Lecture Notes in Computer Science

11239

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Zurich, Switzerland

John C. Mitchell

Stanford University, Stanford, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen

TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Amos Beimel · Stefan Dziembowski (Eds.)

Theory of Cryptography

16th International Conference, TCC 2018 Panaji, India, November 11–14, 2018 Proceedings, Part I

Editors
Amos Beimel
Ben Gurion University
Beer Sheva, Israel

Stefan Dziembowski University of Warsaw Warsaw, Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-03806-9 ISBN 978-3-030-03807-6 (eBook) https://doi.org/10.1007/978-3-030-03807-6

Library of Congress Control Number: 2018960441

LNCS Sublibrary: SL4 - Security and Cryptology

© International Association for Cryptologic Research 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 16th Theory of Cryptography Conference (TCC 2018) was held during November 11–14, 2018, at the Cidade de Goa hotel, in Panaji, Goa, India. It was sponsored by the International Association for Cryptologic Research (IACR). The general chairs of the conference were Shweta Agrawal and Manoj Prabhakaran. We would like to thank them for their hard work in organizing the conference.

The conference received 168 submissions, of which the Program Committee (PC) selected 50 for presentation (with two pairs of papers sharing a single presentation slot per pair). Each submission was reviewed by at least three PC members, often more. The 30 PC members (including PC chairs), all top researchers in our field, were helped by 211 external reviewers, who were consulted when appropriate. These proceedings consist of the revised version of the 50 accepted papers. The revisions were not reviewed, and the authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi's excellent Web-review software, and are extremely grateful to him for writing it, and for providing fast and reliable technical support whenever we had any questions. Based on the experience from previous years, we again made use of the interaction feature supported by the review software, where PC members may anonymously interact with authors. This was used to ask specific technical questions, such as suspected bugs. We felt this approach helped us prevent potential misunderstandings and improved the quality of the review process.

This was the fifth year that TCC presented the Test of Time Award to an outstanding paper that was published at TCC at least eight years ago, making a significant contribution to the theory of cryptography, preferably with influence also in other areas of cryptography, theory, and beyond. This year the Test of Time Award Committee selected the following paper, published at TCC 2005: "Evaluating 2-DNF Formulas on Ciphertexts" by Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. This paper was selected for introducing compact two-operation homomorphic encryption and developing new bilinear map techniques that led to major improvements in the design of cryptographic schemes. The authors were also invited to deliver a talk at TCC 2018. A Best Student Paper Award was given to Tianren Liu for his paper "On Basing Search SIVP on NP-Hardness."

The conference also featured two other invited talks, by Moni Naor and by Daniel Wichs.

We are greatly indebted to many people who were involved in making TCC 2018 a success. First of all, a big thanks to the most important contributors: all the authors who submitted papers to the conference. Next, we would like to thank the PC members for their hard work, dedication, and diligence in reviewing the papers, verifying the correctness, and in-depth discussion. We are also thankful to the external reviewers for their volunteered hard work and investment in reviewing papers and answering questions, often under time pressure. For running the conference itself, we are very grateful to the general chairs, Shweta Agrawal and Manoj Prabhakaran. We appreciate

VI Preface

the sponsorship from the IACR, Microsoft Research, IBM, and Google. We also wish to thank IIT Madras and IIT Bombay for their support. Finally, we are thankful to the TCC Steering Committee as well as the entire thriving and vibrant TCC community.

November 2018

Amos Beimel Stefan Dziembowski TCC 2018 Program Chairs

TCC 2018

The 16th Theory of Cryptography Conference

Goa, India

November 11-14, 2018

Sponsored by the International Association for Cryptologic Research

General Chairs

Shweta Agrawal Indian Institute of Technology, Madras, India Manoj Prabhakaran Indian Institute of Technology, Bombay, India

Program Committee

Masayuki Abe NTT and Kyoto University, Japan

Divesh Aggarwal National University of Singapore, Singapore Shweta Agrawal Indian Institute of Technology, Madras, India

Gilad Asharov Cornell Tech, USA

Amos Beimel (Co-chair) Ben-Gurion University, Israel

Andrej Bogdanov The Chinese University of Hong Kong, SAR China

Zvika Brakerski Weizmann Institute of Science, Israel

Nishanth Chandran Microsoft Research, India Stefan Dziembowski University of Warsaw, Poland

(Co-chair)

Sebastian Faust TU Darmstadt, Germany
Marc Fischlin TU Darmstadt, Germany
Iftach Haitner Tel Aviv University, Israel
Martin Hirt ETH Zurich, Switzerland

Pavel Hubáček Charles University in Prague, Czech Republic

Aggelos Kiayias University of Edinburgh, UK

Eyal Kushilevitz Technion, Israel

Anna Lysyanskaya Brown University, USA
Tal Malkin Columbia University, USA
Eran Omri Ariel University, Israel

Chris Peikert University of Michigan – Ann Arbor, USA

Krzysztof Pietrzak IST Austria, Austria
Antigoni Polychroniadou Cornell University, USA
Alon Rosen IDC Herzliya, Israel

