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ABSTRACT
We propose a new paradigm for time-series learning where users

implicitly specify families of signal shapes by choosing monotonic
parameterized signal predicates. These families of predicates (also

called specifications) can be seen as infinite Boolean feature vectors,

that are able to leverage a user’s domain expertise and have the

property that as the parameter values increase, the specification

becomes easier to satisfy. In the presence of multiple parameters,

monotonic specifications admit trade-off curves in the parameter

space, akin to Pareto fronts in multi-objective optimization, that

separate the specifications that are satisfied from those that are

not satisfied. Viewing monotonic specifications (and their trade-off

curves) as “features” for time-series data, we develop a principled

way to bestow a distance measure between signals through the lens

of a monotonic specification. A unique feature of this approach is

that, a simple Boolean predicate based on the monotonic specifica-

tion can be used to explain why any two traces (or sets of traces)

have a given distance. Given a simple enough specification, this

enables relaying at a high level “why” two signals have a certain

distance and what kind of signals lie between them. We conclude by

demonstrating our technique with two case studies that illustrate

how simple monotonic specifications can be used to craft desirable

distance measures.
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1 INTRODUCTION
Recently, there has been a proliferation of sensors that monitor

diverse kinds of real-time data. This has led to system engineers

facing a deluge of sensor data, with an urgent demand to extract

meaningful analytics from it. Of particular relevance is the data
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representing time-series behaviors or signals generated by the sys-

tems and devices being monitored through such sensors. The broad

impact of machine learning (ML) techniques for signal analysis

is tangible in domains ranging from healthcare analytics [12] to

smart transportation [6], and from autonomous driving [19] to

social media [16]. While the importance of ML-based techniques

cannot be stressed enough, there have been certain impediments

to their universal adaptation by novice users. In particular, existing

approaches to time-series learning need improvement along two

directions: (1) the models obtained through ML algorithms are diffi-

cult to interpret, and (2) engineers with domain-expertise may not

be ML experts, and are thus unable to use their domain knowledge

to guide ML tasks.

A common way to encode domain specific knowledge into an

ML task is to first transform the data into an a priori known feature
space. To ease the burden on the user, such approaches often rely on

large sets of generic features (such as those based on statistics or sig-

nal processing) coupled with dimensionality reduction techniques

to identify and recommend significant features. This automated

feature selection comes at a cost of the ability to leverage features

as a tool to further the end-user understanding of the MLmodel. For

example, a support vector machine or a clustering procedure using

generic time series features may perform well on a given data-set,

but for a given signal-trace, it is rarely clear why it gets assigned a

particular label, or why it is grouped in a particular cluster.

One notable exception is recentwork based on the idea of shapelets,
where algorithms are developed to automatically identify shape-

like features from the time-series data itself, and then use them

for classification and clustering [15, 20, 24]. In [20], the authors

extend basic shapelets to logical combinations of shapelets; in our

view this method can be extended even further to lift shape-based

reasoning to a more abstract form of logic-based reasoning where

logical formulae can specify families of shapes. In this paper, we

propose a new paradigm for time-series learning where users im-

plicitly specify families of signal shapes by choosing parameterized
signal predicates. These families of predicates (also called specifica-

tions) can be seen as infinite Boolean feature vectors, that are able

to leverage a user’s domain expertise.

Contributions. A key insight in our work is to specialize from

parameterized specifications to monotonic specifications over sig-

nals. Informally, monotonic specifications have the property that

as the parameter values increase, the specification becomes easier

to satisfy. In the presence of multiple parameters, monotonic logics

admit trade-off curves in the parameter space, akin to Pareto fronts
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in multi-objective optimization, that separate the specifications

that are satisfied from those that are not satisfied. Leveraging this

insight we provide the following contributions:

(1) The introduction of monotonic specifications (and their trade-

off curves) as a “feature” for time-series data.

(2) A principled way to bestow a distance measure between signals

through the lens of a monotonic specification. Distance measure

in hand, standard ML algorithms such as nearest neighbors

(supervised) or agglomerative clustering (unsupervised) can be

used to glean insights into the data.

(3) A simple Boolean predicate based on the monotonic specifica-

tion that can be used to explain why any two traces (or sets of

traces) have a given distance. Given a simple enough specifi-

cation, this enables relaying at a high level “why” two signals

have a certain distance and what kind of signals lie between

them.

