the file name and the index of the column
(lines 24-27). The classification is returned (line 28).

Differences to classical fuzzy c-means: the above approach is not how
classical fuzzy c-means clustering works exactly as in [3], despite the use of
the same formulas for computing cluster centers and for classification. The first
difference is in setting the initial membership matrix. In our case, we set it
to 1’s for the corresponding cluster, and 0’s everywhere else. This is because
we already know the cluster that each of the data points belongs to, which we
already extracted from the endpoint. The second difference lies in the flow of
the algorithm. In the classical version, the cluster centers adapt and change
after the clustering of the data points which in return, affect the membership
of the data points. This keeps looping until a threshold is met. In our case,
clusters are computed once as we know the cluster each point belongs to (which
we extract from the knowledge graph). Hence, the membership for the testing
data is computed once. The last difference is that our approach resulted in
a classification rather than a mere clustering. In other words, along with the
membership result, we obtain the type/class for each cluster.

4 Evaluation

In this section, we evaluate our approach, checking how accurately it classifies
the numerical columns of the input files. We compare the suggested types with
our manual annotation and report the scores for the top 1, top 3 and top 5
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> Data Extraction
function DATAEXTRACTION(classes)

2: classes_properties <— getClassesAndProperties(classes)
3: list_of values < 0

4: for all class, property in classes_properties do

5: values < getValues(class, property)

6: if is_numeric(values) then

T list_of _values < list_of_values + values

8: end if

9: end for

10: return list_of_values, classes_properties

11: end function

> Learning
12: function LEARNING(list_of_values, classes_properties)
13: clusters <
14: for all values, (class, property) in list_of_values, classes_properties do
15: center <— compute_features(values)
16: clusters < clusters + new Cluster(class, property, center)
17: end for
18: membership_matrix <— membership_from_clusters(clusters)
19: return clusters, membership_matrix

20: end function
> Classifying
21: function CLASSIFY(clusters, membership_matrix, input_files)

22: input_columns < getNumericalColumns(input_files)

23: classifications <« ()

24: for all file_name, column_no, column in input_columns do

25: membership_vector «+ predict(clusters, membership_matrix, column)
26: classifications|file_name][column_no| - membership_vector

27: end for

28: return classifications

29: end function

> Overall Approach
30: list_of_values, classes_properties <~ DATAEXTRACTION(classes)
31: clusters, membership_matrix <— LEARNING(list-of_values, classes_properties)
32: classifications <— CLASSIFY (clusters, membership_matrix, input_files)

Listing 4: Algorithm to label semi-structured data sources
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candidate types for each property. We have the data and the source code publicly
available [T12].

Our evaluation is performed over two sets of data: Olympic Games and Web
Data Commons [I6]. The first one is collected by us and we report the process
in Section [£.Il The Web Data Commons contains a set of web tables crawled
from the web and annotated manually. In this section, we explain the testing for
each used dataset and describe the datasets.

4.1 Olympic Games Dataset

Here we explain the process of collecting the Olympic Games data, describe the
data, and report the results.

Data Gathering After choosing the domain, we went to the Wikipedia page
about the Olympics of 2020|ﬂand collected all the scheduled sports. Using Google
search engine, we search for the data found in the SPARQL endpoint. We explore
the returned links from the first two pages of results returned by Google. Data
gathering is performed in a systematic way to reduce possible bias. In case
multiple results are found, we take the first one that we come across. We focus
on data that are in tabular forms such as CSV, TSV, Excel or web tables. Since
we are using DBpedia for this test, we did not collect any data from Wikipedia
(except for getting the list of games) to reduce the amount of possible bias as
DBpedia has data extracted from Wikipedia. We show a description of the data
set in Table [11

Classes Lookup We use LoupeE| to look for classes from DBpedia. Loupe is an
online tool for inspecting datasets [I0]. We ignore any property in case it exists
in the SPARQL endpoint and doesn’t exist (or couldn’t be found) on the web or
the other way around. Properties co-existing in both are compiled for the tests.
It is important to note that our algorithm is not dependant on Loupe, it is only
used in data gathering step for the experiment.

