
A Query Model for Ontology-Based Event
Processing over RDF Streams

Riccardo Tommasini, Pieter Bonte, Emanuele Della Valle, Femke Ongenae,
Filip De Turck

Politecnico di Milano, DEIB, Milan, Italy
{riccardo.tommasini,emanuele.dellavalle}@polimi.it

Ghent University - imec
{pieters.bonte,filip.deturck,femke.ongenae}@ugent.be

Abstract. Stream Reasoning (SR) envisioned, investigated and proved
the possibility to make sense of streaming data in real-time. Now, the
community is investigating more powerful solutions, realizing the vi-
sion of expressive stream reasoning. Ontology-Based Event Processing
(OBEP) is our contribution to this field. OBEP combines Description
Logics and Event Recognition Languages. It allows describing events ei-
ther as logical statements or as complex event patterns, and it captures
their occurrences over ontology streams. In this paper, we define OBEP’s
query model, we present a language to define OBEP queries, and we ex-
plain the language semantics.

Keywords: Stream Processing, Semantic Web, Stream Reasoning, Com-
plex Event Processing

1 Introduction

Stream Reasoning (SR) is evolving fast. Answering information-needs in real-
time has a business-critical role for many applications. SR research is pushing
the boundaries of the state-of-the-art, addressing three crucial challenges towards
real-time decision-making: (1) enabling continuous analytics over heterogeneous
data streams, (2) enabling event detection considering both domain knowledge
and streams of events, and (3) solving (1) and (2) simultaneously [6, 10, 17].

The SR solution for continuous data integration is RDF Stream Processing
(RSP). RSP engines adopt the Data Stream Management Systems (DSMS) pro-
cessing model to tame velocity and combine it with semantic technologies, which
can tame data variety (e.g., RDF and SPARQL) [10]. Therefore, RSP engines
can execute continuous analytical tasks over heterogeneous data streams.

For event detection, there is not a unified SR solution [10]. On the one
hand, there is the ETALIS logic-programming framework that offers a time-
aware rule-based language for SR and complex event processing (CEP). ETALIS
treats event detection as a reasoning task exploiting the relation between event-
recognition languages and temporal reasoning [7]. On the other hand, RSP pro-
posals for CEP aim at providing a unified language for event detection and
analytics [1, 8].

EP-SPARQL [1] and RSEP-QL [8] extend respectively SPARQL 1.0 and
an RSP-QL [9] with time-aware operators. Both started from a language for

2 R. Tommasini, et al.

continuous analytics and added operators for event detection, as showed in [19].
To preserve the operational semantics of the base languages, existing constructs
are reused to define events and, thus, events are not first-class objects in the
resulting language. However, the notion of event is critical for CEP languages
as CEP users expect two clear ways to define events, i.e., providing schema or
types, or using temporal operators [4, 6, 7].

In this paper, we investigate the foundations of Ontology-Based Event Pro-
cessing (OBEP) [18]. OBEP enables event detection over RDF Streams without
neglecting events first-class nature. It seamlessly combines temporal operators
with a family of knowledge representation languages around the notion of event.
OBEP’s users can specify and compose events working with high-level abstrac-
tions. Moreover, OBEP works with RDF Streams, i.e., it can be combined with
RSP analytics solutions.

The remainder of the paper is organized as follow: Section 2 introduces the
notions relevant to understand the content of the paper. Section 3 explains OBEP
data model and query model. Section 4 formalizes the evaluation semantics of
the language. Section 5 compares OBEP to existing stream reasoning languages
and shows how OBEP simplifies the encoding of SR tasks compared to the state-
of-the-art. Finally, Section 6 concludes the paper and presents the future work.

2 Preliminaries

BobAlice

Room A

Corridor

dosA dosB

Room B

locBlocA

Fig. 1: Running Example.

In this section, we detail the required background and preliminary knowledge
to introduce our contributions1. To this extent, we present a running example
also depicted in Figure 1.

Two rooms, Room A and Room B are connected through a corridor. Room
A is armed with a door sensor sA that monitors whether the door is open or
closed. A people sensor sB, deployed in Room B, tracks the people inside. We
also assume that either Alice or Bob can be in the room at a given time, that
nobody else can be in the room and that the people sensor is capable of detecting
when nobody is in the room.

1 Due to the lack of space, we focus on the essential definition, and we provide refer-
ences for the interested reader.

OBEP 3

Description Logics (DLs) are a family of knowledge representation languages
with reasoning capabilities [3]. We introduce the syntax of a simplified DL2,
explaining the basic notions required to understand the remainder of the paper.

DL defines concepts to represent the classes of individuals and roles to rep-
resent binary relations between the individuals. Basic concepts C can be defined
as follows: C ::= Ai|>|⊥|¬C|C1 u C2|C1 t C2|∃P1.C1|∀P1.C1 where A denotes
an atomic concept, P denotes an atomic role or its inverse P−, > resembles the
top concept, ⊥ denotes the bottom concept, u the conjunction of concepts, t
the disjunction of concepts, ∃P.C states that there should exist a role P to an
individual of the type C and ∀P.C denotes that all roles P should be linked
to an individual of the type C. To model the domain, we can define inclusion
axioms of the form

C1 v C2 and P1 v P2

where the equivalence between two concepts (e.g. C1 ≡ C2) can be interpreted
as both C1 and C2 include each other (i.e. C1 v C2 and C2 v C1).