Motivating Example. Before developing our technique, we mo-

tivate with an example that illustrates how naïve feature spaces

may fail to capture critical aspects of the data that the user may

find desirable.

Most freeways have bottlenecks that lead to traffic congestion,

and if there is a stalled or a crashed vehicle (or vehicles) at this site,

then upstream traffic congestion can severely worsen. The problem

of distinguishing a stalled vehicle from a vehicle facing regular

traffic congestion from time-series data
1
of a vehicle’s motion is

challenging, as both vehicle trajectories have common characteris-

tics such as slow average speeds, small minimum and maximum

velocities, and so on. More concretely, Fig 1 shows a series of poten-

tial time series to which we would like to assign pairwise distances

indicating the similarity (small values) or differences (large values)

between two time-series. To ease exposition, we have limited our

focus to the car’s speed. In signals 0 and 1, both cars transition from

high speed freeway driving to stop and go traffic. Conversely, in

signal 2, the car transitions from stop and go traffic to high speed

freeway driving. Signal 3 corresponds to a car slowing to a stop

and then accelerating, perhaps due to difficulty merging lanes. Fi-

nally, signal 4 signifies a car encountering no traffic and signal 5

corresponds to a car in heavy traffic, or a possibly stalled vehicle.

Suppose a user wished to find a feature space equipped with a

measure to distinguish cars being stuck in traffic. Some properties

might be:

(1) Signals 0 and 1 should be very close together since both show a

car entering stop and go traffic in nearly the same way.

(2) Signals 2, 3, and 4 should be close together since the car ulti-

mately escapes stop and go traffic.

(3) Signal 5 should be far from all other examples since it does not

represent entering or leaving stop and go traffic.

For a strawman comparison, we consider two ways the user

might assign a distance measure to the above signal space. At

first, the user might treat the signals as a series of independent

measurements and attempt to characterize the signals via standard

statistical measures on the speed and acceleration (mean, standard

deviation, etc.). Intuitively, the signal corresponding to acceleration

should indicate a change in state of the car due to encountered

1
We note that such data can be obtained from fixed mounted cameras on a freeway,

which is then converted into time-series data for individual vehicles, such as in [5].

Figure 1: Example signals of car speeds on a freeway.
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Figure 2: Statistical feature space

traffic. Similarly, the statistics on the velocity would measure if

the car was mostly stationary or moving at a high speed. Fig 2

illustrates how the example signals look in this feature space with

each component normalized between 0 and 1. The user might then

use the euclidean distance of each feature to assign a distance

between signals (the lower triangle of Fig 3). Unfortunately, in

this measure, signal 4 is not close to signal 2 or 3, violating the

second desired property. Further, signals 0 and 1 are not “very”

close together violating the first property.

Next, seeing that related signals have similar shapes, the user

then attempts to use dynamic time warping as a distance measure

(the upper triangle of Fig 3). Now signals 0 and 1 are very close

together, however, signal 3 is to close to signal 0 and signal 5 is too

close to signals 0, 1, and 2.
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Figure 3: Straw man distance measures

In the sequel, we shall show how using a simple monotonic

specification to characterize the signal produces the desired results.

Informally, the specification states

“Between time τ and 20, the car speed is always less than h.”

Fig 4 illustrates the trade-off boundaries between h and τ in-

duced by this specification and Fig 5 shows the pairwise Hausdorff

distances between each boundary. As is easily confirmed, all 3 prop-

erties desired of the clustering algorithm hold. Furthermore, as a

result of the Hausdorff distance between boundaries being equiva-

lent to the distance between two parameter values, each distance

between signals i and j is associated with a simple specification

characterizing the signals that lie between them. For example, the

dashed line in Fig 5 indicates the distance between signals 1 and 5.

Our technique associates with this distance the specification,

“Between time 0 and 20, the car speed is always less than

8/10AND between time 0 and 20, the car speed is eventually

greater than 1/10.”
which characterizes traces whose trade-off curves intersect the

dashed line.

Before concluding the example, we note the human-interpretable

property – car gets stuck in traffic – is captured by a related spec-

ification shown below; this specification gives rise to a distance

measure that makes signal 5 to be closer to signals 0 and 1 and

signal 3 to be between signals 1 and 2:

“Between time τ and 20, the car speed is always less than

h AND between time τ ′ and 20, the car speed is always

greater than h′”.