Table 1: Information about the Olymic Games dataset

Number of files 12
Number of classes (Concepts) 12
Number of numerical columns 24

Experiment and Results We perform the test for each class, so we create
multiple models, one for each class. Then, for each model, we use the corre-
sponding input files. For example, for the class dbo:Cyclist, we use a CSV file
that contains information about cyclists and their weights. We do that for all
the gathered classes. The results of each model are validated against the manual

4 https://en.wikipedia.org/wiki/2020_Summer_0lympics
® http://loupe.linkeddata.es/
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annotation. We compute the classification score of each class for k=1, k=3, and
k=5, whether it is in the top k candidates. So for k=5, we check if the correct
classification is in the top 5 candidates. After that, we average the scores for
each k for each class. The classification scores are reported in Table [2| We re-
fer to our approach as FCM (Fuzzy c-means). The score is the percentage of
correct predicted properties in the top k candidates. For example, for k=1 the
score is 0.96 while the probability of the correct property to be picked randomly
is 0.0025. We compare our approach to the work of Neumaier et al. [TI]. We
tested it with the same collection of CSV files and report the results in Table
(referred to it as “MLSL” which stands for Multi-Level Semantic Labeling).
We also explored having a model with all the classes. This would make it gener-
ally more challenging to classify as the number of clusters increase. We applied
our algorithm and we show the results in Table |2] referred to as “Score (FCM)
Merged”. We discuss the results in Section [4.3

Table 2: Classification score of English DBpedia’s test

Top Score (FCM) | Score (FCM) | Score (MLSL) Random
K-Candidates Merged
1 0.96 0.79 0.07 0.0025
3 0.96 0.92 0.07 0.0075
5 0.96 1.0 0.07 0.0125

4.2 Web Data Commons Dataset

The Web Data Commons (T2Dv2) contains a total of 237 annotated tables, with
319 numerical columns in total spanning 41 Conceptﬁ In T2Dv2, properties are
not annotated, only the entity columns are annotated with DBpedia classes. We
utilized this information for building the models.

Experiment and Results We start by transforming the Web Tables from
JSON to CSV. We create a model for each Web Table if it is not created and
run the classification algorithm. A model will be created for each file using the
class URI that each Web Table is annotated with in T2Dv2. We found that some
of the Web Tables do not include numerical columns, so they will not have any
classification. For each file, the corresponding model is used for the classification.
We found 319 numerical columns in total, 232 of them can be understood while
87 of them were vague. Out of the columns that we understood, 137 of them
actually existed in DBpedia. Our application was able to classify 124 out of
the 137 columns (Table . We report the detailed results for each column (e.g.
if it is vague, if it is found in DBpedia, etc.) with the rest of the results on
the web [2].In Table 4l we show the scores. The score is the of number correct
annotated columns divided by the total number of columns. We consider the
annotation of a column correct if a correct label (property) is in the top k
labels. We can see that for k=1, it has the probability of 0.0004 (0.04%) to get

5 two files related to the class person is missing from the classification.
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the correct label while our application gets it correctly for 0.34 of the input
columns. For k=10, our application gets a correct label 0.91 of the times while
getting the correct property randomly is around 0.0004. We discuss the results
in Section A3

Table 3: Description of the classification

# numerical columns 319

# understood columns 232

# found in the knowledge graph 137
# classified columns 124

Table 4: Classification score of web data commons tables

Top K-Candidates Score (FCM) Random
1 0.34 0.0004
3 0.55 0.0012
5 0.83 0.002
10 0.91 0.004

4.3 Discussion

It is obvious that the scoring results of Olympic Games are much higher than
the scores of T2Dv2. Looking closely at the data, we can see that numerical
data contained in the Olympic Games CSV files tend to be close to normal
distribution (e.g. weight of soccer players). Normal distributions are commonly
represented by the mean and variance. Looking at the features we used, we use
the mean and the standard deviation, which is the square root of the variance.
It is intuitive to see that in distributions that are normal (or close to normal)
data are concentrated in the middle (close to the mean). For example, looking
at the population density of countries, data are concentrated more to the left,
looking close to a chi-squared distribution with k=2. Such numerical properties
are harder to classify. It also depends on the distance to other clusters. Some
clusters are very close to each other, what results in the points being classified
to a nearby but wrong cluster. An example of such cases are the two clusters
“areaOfCatchment” and “elevation” of the class dbo:Lake. Sometimes this occurs
with unrelevant properties (e.g. wikiPageID or imageSize).

