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Abstract. Optimising the energy consumption is one of the most im-
portant issues in scheduling nowadays. In this work we consider a multi-
objective optimisation for the well-known job-shop scheduling problem.
In particular, we minimise the makespan and the energy consumption at
the same time. We consider a realistic energy model where each machine
can be in Off, Stand-by, Idle or Working state. We design an effective
constraint-programming approach to optimise both the energy consump-
tion and the makespan of the solutions. Experimental results illustrate
the potential of the proposed method, outperforming the results of the
current state of the art in this problem.

Keywords: Constraint-programming - job-shop scheduling - energy con-
siderations - multi-objective optimisation.

1 Introduction

The job shop is a scheduling problem widely studied in the literature due to the
fact that it is a model which is close to many real production environments. It
is proven that the job shop is NP-hard, and so its resolution is very complex.
In the literature we can find many different solving approaches for the job shop,
from exact methods to all kinds of meta-heuristic algorithms.

Although the makespan is the most studied objective function, energy con-
siderations are increasingly important nowadays, mainly for economical and en-
vironmental reasons. In fact, we can find a number of papers addressing the
energy-efficient job shop. For example, Zhang and Chiong [12] try to minimise
both the weighted tardiness and the energy consumption in a job shop where
the processing mode of operations can be modified. Another approach is that
of Liu et al. [7], where it is considered a simple energy model where the ma-
chines can only be in Working or in Idle state. Gonzélez et al. [4] improve the
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results reported in [7] by using a hybrid evolutionary meta-heuristic and also a
constraint-programming approach. One problem with the last two papers is that
the considered energy model is not too realistic. The model proposed by May
et al. [8] is much more interesting, as the machines can be either in the Idle,
Working, Off, or switched to a Stand-by state.

In this paper we consider this last energy model and try to minimize at the
same time the makespan and the energy consumption in a job shop. Although
some multi-objective works consider weighted or lexicographical approaches,
probably the most interesting approaches are those based on the Pareto Front.

In particular, we have designed a constraint-based procedure to minimise
both the makespan and the energy consumption, within a well-studied multi-
objective optimisation method to generate the whole Pareto (i.e., the e-constraint
method [9]). The contribution of the paper is the following. We propose a
constraint-based model where: (i) we add as decision variables the states of the
machines during the no-working periods (i.e., Idle, Off, or Stand-by states); (ii)
we introduce energy aware constraints that exploit the total order of activities on
each machine, as well as the lower bound on each machine’s total execution time,
ultimately implementing a new propagation rule. We show that this new model
exhibits interesting performances, outperforming both the results obtained in [§],
and the more recent results obtained in [10].

This paper is organised as follows: Section [2| formulates the problem at hand
and Section [3] describes the solving methods. Then, in Section [4] we analyse our
proposals and we compare them with the state-of-the-art algorithms [8 [10], and
finally in Section [5| we report some conclusions and ideas for future work.

2 Problem formulation

The job shop scheduling problem (JSP) consists on scheduling a set of N jobs,
J={Ji,...,Jn} in a set of M machines or resources, R = {Ry,..., Ry }. Each
of the jobs J; consists of n; tasks (6;1, . . ., 0in,) that must be scheduled exactly in
that particular order. Each task requires a given resource during all its processing
time. Additionally, no preemption is allowed, so when a resource starts processing
a task, it cannot be interrupted until it ends. Moreover, resources can at most
process one task at a time. The objective of the problem is to minimise some
objective functions subject to the described precedence and capacity constraints.
Although we have denoted the tasks as §;; in this problem definition, in the
following we will denote them by a single letter, if possible, in order to simplify
the expressions. We denote by (2 the set of tasks, by p, the processing time of
task u, by r, the resource required by task w, and by s, the starting time of
task u (which needs to be determined).