Mike Rosulek Oregon State University, USA

Vinod Vaikuntanathan MIT, USA

Ivan Visconti University of Salerno, Italy Hoeteck Wee CNRS and ENS, France Mor Weiss Northeastern University, USA
Stefan Wolf University of Lugano, Switzerland
Vassilis Zikas University of Edinburgh, UK

TCC Steering Committee

Ivan Damgård Aarhus University, Denmark

Shai Halevi (Chair) IBM Research, USA

Huijia (Rachel) Lin UCSB, USA

Tal Malkin Columbia University, USA

Ueli Maurer ETH, Switzerland

Moni Naor Weizmann Institute of Science, Israel

Manoj Prabhakaran Indian Institute of Technology, Bombay, India

Additional Reviewers

David Cash Aydin Abadi Romain Gay Shashank Agrawal Anrin Chakraborti Peter Gazi Adi Akavia Yilei Chen Ran Gelles Navid Alamati Ilaria Chillotti Badih Ghazi Ghada Almashaqbeh Wutichai Chongchitmate Satrajit Ghosh Michele Ciampi Bar Alon Irene Giacomelli Joel Alwen Ran Cohen Junging Gong Prabhanjan Ananth Xavier Coiteux-Roy Dov Gordon Sandro Coretti Paul Grubbs Megumi Ando

Benny Applebaum Geoffroy Couteau Cyprien de Saint Guilhem

Frederik Armknecht Dana Dachman-Soled Siyao Guo Christian Badertscher Pratish Datta Divya Gupta Saikrishna Bernardo David Arne Hansen Badrinarayanan Jean Paul Degabriele Patrick Harasser Karim Baghery Akshay Degwekar Prahladh Harsha Julia Hesse

Marshall Ball Apoorvaa Deshpande Julia Hesse
Fabio Banfi Nico Döttling Minki Hhan
Laasya Bangalore Lisa Eckey Ryo Hiromasa
Carsten Baum Naomi Ephraim Justin Holmgren
Aner Ben-Efraim Omar Fawzi Kristina Hostakova

Fabrice Benhamouda Serge Fehr Yuval Ishai Nir Bitansky Matthias Fitzi Muhammad Ishaq Jonathan Bootle Nils Fleischhacker Zahra Jafargholi

Cecilia BoschiniGeorg FuchsbauerTibor JagerFlorian BourseEiichiro FujisakiAayush JainElette BoyleSteven GalbreithAbhishek JainAnne BroadbentChaya GaneshDaniel Jost

Brent Carmer Adria Gascon Bruce Kapron

Tomasz Kazana Dakshita Khurana Jiseung Kim Sam Kim Fuyuki Kitagawa Susumu Kiyoshima Karen Klein Ilan Komargodski Orestis Konstantinidis Venkata Koppula Lucas Kowalczyk Daniel Kraschewski Mukul Kulkarni Ashutosh Kumar Rajendra Kumar Benjamin Kuykendall Rio LaVinge Changmin Lee Moon Sung Lee Nikos Leonardos Xiao Liang Jyun-Jie Liao Chengyu Lin Huijia (Rachel) Lin Feng-Hao Liu Oipeng Liu Tianren Liu Yi-Kai Liu Chen-Da Liu Zhang Alex Lombardi

Alex Lombardi
Julian Loss
Steve Lu
Yun Lu
Vadim Lyubashevsky
Urmila Mahadev
Mohammad Mahmoody
Subhamoy Maitra
Nikolaos Makriyannis
Takahiro Matsuda
Christian Matt
Jeremias Mechler
Peihan Miao

Daniele Micciancio Michele Minelli Konstantinos Mitropoulos Tarik Moataz Fabrice Mouhartem Tamer Mour Pratyay Mukherjee Priyanka Mukhopadhyay Marta Mularczyk Jörn Müller-Quade Kartik Nayak **Tobias Nilges** Chinmay Nirkhe Ryo Nishimaki Sai Lakshmi Bhavana Obbattu

Obbattu
Maciej Obremski
Miyako Ohkubo
Georgios Panagiotakos
Omer Paneth
Anat Paskin-Cherniavsky
Valerio Pastro
Serdar Pehlivanoglu

Renen Perlman Giuseppe Persiano Thomas Peters Christopher Portmann Srinivasan Raghuraman Govind Ramnarayan Samuel Ranellucci

Michael Raskin Michael Riabzev João Ribeiro Silas Richelson Felix Rohrbach Lior Rotem Paul Rösler

Paul Rösler
Manuel Sabin
Katerina Samari
Alessandra Scafuro
Giannicola Scarpa
Peter Scholl

Adam Sealfon Sruthi Sekar Yannick Seurin Sina Shiehian Tom Shrimpton Luisa Siniscalchi Veronika Slivova Pratik Soni Nick Spooner

Akshayaram Srinivasan Martjin Stam John Steinberger

Noah

Stephens-Davidowitz

Qiang Tang
Stefano Tessaro
Ni Trieu
Rotem Tsabary
Yiannis Tselekounis
Margarita Vald
Prashant Vasudevan
Muthuramakrishnan
Venkitasubramaniam