A DL knowledge base consists of a terminological box (TBox) that collects
intentional knowledge and an assertion box (ABox) that collects extensional
knowledge. Listings 1.1 and 1.2 show a DL TBox and ABox respectively, that
model the situations illustrated in Figure 1.

1 atomic concepts: Room, Person, Sensor
2 deployedIn ≡ armedWith−

3 observedBy ≡ observes−

4 observesPerson v observes
5 observesNobody v observes
6 observesClosedDoor v observes
7 observesOpenDoor v observes

Listing 1.1: Intensional knowledge
describing Figure 1.

1 Room(RoomA)
2 Room(RoomB)
3 Person (Bob)
4 Person (A l i c e)
5 Sensor (sA)
6 Sensor (sB)
7 armedWith (RoomA, sA)
8 armedWith (RoomB, sB)

Listing 1.2: Extensional knowledge
describing Figure 1.

RDF Statement, RDF Graph & SPARQL Dataset. An RDF statement
is a triple (subject,predicate,object) ∈ (I ∪ B) × (I) × (I ∪ B ∪ L), where I,
B and L are respectively the sets of IRIs, blank nodes, and literals. A finite set
of RDF statements is called a RDF graph A SPARQL Dataset (DS) is a set
of pairs (u,G) where G is an RDF Graph and u is an IRI or a special symbol
def denoting the default graph. For example, DS = { (def, G0),(u1,G1)..}. A
comprehensive discussion on SPARQL semantics can be found in [14].

Continuous Reasoning (CR) identifies those logic frameworks that are able
to perform reasoning tasks over time. CR is based on the notion of ontology
stream [16, 5].

Definition 1. An Ontology Stream ST is an unbounded sequence of pairs (Ai,ti)
where Ai is a set of ABox axioms compliant with a static TBox T, and ti is a
non-decreasing timestamp. ST (i) returns the pair (Ai,ti).

Continuous reasoning can be reduced to traditional static DL reasoning if we
consider the union of all the ABox axioms in a windowed ontology stream.

2 We refer the reader to Horrocks et. al. [11] for a thorough discussion of a more
expressive DL.

4 R. Tommasini, et al.

1 2 3 4 5 6 7 8
sA :ocd :doorA sA :ood :doorA sA :ood :doorA sA :ood :doorA sA :ocd :doorA
sB :obsP :Bob sB :obsP :Bob sB :obsN :empty sB :obsN :empty sB :obsP :Alice

Table 1: An example of an RDF Stream. We use the following abbreviations:
:ocd=observesClosedDoor, :ood=observesOpenDoor, :obsP=observesPerson,
:obsN=observesNobody. Column names are the timestamps, while each entry
is an RDF graph.

1 CONSTRUCT {? person : i s I n ?room }
2 FROMNAMEDWINDOW<win> ON <stream> [RANGE 5 s STEP 1 s]
3 FROM <s t a t i c da t a>
4 WHERE { ?room a :Room ; : armedWith ? locSenso r .
5 WINDOW<win> { ? l o cSenso r : obse rves ?p .
6 ?p a : Person }}

Listing 1.3: An example of RSP-QL query.

Definition 2. A windowed ontology stream ST[o,c) is a finite portion of an ontol-

ogy stream, i.e., all the pairs (Ai,ti) ∈ ST (i) such that o ≤ ti < c.

RDF Stream Processing (RSP) identifies a family of SR approaches that
aim to answer continuous queries over heterogeneous data streams [10]. To this
extent, the fundamental notion is the one of RDF Stream [9]:

Definition 3. An RDF Stream is a set of pairs (Gi, ti), where Gi is an RDF
Graph, and ti is a timestamp, e.g., S = {(G1, t1), (G2, t2), (G3, t3), (G4, t4), ...}.

An example of an RDF Stream is depicted in Table 1. Column names are
the timestamps, while each entry is an RDF graph.

A second important concept is the one of Continuous Queries over RDF
Streams. RSP-QL [9] is a reference model that unifies all the existing RSP di-
alects [10]. Listing 1.3 shows an example of an RSP-QL query that continuously
reports who is in the rooms in the example (see Figure 1). RSP-QL queries can be
executed under an entailment regime combining RSP with OWL reasoning [10].

Operator Cardinality Matches
A AND B Binary When A and B are detected at the same time.
A OR B Binary When A or B or both are detected at a given time.
A SEQ B Binary When B is detected after A.
FIRST A Unary When the first occurrence of A is detected
LAST A Unary When the last occurrence of A is detected

ALLEN’s Algebra Binary Denoted 12 relations between intervals.
Table 2: Most common event operators (L) and their (informal) semantics.