As we have seen, the JSP has precedence constraints, defined by the routing
of the tasks within the jobs, that translate into linear inequalities: s, + py, < Sy,
where v is the next task to u in the job sequence. The problem has also capacity
constraints, as the resources can only process one task at a time, and they
translate into disjunctive constraints: (s, + py < $p) V (Sy + Dy < 8u), Where u



Energy-aware Scheduling for Multiobjective Optimization 3

0
Processing

ramp—u; ramp-up-standb
P p-up o T p-up y

ramp—uj ramp—up—o,
Py p prk p—up—off

0

Fig. 1. State diagram for a machine, indicating the energy consumed in each transition

and v are tasks requiring the same resource. The objective is to build a feasible
schedule, i.e. determine a starting time for each task such that all constraints
are fulfilled. In the following, given a feasible schedule, we will denote with P.J,
and SJ, the predecessor and successor of v, respectively, in the job sequence,
and with PM, and SM, the predecessor and successor of v, respectively, in its
resource sequence. In addition, we will denote with oy and wy the first and last
operations respectively on machine Ry in the considered schedule.

The goal of the present analysis is the minimisation of both the energy con-
sumption and the overall completion time, or makespan. In general, for a mini-
mization problem with two objective functions f; (i = 1,2), a solution S is said
to be dominated by another solution S’, denoted S’ < S, if and only if for each
objective function f;, f;(S") < f;(S) and there exists at least one 4 such that
1i(8") < £i(S). However, the possibly conflicting nature of these two objectives
may prevent the existence of a unique solution S* that is optimal w.r.t. both
the objectives. Therefore, in this work we are interested in the set of all optimal
“tradeoffs”, which are known as the Pareto optimal solutions, i.e. solutions such
that the improvement of one objective necessarily implies the worsening of the
other objective. The Pareto front PS* is the set of solutions S, such that for
each S € PS* there is no solution S” which dominates S (S’ < 5).

The makespan is the first objective function and corresponds to the maximum
completion time of the schedule, that is maxy,co{sy + pu}. About the second
objective the energy model is taken from [8], where it is supposed that a resource
can be in five different states: Off, Stand-by, Idle, Setup or Working. However,
May et al. in their experiments from [8] consider together the times and energy
consumption of the Working and Setup states; as a consequence, we can consider
a total of four possible states (see Figure . The power consumption in each state
for a given resource Ry, is denoted by Pidle, P and P9 whereas if the
machine is Off it consumes no power. Additionally, we assume that the machine
can instantly switch from Idle to Stand-by, Off or Working, consuming no power.
On the other hand, switching from Off to Idle requires an amount of T, *"*™*" -olf
time units, whereas switching from Stand-by to Idle requires T, “""™* -stand-by
time units. In both cases, the power consumed when ramping up is denoted
by P,“""™" In Figure [I| we show the considered state diagram, which is the
same for each machine. Also, we assume that all machines do not consume any
energy before the processing of its first task assigned. It is easy to see that in the
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job shop scheduling problem, each resource must always process the same set
of tasks, and so the working energy consumption is the same in every possible
schedule. Therefore, following [§], in order to reduce the energy consumption
we consider the WEC (Worthless Energy Consumption) measure as the second
objective function to minimize, which is defined as follows:

WEC = Z (P;;'dle t'i:dle + P}:tand—by tztand-by) +
k=1,....M

ramp-up standby rrramp-up-standby off rramp-up-off:
§ Py (ny, Ty + e Ty )

k=1,...,M

(1)

where ti%¢ is the total amount of time spent by Ry, in Idle state, tzt(md_by is the

total amount of time spent by Ry in Stand-by state, nimndby is the number of

times that resource Ry transitions from Stand-by to Idle state, and finally nzﬁ
is the number of transitions from Off to Idle.

To the aim of assessing how the power consumption of the machines may
vary depending on the different states to which they are allowed to transition,
we follow the analysis performed in [§], taking into account two different machine
behavior policies, which we will respectively call P3 and P4 as described in the
following. The P3 policy is implemented by switching the machines on at their
first operation and switching them off at their last, with the possibility to switch
them on and off from the Idle state, between any pair of consecutive tasks
belonging to the production batch (see Figure(l)). The P4 policy is similar to the
previous one, with the addition of the Stand-by state. According to the P4 policy,
each machine can transition from the Idle state to the Stand-by state during the
production batch, whenever such transition is energetically convenient over both
switching the machine on and off again, and leaving it in the Idle state. In [§]
two more policies called P1 and P2 are investigated, but such policies are not
taken into account in this work because they are very simple and hence not of
great interest for our purposes.