Satyanarayana Vusirikala

Hendrik Waldner Petros Wallden Michael Walter Xiao Wang

Daniele Venturi

Christopher Williamson

David Wu Keita Xagawa Yu Yu Shota Yamada Takashi Yamakawa

Kevin Yeo
Eylon Yogev
Thomas Zacharias
Mark Zhandry
Jiamin Zhu
Dionysis Zindros
Giorgos Zirdelis

Contents – Part I

Memory-Hard Functions and Complexity Theory	
Provable Time-Memory Trade-Offs: Symmetric Cryptography Against Memory-Bounded Adversaries	3
Static-Memory-Hard Functions, and Modeling the Cost of Space vs. Time Thaddeus Dryja, Quanquan C. Liu, and Sunoo Park	33
No-signaling Linear PCPs	67
On Basing Search SIVP on NP-Hardness	98
Two-Round MPC Protocols	
Two-Round MPC: Information-Theoretic and Black-Box	123
Perfect Secure Computation in Two Rounds	152
Two-Round Adaptively Secure Multiparty Computation from Standard Assumptions	175
Zero Knowledge	
One-Message Zero Knowledge and Non-malleable Commitments	209
Smooth NIZK Arguments	235
Round-Optimal Fully Black-Box Zero-Knowledge Arguments from One-Way Permutations	263
Round Optimal Black-Box "Commit-and-Prove"	286

Information-Theoretic Cryptography

On the Power of Amortization in Secret Sharing: d-Uniform Secret Sharing and CDS with Constant Information Rate Benny Applebaum and Barak Arkis	317
Information-Theoretic Secret-Key Agreement: The Asymptotically Tight Relation Between the Secret-Key Rate and the Channel Quality Ratio Daniel Jost, Ueli Maurer, and João L. Ribeiro	345
Information-Theoretic Broadcast with Dishonest Majority for Long Messages	370
Oblivious Transfer in Incomplete Networks	389
Trapdoor Permutations and Signatures	
Injective Trapdoor Functions via Derandomization: How Strong is Rudich's Black-Box Barrier?	421
Enhancements are Blackbox Non-trivial: Impossibility of Enhanced Trapdoor Permutations from Standard Trapdoor Permutations Mohammad Hajiabadi	448
Certifying Trapdoor Permutations, Revisited	476
On the Security Loss of Unique Signatures	507
Coin-Tossing and Fairness	
On the Complexity of Fair Coin Flipping	539
Game Theoretic Notions of Fairness in Multi-party Coin Toss	563
Achieving Fair Treatment in Algorithmic Classification	597

Contents – Part I	XIII
Functional and Identity-Based Encryption	
Upgrading to Functional Encryption	629
Impossibility of Simulation Secure Functional Encryption Even with Random Oracles	659
Registration-Based Encryption: Removing Private-Key Generator from IBE	689
Author Index	719

Contents - Part II

	~ .	_			
MP		Ρr	'nt	റവ	S

Topology-Hiding Computation Beyond Semi-Honest Adversaries	3
Secure Computation Using Leaky Correlations (Asymptotically Optimal Constructions)	36
Fine-Grained Secure Computation	66
On the Structure of Unconditional UC Hybrid Protocols	98
Order-Revealing Encryption and Symmetric Encryption	
Impossibility of Order-Revealing Encryption in Idealized Models	129
A Ciphertext-Size Lower Bound for Order-Preserving Encryption with Limited Leakage	159
Ciphertext Expansion in Limited-Leakage Order-Preserving Encryption: A Tight Computational Lower Bound	177
Towards Tight Security of Cascaded LRW2	192
Information-Theoretic Cryptography II and Quantum Cryptography	
Continuous NMC Secure Against Permutations and Overwrites, with Applications to CCA Secure Commitments	225
Best Possible Information-Theoretic MPC	255

Secure Certification of Mixed Quantum States with Application to Two-Party Randomness Generation	282
Classical Proofs for the Quantum Collapsing Property of Classical Hash Functions	315
LWE-Based Cryptography	
Traitor-Tracing from LWE Made Simple and Attribute-Based Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs	341
Two-Message Statistically Sender-Private OT from LWE	370
Adaptively Secure Distributed PRFs from LWE	391
iO and Authentication	
A Simple Construction of iO for Turing Machines	425
Succinct Garbling Schemes from Functional Encryption Through a Local Simulation Paradigm	455
FE and iO for Turing Machines from Minimal Assumptions	473
The MMap Strikes Back: Obfuscation and New Multilinear Maps Immune to CLT13 Zeroizing Attacks	513
Return of GGH15: Provable Security Against Zeroizing Attacks James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry	544
The Security of Lazy Users in Out-of-Band Authentication	575
ORAM and PRF	
Is There an Oblivious RAM Lower Bound for Online Reads?	603

Contents – Part II	XVII
Perfectly Secure Oblivious Parallel RAM	636
Watermarking PRFs Under Standard Assumptions: Public Marking and Security with Extraction Queries	669
Exploring Crypto Dark Matter: New Simple PRF Candidates and Their Applications	699
Author Index	731