Another thing we noticed is how properties that represent years are akin to
understand. Looking at the distribution of values for years, it is hard to guess
whether they represent dates of birth of people or dates of football matches. Even
with such properties that are easy to mix up, there may be some kind of influence.
For example, the birth dates of people are before their death dates. Nonetheless,
machine learning techniques often cannot distinguish between birth dates and
death dates [I8]. The nature of the data used in the model also influences the
classification score. For example, if we have two date-related properties, such
as birth date (year) of Nobel prize holders, and birth dates (year) of young
Internet millionaires, most probably, the classification won’t be mixing the two.
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The first ones are generally older (less) than the birth dates of the young internet
millionaires.

It is also important to note that the results we obtained are not comparable
to the results we found in the literature without re-examining their data (when
publicly available) and test it on all. The main reason is that most of the results
reported in the state-of-the-art (except for [I1] and [21]) showed the classification
scores for a combination of numeric and non-numeric data sources and did not
show the scores of each of them separately. The work by Neumaier et al. [T1]
is focused on numerical data sources, but the reported results are the scores of
the classification of DBpedia’s numeric types (they divided DBpedia’s numeric
properties into training and testing sets) and did not perform the test on CSV
files. On the other hand, Zhang et al. [21] perform the test on CSV files. They
learn from tables rather than from a SPARQL endpoint, and they use context
information, such as surrounding text, for matching values and columns. Their
approach has a different kind of information to learn from when compared to
our approach, which learns from a SPARQL endpoint. To have an accurate
comparison between two approaches, both should train on the same training set
and test on the same CSV files (test set). This was only feasible in the case of
Neumaier et al. [11], which have their software publicly available. We were able
to test their approach with our data sets, using the English DBpedia for training.
The approach MLSL yields a low classification score, which also concurs with
[11] that it is not suitable for classifying CSV files. For Zhang et al. [2I] we could
not find the software to test it with our data set.

In addition, our approach is domain agnostic in a sense that the endpoint that
is queried and the data that is extracted from to create the model is an input,
and it does not have to be DBpedia or any specific endpoint. It only has to
include data that are of the same type that exists in the input CSV files to
be classified. Since our approach accepts concepts that are related to the input
CSV files, there is no need to explore and include other unrelated concepts in
the model. So, only the concepts that matter are included in the model that
is used in the classification of the CSV files as shown in the data extraction
section and the data extraction function Listing[d] Another advantage of our
approach is that it does not require numbers to match between the values in
the columns and the knowledge graph to label the column with the semantic
type. As we focus on how the values reside in the space rather than to which
entity these values belong. Moreover, the learning process is semi-automatic (or
automatic if the classes are provided, like in the case of Web Tables from Web
Data Commons). Despite the fact that concept discovery is not automatic and
the user has to provide the concepts as an input to the model creation, the
lookup for numerical properties for each concept and the extraction of data for
each property is done automatically and included in the model; ergo there is no
need to train the model manually by matching columns in CSV files to properties
in endpoints.
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5 Future Work

There are multiple ways that our work can be extended. One way is to gen-
erate R2ZRML mappings from the annotations that have been obtained. This
can be used to generate RDF triples on the fly from the original source files
using an application like morph-rdb [I3] or ontop [5] while keeping the input
files in their original format. Another interesting piece of future work would
be to merge duplicate properties due to language differences (e.g. <http:
//es.dbpedia.org/property/pesoEI> and <http://dbpedia.org/property/
weight>), different subdomains (e.g. <http://dbpedia.org/property/peso>
and <http://es.dbpedia.org/property/peso>) or different naming (e.g.
<http://dbpedia.org/ontology/elevation> and <http://dbpedia.org/
property/elevationM>). Our approach can be also extended to suggest the
merge of properties that are similar so that two (or more) properties that repre-
sent the same thing can be combined in a single property with objects of both.
This can be used to improve the classification and to clean endpoints (e.g. gen-
erate code that can be applied to the endpoint if such permission is granted).
Furthermore, it can be used in the analysis of endpoints and their evolution (e.g.
the change in property names), since our approach can detect similar numerical
properties. It would be interesting to see if a property is divided or merged (e.g.
max temperature per month vs. per year for a given place) and the effects of
such actions. Considering the exact match of numbers as in the work of Zhang
et al. [2I] and combine it with our approach sounds as promising future work.
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