Complex Event Processing (CEP) aims at recognizing and combining events
over streams of data [1, 4, 13]. Event recognition relies on the notion of Event
Type that characterizes events conceptual specification, and allows the asser-
tions of Event Expressions w.r.t. a given CEP language [12]. Although many
approaches populate CEP state-of-the-art – i.e., from Event-Condition-Action
(ECA) [4] to Event Calculus [12] – a standard CEP language is still missing.

OBEP 5

Since one of our requirements is considering events as first-class objects, we
opted for Chackvrathy et al. [4] event algebra as a solid foundational formalism.
Chackvrathy et al. defines events as data occurrences that happen completely or
not at all (atomic). They distinguish between physical events, which are known
and manipulated by the system, and conceptual events that are abstract speci-
fications functional to the recognition task. Conceptual and physical events are
linked via functional mappings that depends on the approach [4].

We consider the most language operators common to existing approaches in
the Stream Reasoning state-of-the-art. Table 2 summarizes these operators (L)
and reports their semantics informally. Later on in the paper, we will formalize
these operators w.r.t. our approach3.

3 Ontology Based Event Processing

In this section, we present the foundational aspects of OBEP: we discuss its data
model, the building block of OBEP queries as well as the semantics of the most
relevant operators.

3.1 Data Model

Similar to existing approaches in Stream Reasoning state-of-the-art [1, 8], OBEP
data model is based on RDF Streams: any RDF Graph in an RDF Stream rep-
resents an OBEP physical event. On the other hand, OBEP data model relies
on the notion of Ontology Stream to represent conceptual events as logically de-
fined event types. Although these notions are intuitively related, to the best of
our knowledge, it is still missing a formal explanation of their relations. There-
fore, in the following we provide a few intuitive yet necessary definitions that
reconcile the two presented above. Moreover, we introduce the concept of Event
Stream, that is required for the definition of OBEP query model. To support
our formalization, we exploit the following helper functions: (i) axioms :: G →
L, and (ii) triples :: L → G; where L is a set of logical axioms and G is the
corresponding RDF Graph.

Definition 4. A Well-Grounded RDF Stream SD is an RDF Stream such that
for each pair (Gk,tk) ∈ SD, the RDF Graph Gk is expressed according to a static
TBox D, and Gi contains only triples of the form <:s rdf:type :C>, where <:C
rdf:type owl:Class>, and <:s :p :o>, where <:p rdf:type owl:ObjectProperty>,
and :s, :o are individuals. Literals are not considered.

Example 1. The RDF Stream of Table 1 is a Well-Grounded RDF Stream w.r.t.
the ontology of Listing 1.1.

Proposition 1. For each Well-Grounded RDF Stream an Ontology Stream ex-
ists. Given a Well-Grounded RDF Stream SD=(G1,t1),...(Gk,tk) where Gi are
defined according to a static TBox D. We denote with D = axioms(D) the

3 Due to the lack of space, we only present SEQ, FIRST, and DURING operators.
The remaining ones are available in our extended version at https://github.com/
riccardotommasini/obep

6 R. Tommasini, et al.

set of TBox axioms obtained converting triples from D4, and we denote with
Ak=axioms(Gk) the set of ABox axioms obtained converting triples from the
RDF Graph Gk. The sequence of pairs (A1, t1),...,(Ak, tk) about D is an On-
tology Stream (denoted with SD).

Definition 5. An Event Stream SE is an Ontology Stream, where (i) the static
TBox E contains some axioms of the form E v B where B is a basic concept,
and E, which is distinguishable from other atomic classes5, is a logical event.
(ii) for some (Ai, ti) ∈ SE it is true that Ai |=E Ei(e) with Ei a logical event
and e an individual. We call (Ai,ti) a Physical Event.

Proposition 2. For each Well-Grounded RDF Stream an Event Stream ex-
ists. Given a Well-Grounded RDF Stream SD from Proposition 1, we know
that there is an Ontology Stream SD. Let’s consider a static sub-set of D, e.g.,
{E1,...,En}, denoted as E; (A1, t1)...(Ak,tk) is an Event Stream (denoted as
SE), if Ak |=EE(e) for some k. We call E a logical event and we call (Ak,tk) a
Physical Event.

3.2 Building Blocks of OBEP Queries

The OBEP query model is based on an abstract event specification, generically
called complex events. We distinguish between Logical and Composite Events.

Definition 6. Logical Events are logic assertions H ← B, where H is an
atomic DL concept and B is a DL basic concept as specified in Section 2.
The abstract syntax6 of Logical Event is

EVENT H AS B

The helper function named(B) returns all the concepts and roles used in B.

Example 2. (cont’d) In Listing 1.4, we define the Logical Event BusyRoom vB,
where B isRoom u ∃ armedWith.(Sensor u ∃observesPerson) where named(B)
= {Room, Sensor,Person, armedWith, observesPerson}.

1 EVENT BusyRoom AS
2 (Room and armedWith some (Sensor and observesPerson some Thing))
3
4 EVENT FreeRoom AS
5 (Room and armedWith some (Sensor and observesOpenDoor some Thing))

Listing 1.4: Examples of Logical Events.