Note that above human-interpretable specifications that enable

clustering and classification are not obtained in an ad hoc fashion.
In fact, these specifications are instantiations of signal predicates

specified in a formal logic for time-series data known as Parametric

Signal Temporal Logic (PSTL). PSTL is a logic originally devel-

oped for specifying signals in analog hardware circuits, and later

extended to various domains including the automotive [8] and ro-

botics [9]. It also is the underlying language for the specification

library ST-Lib [7] used for embedded control specifications. While

Figure 4: Trade-off boundaries in specification.
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Figure 5: Boundary Hausdorff Distances

monotonic PSTL is a rich language that can specify many complex

time-varying behaviors, we emphasize that end-users need not be

experts in formal logics to use our techniques. In particular, one

can create complex PSTL templates by composing simpler easier to

understand templates.

2 PRELIMINARIES
The main object of analysis in this paper are time series.

Definition 2.1 (Time Series, Time Languages). LetT be a countable

subset ofR≥0 andD be some non empty set. A time series (or signal

or trace), x is a map:

x : T → D (1)

Where T and D are called the time domain and (value) domain

respectively. The set of all time series is denoted by DT
.

Between any two time series one can define a metric
2
which

measures their similarity.

2
In this work we often conflate pseudo metrics and metrics for simplicity.
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Definition 2.2 (Metric). Given a set X , a metric is a map,

d : X × X → R≥0 (2)

such that d(x ,y) = d(y,x), d(x ,y) = 0 ⇐⇒ x = y, d(x , z) ≤
d(x ,y) + d(y, z).

Example 2.3 (Euclidean distance and Infinity Norm Metrics). The
euclidean distance between two vectors is a metric d2(®x , ®y)

def

=√
®x · ®y. Similarly, the infinity norm induced distance d∞(®x , ®y)

def

=

maxi (|xi − yi |) is a metric.

Example 2.4 (Hausdorff Distance). Given a set X with a distance

metricd , the hausdorff distance is a distance metric between subsets

of X . Namely, given subsets A,B ⊆ X :

dH (A,B)
def

= max

(
sup

x ∈A
inf

y∈B
(d(x ,y)), sup

y∈B
inf

x ∈A
(d(y,x))

)
(3)

An ideal metric between traces should respect any domain spe-

cific properties that make two elements “similar”.
3
A (logical) prop-

erty φ assigns to each timed trace a truth value, and can be viewed

as the subset of traces that have the property.

Definition 2.5 (Specification). A specification is a set of time series

φ ⊆ DT
. A time series, x, is said to satisfy a specification iff x ∈ φ.

The set of all specifications is the power set of DT
, P

(
DT

)
.

Example 2.6. Consider the following specification related to the

specification from the running example:

ϕex
def

= {x | t > 0.2 =⇒ x(t) < 1} (4)

Informally, this specification says that after t = 0.2, the value of

the time series, x(t), is always less than 1.

Given a finite number of properties, one can then “fingerprint”

a time series as a Boolean feature vector. However, many times the

relevant properties are not easily captured by a finite sequence of

binary features. For example, one might image a single real valued

feature f (x(t)) taking values between 0 and 1. This feature encodes

an uncountably infinite family of Boolean features f (x(t)) = k for

k ∈ [0, 1]. Such families are called parametric specifications. For

simplicity, we assume that the parameters are a subset of the unit

hyper-square.

Definition 2.7 (Parametric Specifications). A parametric specifica-

tion is a map:

φ : [0, 1]n → P
(
DT

)
(5)

where n ∈ N is the number of parameters.

As seen above, parametric specifications arise naturally from syn-

tactically substituting constants with parameters in the description

of a specification.

Example 2.8. The parametric specification given in the introduc-

tion can be formalized substituting τ for 0.2 and h for 1 in Ex 2.6.

φex (τ ,h)
def

= {x | t > τ =⇒ x(t) < h} (6)

3
Colloquially, if it looks like a duck and quacks like a duck, it should have a small (or

zero) distance to a duck.

Figure 6: On the right are the validity domains for the traces,
x1,x2,x3 w.r.t. φex . The green region is the intersection of all
three validity domains. Observe that the validity domains of
x2(t) and x3(t) are equivalent under this specification.

To generalize the “fingerprint” of a time series for parametric

specifications, first observe that the value of a boolean feature vector

is exactly determined by which entries are set to True. Analogously,

the set of parameter values for which a parameterized specification,

φ, would yield true on a given trace, called the validity domain, acts

the “fingerprint”.

Definition 2.9 (Validity domain, Validity domain boundary). Given
a parametric specification of n parameters and a trace x, the validity
domain is the set,

Vx(φ)
def

=
{
θ ∈ [0, 1]n | x ∈ f (θ )

}
(7)

In general, the validity domain can be arbitrarly complex which

makes developing a distance metric between validity domains sub-

tle. We circumvent such hurdles by specializing to monotonic spec-

ifications, for which the validity domains are remarkably simple.

Definition 2.10 (Monotonic Specifications). A parametric specifi-

cation is said to be monotonic if

θ ≤ θ ′ =⇒ f (θ ) ⊆ f (θ ′) (8)

where ≤ is the standard product ordering on [0, 1]n .
Before examining the validity domain of monotonic specifica-

tions, observe that the parametric specification in Ex 2.8 (and thus

intro example) is monotonic.

Proposition 2.11. Given a monotonic specification, φ and a time
series x, the boundary of the validity domain, ∂Vx (φ), of a mono-
tonic specification is a hyper-surface that segments [0, 1]n into two
connected components.

In the sequel, we develop a distance metric between validity

domains which characterizes the similarity between two time series

under the lens of a monotonic specification.

3 LOGIC-RESPECTING DISTANCE METRIC
Observe that the validity domains of monotonic specifications are

uniquely defined by the hyper surface that separates them from

the rest of the parameter space. Similar to Pareto fronts in a multi-

objective optimization, these boundaries encode the trade-offs re-

quired in each parameter to make the specification satisfied for

a given time series. This suggests a simple procedure to define a

distance metric between time series that respects their logical prop-

erties: Given a monotonic specification, a set of time series, and a

distance metric between validity domain boundaries:
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Figure 7: Illustration of Hausdorff distance between x1(t)
and x2(t) from Fig 6. On the left the boundaries are shown
and on the right the key points responsible for the Haus-
dorff distance are shown.

(1) Compute the validity domain boundaries for each time series.

(2) Compute a distance between the validity domain boundaries.

Of course, the benefits of using this metric would rely entirely

on whether (i) The monotonic specification captures the relevant

domain specific details (ii) The distance between validity domain

boundaries is (in)sensitive to outliers. While the choice of specifica-

tion is highly domain specific, we argue that for many monotonic

specifications, the distance metric should be sensitive to outliers

as this represents a large deviation from the specification. This

sensitivity requirement seems particularly apt if the size of the

specification grows linearly or super linearly as the parameters

increase. To this end, we propose using Hausdorff distance between

validity domains for three reasons:

(1) The Hausdorff distance is sensitive to outliers.

(2) The Hausdorff distance between two boundaries reduces to

the distance between two parameters from each boundary.

These elements explain why the boundaries differ.

(3) If two boundaries have Hausdorff distance d∗ , if one bound-
ary proposes a parameter (and thus specification), the other

boundary must have a parameter (specification) within d∗

units of distance. Thus, the Hausdorff distance measures how

well the two validity domains can simulate each other.

We define our new distance metric between time series as:

Definition 3.1. Given a monotonic specification φ : [0, 1]n →
P

(
DT

)
and a distance metric on the parameter space ([0, 1]n ,d),

the logical distance between two time series, x(t), y(t) ∈ DT
is:

dφ (x(t), y(t))
def

= dH
(
∂Vx(φ), ∂Vy(φ)

)
(9)

As shown in the introduction, the property for the Hausdorff dis-

tance between two boundaries (signals) to reduce to the Hausdorff

distance between two parameter values (and thus specifications)

can be leveraged to describe the set of signals that lie “between” the

signals. More precisely, if parameters θ and θ ′ are responsible for
the Hausdorff distance of signals i and j, by signals “between” we

mean all signals k whose validity domain boundary intersects the

straight line from i to j . If using the infinity norm as the parameter

space distance metric, then this line corresponds to a degenerate

1-d hyper-box whose specification [23] is given by:

φ(θ ′) ∩
(
[0, 1]n \ φ(θ )

)
(10)

Figure 8: Illustration of procedure introduced in [17] to re-
cursively approximate a validity domain boundary to arbi-
trary precision.

or in logical notation

φ(θ ′) ∧ ¬φ(θ ) (11)

where we have assumed w.o.l.o.g that θ ≤ θ ′.