Definition 7. A Composite Event is an assertion H ← E where:

– H is an atomic DL concept denoting a logical event.
– E is an event expression.

4 We consider only the rules (i) <:s rdf:type :C> → C(s); (ii) <:s :p :o> → P(s,o)
5 We implemented this mechanism using OWL Annotation Properties since they do

not impact the reasoning, but allows distinguishing TBox axioms.
6 we will use Manchester Syntax to express B https://www.w3.org/TR/
owl2-manchester-syntax/

OBEP 7

The abstract syntax for composite events is

EVENT H MATCH E

The helper function named(E) returns all the events used in E.

Example 3. (cont’d) In Listing 1.5, we define the complex event Exiting using
OBEP syntax where named(Exiting) = {BusyRoom, FreeRoom}, and Entering
using OBEP syntax where named(Exiting) = {BusyRoom, FreeRoom},

1 EVENT Enter ing MATCH FreeRoom SEQ BusyRoom
2 EVENT Exit ing MATCH BusyRoom SEQ FreeRoom

Listing 1.5: A Complex Event without guards.

Logical and Composite Events are Complex Events, i.e, assertions H ← L
where (i) H is an atomic DL concept, and (ii) L is either (a) a basic DL concept
or (b) an event expression.

Last but not least, we have to discuss which results a query generates.
OBEP consumes streaming data and it produces streams as output. Inspired
by SPARQL query forms7, we introduce a return clause that allows alternative
output stream formats.

Definition 8. A Return Clause is a function that determines the type of
stream to output from an OBEP query, i.e.,

R :: LE → S

where LE is a list of logical events and S is either an Event Stream,
i.e., (At1,t1)...(A,tn) or a Well Grounded RDF Stream, i.e., (triples(At1),t1)...
(triples(Atn),tn).
the abstract syntax of the return clause is

RETURN LE AS [EVENT|RDF] STREAM

where L is a list logical events [E1,...,En] defined in a OBEP query.

3.3 Query Definition

Building on the previous definitions, we can finally define an OBEP query.

Definition 9. An OBEP query is a tuple < SD,K, E , CE ,R, ET > where:

– SD is a Well Grounded RDF Stream as defined in Definition 4.
– K is a static ABox.
– E is a set of Logical Events axioms defined as in Definition 6.
– CE is a set of Composite Events defined as in Definition 7.
– R is a return clause.
– ET is the set of evaluation time instants.

We can now define an evaluation function considering the query definition.

7 https://www.w3.org/TR/rdf-sparql-query/#QueryForms

8 R. Tommasini, et al.

Definition 10. Given an OBEP query Q = < SD,K, E , CE ,R, ET > we define
the evaluation of E and CE over SD and K, at time t ∈ ET, with the return
clause R as:

eval(SD,E , CE,R,t)

Applying the evaluation semantics of the Return Clause we obtain

eval(SD,E , CE,R,t) =R(eval(SD,E , CE,t))

According with Proposition 2, given that E is a static set of TBox axioms
based on D, we can assert the following equivalence:

eval(SD,E , CE ,t)=eval(SE , CE , t)

Last but not least, we pose two conditions that allow to evaluate indepen-
dently each composite event definition [7], i.e.,

eval(SE , CE , t) =
⋃

π∈CE
eval(SE ,π, t)

1. Composite Events must not have circular-dependencies, i.e., given H1 ←L1

∈ CE , @ H2 ←L2 ∈ CE , such that H1 ∈ named(L2) and H2 ∈ named(L1);
2. the Composite Event assertions set CE can be stratified to ensure a loop-free

evaluation across partitions.

4 OBEP Semantics

In this section, we present the evaluation semantics of logical and composite
event expressions. To this extent, we will exploit the following helper function:

– explain :: T × A × C → G, where T is a set of TBox axioms, A is a set
of ABox axioms w.r.t. T and C is a class concept. explain returns the set
of RDF Graphs G with Gi ∈ G and axioms(Gi) a minimal subset of A such
that axioms(Gi) |=T C(c), where c is a an individual.

4.1 Complex Event Evaluation Semantics

Definition 11. Evaluation Semantics of Complex Event Expressions.
Given an event stream S E , a time instant t, and a Logical Event E we define

JEKtSE

as the evaluation of E at t over S E .

Although Event streams are defined with one timestamp for each pair (A,t),
we adopted a two-point time semantics for the evaluation. This approach,
introduced in [1, 2], allows formulating interval-based temporal operators.

Logical Events are the first building block. Their evaluation aims at asserting
the logical equivalence between an atomic concept H denoting a logical event
and a basic concept B defined in the TBox E . We define K as the static, time
independent, ABox describing background information.

OBEP 9

JEKtSE = { (A,tk,tk) | (Ak,tk) ∈ SE ∧ tk < t ∧ ∃c ∈ A ∧ Ak∪K|=E E(c)
∧ A ∈ explain(E , Ak∪K, E) }

Example 4. Let’s consider the event stream SE obtained from the Well-Grounded
RDF Stream from Figure 1 w.r.t. the TBox of Listing 1.1, and the logical event
expression of Listing 1.4. Let’s also consider the static knowledge base K of
Listing 1.2. We want to evaluate if the logical event BusyRoom occurs in SE at
t=8 considering the static knowledge base K.