Proposition 3.2. As Eq 10 excludes signals whose boundaries are
above and below θ ′ and θ resp., the boundaries corresponding to each
signal in Eq 10 must intersect with the line between θ and θ ′.

3.1 Computing the Logical Distance
Before continuing onto the case studies, we briefly discuss how to

compute the logical distance metric. First and foremost, a validity

domain boundary of a monotonic specification can be recursively

approximated to arbitrary precision via binary search on the di-

agonal of the parameter space [17]. This approximation yields a

series of overlapping axis aligned rectangles that are guaranteed to

contain the boundary (see Fig 8). Given enough precision, one can

then sample points within each rectangle and compute the point

wise Hausdorff distance [21]. Alg 1 describes the above procedure

as pseudo-code.

Algorithm 1 Compute Logical Distance

1: function logicalDist(φ, x, y, ([0, 1]n ,d))
2: recSetx ← approx_boundary(x,φ)
3: recSety ← approx_boundary(x,φ)
4: pointsx ←

⋃
r ∈rec_setx samplePoints(r )

5: pointsy ←
⋃
r ∈rec_sety samplePoints(r )

6: return Hausdorff(pointsx, pointsy,d)

In our implementation [22], the boundary approximations occur

in parallel andwe use infinity norm for the distance in the parameter

space. This enables a straight forward calculation to obtain upper

and lower bounds by analyzing the rectangles directly.

Regarding scaling, we briefly remark that properly normalizing

and pruning rectangles in theHausdorff approximation is absolutely

necessary to get moderate performance. In the worst case, the

number of rectangles required to approximate the boundary scales

exponentially and the Hausdorff distance is quadratic (although

each part of the computation is embarrassingly parallel).

4 CASE STUDIES
In our case studies we utilized Parametric Signal Temporal Logic

(PSTL) as a formalism/language to encode specifications.
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4.1 PSTL as a Feature Design Language
Real-time temporal logics are a formalism for reasoning about finite

or infinite timed series. These logics add to propositional logic

modal operators to encode temporal concepts. Signal Temporal

Logic [18] was proposed in the context of analog and mixed-signal

circuits as a specification language for real-valued signals.

Signal Temporal Logic. Atoms in STL formulas take the form

f (x) ∼ c , where f is a function from D to R, ∼∈ {≥, ≤,=}, and
c ∈ R. Temporal formulas are formed using temporal operators,

“globally” (denoted as G), “in the future” (denoted as F) and “until”

(denoted as U) that can each be indexed by an interval I .

Definition 4.1 (Signal Temporal Logic). A formula in Signal Tem-

poral Logic is syntactically defined via the grammar:

I := (a,b) | (a,b] | [a,b) | [a,b]
φ := true | f (x) ∼ c | ¬φ | φ1 ∧ φ2 | φ1 UI φ2

(12)

In the above grammar, a,b ∈ T , and c ∈ R. The globally (G) and
in the future (F) operators are defined syntactic sugar for special

cases of the until operator: FIφ ≜ trueUI φ, andGIφ ≜ ¬FI¬φ. We

use the notation (x, t) |= φ to mean that the suffix of the timed trace

x beginning at time t satisfies the formula φ. The formal semantics

of an STL formula are defined recursively:

(x, t) |= f (x) ∼ c ⇐⇒ f (x(t)) ∼ c is true
(x, t) |= ¬φ ⇐⇒ (x, t) ⊭ φ
(x, t) |= φ1 ∧ φ2 ⇐⇒ (x, t) |= φ1 ∧ (x, t) |= φ2
(x, t) |= φ1 UI φ2 ⇐⇒ ∃t1 ∈ t ⊕ I : (x, t1) |= φ2 ∧

∀t2 ∈ [t , t1) : (x, t2) |= φ1

We write x |= φ as a shorthand of (x, 0) |= φ.

Example 4.2. The running example specification, ϕex , can en-

coded in STL as:

ϕex = G[0.2,∞)(x < 1) (13)

which reads “Always between t=0.2 and infinity, x(t) is less than 1”.

Parametric STL (PSTL) and Monotonic STL. PSTL [1] is a nat-

ural extension of STL that syntactically replaces constants within a

STL formula with constants. The polar fragment of PSTL [1] is a

syntactically identifiable subset of PSTL that are monotonic specifi-

cations in accordance to Def 2.10. The details and formal definition

of this fragment are outside the scope of this work; however, all

PSTL formula given are monotonic and in the polar fragment.

Example 4.3. The parametric specification, φex (τ ,h) can be en-

coded as PSTL as:

φex (h,τ ) = G[τ ,∞)(x < h) (14)

4.2 Case Study 1
In this case study, we take our running example, and attempt to

apply the same (or similar) templates to real traffic data. To improve

driver and traffic on highways, the Federal Highway Administration

collected detailed traffic data on southbound US-101 freeway, in

Los Angeles [5]. Traffic through the segment was monitored and

recorded through eight synchronized cameras, next to the freeway.

A total of 45 minutes of traffic data was recorded including vehicle

trajectory data providing lane positions of each vehicle within the

study area.

We picked three 80 seconds velocity trajectories, and split them

into 20 second segments. We analyzed the resulting 12 segments

using the following monotonic specifications,

ϕec (τ ,a) = G[τ ,∞](v(t) ≤ a)
ϕlc (τ ,a) = G[τ ,∞](v(t) ≥ 60 − a) (15)

where ϕec and ϕlc characterizes trajectories where a car potentially
enters and leaves high congestion areas respectively. We combine

the features by averaging their logical distances. Fig 9 shows the

corresponding the resulting pairwise distances and clustering den-

dogram (signals from each clusters are shown in Fig 10). Cluster 0

Figure 9: Cluster map corresponding to features ϕec and ϕlc
on Highway 101 data.

contains trajectories leaving high congestion and hence the veloc-

ity increases towards the end of the trajectory. Cluster 1 contains

trajectories entering high congestion, shown by the decrease in

velocity. Cluster 2 shows the trajectories that enter and leave high

congestion areas in the same segment. Finally cluster 3 indicates

entering moderate congestion. Observe that these clusters are re-

markably similar to the toy example templates from our running

example.

4.3 Case Study 2 - CPS Grader
Massively Open Online Courses (MOOCs) present instructors the

opportunity to learn from a large amount of collected data to auto-

matically identify common correct solutions and mistakes. Devel-

oping automatic grading systems for CyberPhysical System (CPS)

MOOCs using simulation presents a particularly unique challenge.

Juniwal et al. [11] demonstrated a semi-supervised procedure for

a CPS MOOC that first used dynamic time warping to cluster traces

of student solutions, asked the instructor to label representatives

from the clusters, and then extracted a STL formula from a PSTL

template that characterized the cluster. Vazquez-Chanlatte et al. [23]

provided an unsupervised technique which used PSTL templates

from [11] to induce a distance metric that reproduced an arbitrarily

chosen subset of the results from [11]. This distance metric required

the user to provide an a priori total ordering on the parameter

space which was used to select a single representative point on the
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Figure 10: Clusters corresponding to the cluster map in Fig 9

boundary of the validity domain. Then for each signal, the distance

between representative points served as the distance metric for

the signals. Thus, while the PSTL induced distance lessened the

labeling burden (since under the PSTL template, many superficially

different clusters become equivalent), the total orderings required a

fair amount of expertise to craft. In this experiment, we demonstrate

that simple PSTL templates along with the logical distance (Eq (9))

can be used to reproduce the results of [11] without labeled data

and without an a priori total ordering on the parameter space.

Figure 11: Cartoon illustration of the simulation task, where
a robot bypasses an obstacle, and then reorients.

To illustrate, we focus on two tests centered around a simulated

robot interactingwith an obstacle. The robot is expected to (i) collide

with the obstacle, (ii) bypass the obstacle, (iii) reorient to it’s pre-

collision orientation, and (iv) continue moving in the pre-collision

orientation (see Fig 11). We use the following two PSTL templates

(derived from [11]) to characterize the obstacle avoidance and re-

orientation phase respectively. Crucially, when instantiated with

particular parameters, these templates are essentially the actual

specification of the robot.

φavoid (τ1,h1) = F[0,τ1](pos .y < h1) (16)

φr eor ient (τ2,h2) = G[0,60−τ2](pos .x ≤ h2) (17)

Our goal is to develop a distance metric, where similar solutions

and failure modes are grouped together.

Figure 12: Representative sample of student submissions for
obstacle avoidance task. A correct submission will tend to-
wards the bottom right corner.

Figure 13: φavoid boundaries.

Consider the representative sample of student submissions show

in Fig 12. Signal 0 shows a submission that never moves. Signal

1 shows a submission that continually collides with the obstacle.