JBusyRoomK8SE = {
({Room(rb) Person(Bob) Sensor(sb) armedWith(rb,sb) obsP8(sb,Bob) },2,2),
({Room(ra) Sensor(sa) armedWith(ra,sa) ocd9(sa,doorA) },2,2),
({Room(rb) Person(Bob) Sensor(sb) armedWith(rb,sb) obsP(sb,Bob) },3,3),
({Room(rb) Person(Alice) Sensor(sb) armedWith(rb,sb) obsP(sb,Alice) },7,7),
({Room(ra) Sensor(sa) armedWith(ra,sa) ocd(sa,doorA) },7,7)}

Composite Events are the second building block of the OBEP semantics. Their
evaluation aims at asserting the logical equivalence between an atomic concept
H denoting a logical event and a complex event expression E.

JH MATCH EKtSE = { (A∪H(c),t1,t2) | (A,t1,t2) ∈ JEKtSE , c is a named
individual. }

Composite Event Expressions combine logical events according to the L
operators. Their evaluation aims to check when a specific temporal relation
occurs between two or more logical events.

JFIRST EKtSE = { (A,t1,t2) | (A,t1,t2) ∈ JEKtSE ∧ @ (A′,t3,t4) ∈ JEKtSE such
that t3 ≤ t4 < t1 ≤ t2 }.

Example 5. (cont’d) J FIRST BusyRoomKtSE =
{(Room(rb) Person(Bob) Sensor(sb) armedWith(rb,sb) obsP(sb,Bob) },2,2)}

JE1 SEQ E2KtSE = { (A2,t1,t4) | (A1,t1,t2) ∈ JE1KtSE ∧ (A2,t3,t4) ∈ JE2KtSE ∧
t1 ≤ t2 <t3 ≤ t4 }.

Example 6. (cont’d) J BusyRoom SEQ FreeRoom KtSE = {
(Room(rb) Person(Bob) Sensor(sb) armedWith(rb,sb) obsN(sb,nobody) },3,4),
({Room(rb) Person(Alice) Sensor(sb) armedWith(rb,sb) obsP(sb,Alice) },6,7),
({Room(ra) Sensor(sa) armedWith(ra,sa) ocd(sa,doorA) },6,7) }

JLAST EKtSE = { (A,t1,t2) | (A,t1,t2) ∈ JEKtSE ∧ @ (A′,t3,t4) ∈ JEKtSE such that
t1 ≤ t2 < t3 ≤ t4 }.

Example 7. (cont’d) J LAST BusyRoom KtSE = {
({Room(ra) Sensor(sa) armedWith(ra,sa) ocd(sa,doorA) },7,7) }

JE1 AND E2KtSE = { (A,t1,t2) | A = A1∪A2 ∧ (A1,t1,t2) ∈ JE1KtSE ∧ (A2,t1,t2)
∈ JE2KtSE }

8 observesPerson
9 observesClosedDoor

10 R. Tommasini, et al.

Example 8. (cont’d) J BusyRoom AND FreeRoom KtSE = {
({ Room(ra) Sensor(sa) armedWith(ra,sa) observesClosedDoor(sa,doorA)
Room(rb) Sensor(sb) Person(Bob) armedWith(rb,sb) observesPerson(sb,Bob)
},3,3) }

JE1 DURING E2KtSE = { (A1,t1,t2) | (A1,t1,t2) ∈ JE1KtSE ∧ (A2,t3,t4) ∈
JE2KtSE ∧ t3 < t1 ∧ t2 < t4 }.

Example 9. (cont’d) J OpenDoor DURING Exiting KtSE = {
({observesOpenDoor(sa,doorA) },3,3)}

4.2 Matching Negative Patterns

A common feature in Event Processing Languages [1, 4] is the detection of neg-
ative patterns, i.e., the negation of the detection at a given time instant. We
define the Negative Event Evaluation Semantics as

JNOT EKtSE = { (A,tk,tk) | A =
⋃

Ak \ AU
k ∧ A 6= ∅ where

(Ak,tk,tk) ∈ SE ∧ tk < t ∧ AU
k =

⋃
A’k for each (A’k,tk,th) ∈ JEKtSE }

4.3 Guarded Complex Event Patterns

The assertion of a Complex Event H depends on the truth value of the logical
expression L that characterizes it. In the following, we explain how to the truth
value of L can be modified using Guards.

Definition 12. A Guard is a boolean function that poses a condition to the
evaluation of a complex event expression [4]. OBEP provides two types of guards:
Data Guards and Time Guards.

Data Guards or Filters are conditions to a composite event, within an event
expression, evaluated w.r.t. the related physical event.

Since (Well-Grounded) RDF Streams are OBEP’s underlying data model, we
opted for SPARQL syntax and semantics to express data guards. Listings 1.6
shows an example of an OBEP query with filters.

1 EVENT Enter ing MATCH FreeRoom SEQ BusyRoom WITHIN (5 min)
2 IF { EVENT BusyRoom { ?room : armedWith ? senso r . }
3 EVENT FreeRoom { ?room : armedWith ? senso r . } }

Listing 1.6: OBEP query With Frame and Filters.

Given a Complex Event H ←G CExp, a filter is a SPARQL ASK query q,
where restriction w.r.t. a logical event E ∈ named(CExp), denotes (i) a Triples-
Block if E is used in any unary sub-expression; (ii) an OptionalGraphPattern if
E is used in a Disjunction sub-expression; (iii) a GraphGraphPattern if E is used
in any remaining sub-expression.

OBEP 11

ASK
FROMNAMED : BusyRoom
FROMNAMED : FreeRoom
WHERE { GRAPH : BusyRoom { ?room : armedWith ? senso r }

GRAPH : FreeRoom { ?room : armedWith ? senso r } }

Listing 1.7: SPARQL ASK query equivalent to Listing 1.6 conditions.

Listing 1.7 shows the SPARQL query equivalent to the filter at Lines 2-3 in
Listing 1.6. Having chosen SPARQL to specify filters, the evaluation scope of a
filter is a SPARQL dataset that we name the Event Dataset (EDS).

Considering a H ←G CExp, the EDS, to evaluate the filter against, is built
as follow: EDS = {(def,∅), (Ei,triples(Ak))...} where Ei ∈ named(CExp) and
(Ak,tk) ∈ JEiKtSE .

The EDS is populated with RDF graphs subsuming a logical event Ei ∈
named(CExp). It is worth to note that, since the evaluation semantics is defined
using sets, a combinatorial blow-up w.r.t. the cardinality of named(CExp) is
possible10. Nevertheless, we are using this representation only to explain the
semantics of OBEP data guards. The most common implementation [4, 7] push
the evaluation of data guards close to the related patterns, reducing drastically
the number of combinations to evaluate.

Example 10. (cont’d) The data guards for the logical events detecting, respec-
tively, BusyRoom at 8, i.e., (G1={ :ra a :Room ; :ew :sa . :sa a :DoorSensor ;
:obs [:closed a :Status] . },2,2), and FreeRoom at 8, i.e., (G2={ :ra a :Room ;
:ew :sa . :sa a :DoorSensor ; :obs [:open a :Status] . },3,3). are evaluated over
the EDS that contains {(def,∅), (BusyRoom,G1), (FreeRoom,G2)}.

We define the complex event patterns clause evaluation in presence of data
guards as follow:

J H MATCH E IF F KtST = { (A∪H(c),t1,t2) | (A,t1,t2) ∈ J H MATCH EKtST
∧ JF KEDS 6= ∅ }

To avoid meaningless filters, we must define the vocabulary that can be used
in their formulation. We chose to consider all those classes and properties used
in Logical Events, which is determined by the following function.

Given a complex event H ←G CExp, ∀ Ei ∈ named(CExp),

allowed(Ei) =

{
named(Ei) if logical Ei⋃
Ej∈named(Ei)

named(Ej) if composite E

Time Guards or Frames are functions that determine a portion of an ontology
stream, restricting the scope of an evaluation, e.g., consider the windowed stream
SE[5,15).

Complex event expressions are evaluated over a whole event stream SE . How-
ever, most of the use-cases pose strict requirements on responsiveness. Therefore,
we define the following function, which restricts the evaluation to a finite portion
of SE .

10 Virtually, the EDS is populated by all the combination of events instances.

12 R. Tommasini, et al.

WITHIN :: D × SE → SED

where D indicates a Duration, SE is an event stream and SED is a windowed event
stream. We define the complex event patterns clause evaluation in presence of
guards as follow:

JH MATCH E WITHIN ıKtSE = J H MATCH EKt
SE
[t−ı,t)

Definition 13. A Guarded Complex Event is an assertion H ←G E with H
← E a Complex Event as in Definition 7 and G an optional guard as defined
above.

Notably, the semantics of the negation is not compatible with the one of data
guards due to the impossibility of determining a vocabulary that is consistent
with the incoming data.

5 Comparison with Existing Languages

In this section, we compare EP-SPARQL and RSEP-QL with OBEP. Table 3
summarizes the comparison, listing each language operators, reasoning support
and first-class objects. Listings 1.8, 1.9, and 1.10 show the same query written
with each language respectively.

EP-SPARQL [1] is a SPARQL 1.0 extension for complex event processing
over RDF Streams. It supports the temporal operators listed in Table 3 and
Allen’s algebra relations. EP-SPARQL can answer queries over RDF streams in
combination with a RDFS background knowledge. Its syntax extends SPARQL
1.0 (see Listings 1.8), while the execution model is based on ETALIS [2].
EP-SPARQL queries are translated into ETALIS rules, flattening events and
Basic Graph Pattern (BGP) patterns to the same structure, i.e., predicates
of the form triple(s,p,o). Consequently, pattern-maching is forced to happen
at attribute level, and EP-SPARQL can handle seamlessly BGP evaluation
and event detection. However, this approach drastically reduces ETALIS
expressiveness since EP-SPARQL events are not first-class objects but triple
predicates [15].