Signal 2 shows a submission that collides with the obstacle and then

slides around the obstacle as it attempts to by bypass it. Signals 3

and 5 show two solutions going around the obstacle in two different

ways. Signal 4 shows a submission that bypassed the obstacle, but

failed to reorient.

The validity domain boundaries for φavoid and φr eor ient are
shown in Fig 13 and Fig 14 respectively. Observe that through the

lens of φavoid , the signals that avoid the obstacle (3, 4, and 5) are

correctly separated from signals the signals that do not (0, 1, 2).

Similarly, through the lens of the reorient template, the signals that

reorient (3,5) are separated from the signals that do not reorient

(0,1,2,4). We averaged the logical distance (eq (9)) for both templates

yielding the adjacency matrix and dendogram shown in Fig 15.

Note that the first layer of the dendogram separates solutions that

correctly avoided the obstacle. Within the avoided obstacle group,

signals 3 and 5 are correctly grouped together since they both

reoriented.
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Figure 14: φr eor ient boundaries.

Figure 15: Resulting pairwise distances and dendogram of
the averaged logical distances of φavoid and φr eor ient .

5 RELATEDWORK
Time-series clustering and classification is a well-studied area in

the domain of machine learning and data mining [14]. Time series

clustering that work with raw time-series data combine clustering

schemes such as agglomerative clustering, hierarchical clustering,k-
means clustering among others, with similarity measures between

time-series data such as the dynamic time-warping (DTW) distance,

statistical measures and information-theoretic measures. Feature-

extraction based methods typically use generic sets of features,

but algorithmic selection of the right set of meaningful features is

a challenge. Finally, there are model-based approaches that seek

an underlying generative model for the time-series data, and typi-

cally require extra assumptions on the data such as linearity or the

Markovian property. Please see [14] for detailed references to each

approach. It should be noted that historically time-series learning

focused on univariate time-series, and extensions to multivariate

time-series data have been relatively recent developments.

More recent work has focused on automatically identifying fea-

tures from the data itself, such as the work on shapelets [15, 20, 24],
where instead of comparing entire time-series data using similarity

measures, algorithms to automatically identify distinguishing mo-

tifs in the data have been developed. These motifs or shapelets serve

not only as features for ML tasks, but also provide visual feedback

to the user explaining why a classification or clustering task labels

given data in a certain way. While we draw inspiration from this

general idea, we seek to expand it to consider logical shapes in the

data, which would allow leveraging user’s domain expertise.

Automatic identification of motifs or basis functions from the

data while useful in several documented case studies, comes with

some limitations. For example, in [2], the authors define a subspace

clustering algorithm, where given a set of time-series curves, the

algorithm identifies a subspace among the curves such that every

curve in the given set can be expressed as a linear combination

of a deformations of the curves in the subspace. We note that the

authors observe that it may be difficult to associate the natural

clustering structure with specific predicates over the data (such as

patient outcome in a hospital setting).

The use of logical formulas for learning properties of time-series

has slowly been gaining momentum in communities outside of

traditional machine learning and data mining [3, 4, 10, 13]. Here,

fragments of Signal Temporal Logic have been used to perform tasks

such as supervised and unsupervised learning. A key distinction

from these approaches is our use of libraries of signal predicates that

encode domain expertise that allow human-interpretable clusters

and classifiers.

Finally, preliminary exploration of this idea appeared in prior

work by some of the co-authors in [23]. The key difference is the

previous work required users to provide a ranking of parameters

appearing in a signal predicate, in order to project time-series data

to unique points in the parameter space. We remove this additional

burden on the user in this paper by proposing a generalization that

projects time-series signals to trade-off curves in the parameter

space, and then using these curves as features.

6 CONCLUSION AND FUTUREWORK
We proposed a new paradigm for time-series learning centered

around using the validity domain boundaries of monotonic parame-
terized specifications to induce distance measures that respect the

logicical characteristic of the specification. A unique feature of this

approach is that, a simple Boolean predicate based on the mono-

tonic specification can be used to explain why any two traces (or

sets of traces) have a given distance. We concluded by demonstrat-

ing our technique with two case studies that illustrate how simple

monotonic specifications can be used to craft desirable distance

measures. Future work includes applying these techniques to larger

data sets, investigating how to the leverage massively parallel nat-

ural in the boundary and Hausdorff computation using graphical

processing units, and characterizing alternative boundary distances

such as the average distance.
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