RSEP-QL [8] extends RSP-QL [9] with event detection operators (see Table 3).
RSEP-QL pattern matching is based on basic event patterns (BEP), which are
defined extending BGP contextually to a time-preserving window operator,

Operators
Allen’s
Algebra

Reasoning Policies FCO

EP-SPARQL
SEQ, O-SEQ, EQUALS,
O-EQUALS, AND

Yes RDFS r,c,u triples

RSEP-QL FIRST, LAST, SEQ No n,r,c,u BGP

OBEP
SEQ,FIRST,
LAST,OR,AND, NOT

Yes DL u Events

Table 3: OBEP vs EP-SPARQL vs RSEP-QL. Legend: O-*=Optional,
r=recent, n=naive,c=chronological,u=unrestricted; FCO: first-class objects.

OBEP 13

named window function. BEP are labeled to allow their reuse, but labels do
not have a well-defined semantics. Event-pattern operators in RSEP-QL work
according to SPARQL operators and, thus, we can conclude that events are
not first-class object, but an abstraction build on top existing RSP-QL features
(BGP and Windows Operators).

Operators. OBEP, EP-SPARQL and RSEP-QL employ the same temporal
model based on two timestamps. Although EP-SPARQL operational semantics
is based on ETALIS, RSEP-QL showed we could redesign it using RSP-QL
primitives. Therefore, the languages are substantially similar in terms of
operators.

Selection or Consumption policies. RSEP-QL is the most expressive and fully
captures EP-SPARQL behaviors. OBEP does not specify any policy, and it
adopts an unrestricted selection which is the default for EP-SPARQL.

Syntax. As shown in the following examples, the OBEP approach results in
better organized queries than existing ones. Let’s consider the following query, a
simple extension of an example from [2]: Provide all the ranking augments that
are followed by a stock price increase, and all the ranking decrements that are
followed by a stock price decrease.

EP-SPARQL query, in Listing 1.8, requires the use of a UNION pattern,
to represent the alternatives cases. The query is not unmanageable, but it is
easy to show that it becomes too complicated when event definitions become
more complicated than one triple. Listing 1.9 reports only a sub-example of the
same query translated in RSEP-QL. Indeed, RSP-QL does not support UNION
patterns, and we are forced to create a query-network that produces the results.
Finally, Listings 1.10 shows how OBEP handles the use-case. Although OBEP
is as succinct as EP-SPARQL, the query shows a more organized structure,
providing a clear separation between event definitions and processing. Moreover,
it allows sharing, and even extending event definitions across queries, which was
not possible in EP-SPARQL and only partially in RSEP-QL.

6 Conclusion & Future Work

In this paper, we studied the foundation of Ontology-Based Event Processing
(OBEP) [18]: an approach for event definition and detection on RDF Streams.

In this paper, (i) we defined OBEP’s data and query models, and (ii) we
explained the evaluation semantics of OBEP’s operators11. Moreover, (iii) we
showed why OBEP is alternative to existing RSP approaches for event detection,
i.e., EP-SPARQL, and RSEP-QL.

Future work for OBEP comprises the introduction of synthesized events,
enabling simple analytical queries. Moreover, we aim at studying OBEP perfor-
mance systematically, investigating how different DL impact the performance.
Last but not least, we aim at combining OBEP and existing RSP approaches
towards a unified language that tames variety and velocity as well as reconciles
analytics and event detection rules [6].

11 An extended version of this paper, with more examples and all the operators seman-
tics is at https://github.com/riccardotommasini/obep

14 R. Tommasini, et al.

SELECT ?comp ? r2
WHERE {{{

{?comp : rank ? r1 } SEQ {?comp : rank ? r2 }
FILTER (? r1 < r2) }
SEQ
{{ ?comp : p r i c e ?p1 . } SEQ { ?comp : p r i c e ?p2 . }
FILTER (? p1 < ?p2 ∗0 . 5) } }

UNION
{{ {?comp : rank ? r1 } SEQ {? c : rank ? r2 }

FILTER (? r1 > r2) }
SEQ { { ?comp : p r i c e ?p1 . } SEQ { ?comp : p r i c e ?p2 . }

FILTER (? p1 > ?p2 ∗0 . 5) }}
FILTER (getDURATION() < ”P1H”ˆˆxsd : durat ion)

Listing 1.8: EP-SPARQL.

REGISTER <StockChange> CONSTRUCT { ?company : p r i c e 1 ?p1 ; p r i c e 2 ?p2 . }
FROMNAMED : S WIN [LND 1H] AS : w1
EVENT ON : w1 { ?company : p r i c e ?p1 . } AS Pr ice1
EVENT ON : w1 { ?company : p r i c e ?p2 . } AS Pr ice2
WHERE { MATCH { Price1 SEQ Price2 } }

CONSTRUCT { ?company : p r i c e ?p1 . }
FROMNAMED : S WIN [LND 1H] AS : w1
FROMNAMED : StockRaise WIN [LND 1H] AS : w2
EVENT ON : w1 { ?company : rank ? r . } AS RankChange
EVENT ON : w2 { ?company : p r i c e 1 ?p1 ; : p r i c e 2 ?p2 . } AS Pr i c eFa l l
WHERE { MATCH { RankChange SEQ Pr i c eFa l l }

FILTER (? p1 < ?p2 ∗ 0 . 5)}

Listing 1.9: RSEP-QL (Partial)

1 EVENT RankChange AS rank some .
2 EVENT StockPr ice AS p r i c e some .
3
4 EVENT UpRank MATCH RankChange AS R1 SEQ RankChange AS R2 WITHIN 1H
5 IF { EVENT R1 { ?company : rank ? r1 . }
6 EVENT R2 { ?company : rank ? r2 . }
7 FILTER (? r1 < ? r2) }
8
9 EVENT DownRank MATCH RankChange AS R1 SEQ RankChange AS R2 WITHIN 1H

10 IF { EVENT R1 { ?company : rank ? r1 . }
11 EVENT R2 { ?company : rank ? r2 . }
12 FILTER (? r1 > ? r2) }
13
14 EVENT UpPrice MATCH StockPr ice AS S1 SEQ StockPr ice AS S2 WITHIN 1H
15 IF { EVENT S1 { ?company : p r i c e ?p1 . }
16 EVENT S2 { ?company : p r i c e ?p2 . }
17 FILTER (?p2 < ?p1 ∗ 0 . 5) }
18
19 EVENT DownPrice MATCH StockPr ice AS S1 SEQ StockPr ice AS S2 WITHIN 1H
20 IF { EVENT S1 { ?company : p r i c e ?p1 . }
21 EVENT S2 { ?company : p r i c e ?p2 . }
22 FILTER (?p2 > ?p1 ∗ 0 . 5) }
23
24 EVENT Alert MATCH
25 (UpRank SEQ UpPrice) OR (DownRank SEQ DownPrice) WITHIN 1H
26 RETURN Alert AS RDF STREAM

Listing 1.10: OBEP.

OBEP 15

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. pp. 635–644 (2011)

2. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. Semantic Web 3(4), 397–407 (2012)

3. Baader, F.: The description logic handbook: Theory, implementation and applica-
tions. Cambridge university press (2003)

4. Chakravarthy, S., Mishra, D.: Snoop: An expressive event specification language
for active databases. Data Knowl. Eng. 14(1), 1–26 (1994)

5. Chen, J., Lécué, F., Pan, J.Z., Chen, H.: Learning from ontology streams with
semantic concept drift. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017. pp. 957–963 (2017), https://doi.org/10.24963/ijcai.2017/133

6. Cugola, G., et al.: Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv. 44(3), 15 (2012)

7. Cugola, G., Margara, A.: TESLA: a formally defined event specification language.
In: Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems, DEBS, Cambridge, United Kingdom (2010)

8. Dell’Aglio, D., Dao-Tran, M., Calbimonte, J., Phuoc, D.L., Della Valle, E.: A query
model to capture event pattern matching in RDF stream processing query lan-
guages. In: Knowledge Engineering and Knowledge Management - 20th Interna-
tional Conference, EKAW, Bologna, Italy (2016)

9. Dell’Aglio, D., Della Valle, E., Calbimonte, J., Corcho, Ó.: RSP-QL semantics: A
unifying query model to explain heterogeneity of RDF stream processing systems.
Int. J. Semantic Web Inf. Syst. 10(4), 17–44 (2014)

10. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
A survey and outlook 1, 59–83 (2017), 1-2

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible sroiq. Kr 6, 57–67
(2006)

12. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2001)

13. Paschke, A.: Eca-ruleml: An approach combining ECA rules with temporal
interval-based KR event/action logics and transactional update logics. CoRR ab-
s/cs/0610167 (2006)

14. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

15. Phuoc, D.L., Dao-Tran, M., Pham, M., Boncz, P.A., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: The Semantic Web - ISWC
2012 - 11th International Semantic Web Conference, Boston, MA, USA, November
11-15, 2012, Proceedings, Part II. pp. 300–312 (2012)

16. Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance
system. In: Proceedings of the 20th ACM Conference on Information and Knowl-
edge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011.
pp. 831–836 (2011), http://doi.acm.org/10.1145/2063576.2063696

17. Stuckenschmidt, H., et al.: Towards expressive stream reasoning. In: Semantic
Challenges in Sensor Networks, 24.01. - 29.01.2010 (2010)

18. Tommasini, R., Bonte, P., Della Valle, E., Mannens, E., De Turck, F., Ongenae,
F.: Towards ontology based event processing. In: OWLED2016, the International
Experiences and Directions Workshop on OWL (2016)

19. Zemke, F., Witkowski, A., Cherniack, M., Colby, L.: Pattern matching in sequences
of rows. Tech. rep., Technical Report ANSI Standard Proposal (2007)