According to K. Baker [2], the makespan is a regular performance measure,
which means that it can be increased only by increasing at least one of the com-
pletion times in a given schedule. To optimize regular measures it is enough to
consider “left-shift schedules”, i.e. schedules that are built from a given ordering
of the tasks, in such a way that each operation starts in the earliest possible time
after all the preceding tasks in the ordering. As opposed to the makespan, the
WEC is a non-regular measure, and it can sometimes be decreased by increasing
the completion time of some tasks while leaving the other tasks unmodified.

To better illustrate the problem we present a small toy example. Consider an
instance with 3 jobs (with 3 tasks for each job) and 3 resources. The processing
times are the following: pg,, = 4, pe,, = 5, po; = 2, Pon, = 2, Po,, = 5,
Doys = 3, Pos, = 4, Do, = 7, Pos; = 3. The required resources are as follows:
T, = Ri, 1o, = Ro, 19,3 = R3, 19,, = Ri, 19,, = R3, 19,3 = Ra, 19,, = Ro,
T9s, = R1, 195, = R3. Also, consider the following values for every machine k €
{1,2,3}: Prorking — 105w, Pjdle = 6kW, PSP — 4w, PIOTPTP = QW
T]:’amp—up—oﬁ = 3 and T]:‘amp—up—stand—by -1
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Figure shows a feasible solution for this instance. In fact it is a “left-shift
schedule” (see Section . This schedule has a makespan of 18 and a WEC of
40 (16 from Ry plus 24 from R3). In resource Ry we have decided to switch
the machine to Stand-by state between the end of 63; and the beginning of 0,3,
because in this case it adds 16 units to the WEC, whereas if switched Off it
would add 24 units and if it remained Idle it would add 18 units. Using the same
reasoning we switch Rj3 off between the end of #35 and the beginning of 633.

This “left-shift schedule” can be improved by delaying some tasks. As an
example, Figure shows the same solution after delaying task #3;. Now there
is only one time unit between the end of 63; and the beginning of 63, and so
the best option is to leave the machine in Idle state. The makespan is still 18
but the WEC is reduced from 40 to 30.

Ri| 62| 6u Ry

R stndby 7| Q3 012 R,

R3 022 Off |Ramp-up 013 Rs

ol 5 10 15 20 ¢ 0

(a) A feasible solution, WEC = 40. (b) Improved solution, WEC = 30.

Fig. 2. Improving a solution by delaying one task.

3 The proposed solving method

As we have seen in the previous section, the WEC is a non-regular performance
measure. Moreover, the work [8] only considers “left-shift schedules”, while we
have seen that they can be improved by delaying some tasks, in order to reduce
the total energy consumption. In this section we describe a procedure that takes
into account the non-regularity of the WEC objective such that an approxi-
mation of the Pareto front is generated by a Constraint Programming (CP)
procedure. It is worth noting that the proposed CP approach is in principle able
to find an optimal WEC value if given sufficient computational time (we do not
provide any formal proof about this property).

3.1 Energy optimisation: a Constraint Programming approach

Constraint Programming (CP) is a declarative programming paradigm [1]. A
constraint program is defined as a set of decision variables, each ranging on a
discrete domain of values, and a set of constraints that limit the possible com-
bination of variable-value assignments. After a model of the problem is created,
the solver interleaves two main steps: constraint propagation, where inconsistent
values are removed from variable domains, and search. CP is particularly suited
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for solving scheduling problems where the decision variables are associated to
the problem operations. In particular, each operation variable a is characterised
at least by two features: s, representing its start time, and p, representing
its duration. For scheduling problems, a number of different global constraints
have been developed, the most important being the unary-resource constraint
[11] for modelling simple machines, the cumulative resource constraint [6] for
modelling cumulative resources (e.g., a pool of workers), and the reservoir
[6] for modelling consumable resources (e.g., a fuel tank). In particular, given
unary-resource (A), the constraint holds if and only if all the operations in the
set A never overlap at any time point. A number of propagation algorithms are
embedded in the unary-resource constraint for removing provably inconsistent
assignments of operation start-time variables.

We describe a Constraint Programming (CP) model based on the problem
defined in Section [2] where the main decision variables are the start times s,
of the operations a € {2 characterized by a processing time p,. Each start time
S, ranges in the interval [0, H — p,], where H is the problem’s horizon. The
set of decision variables is then extended with the start times sonog, of the
OnOff;, intervals, where each OnOff, interval is defined as spanning over all the
operations executed on machine k. Hence, the sonop, variable represents the
first instant when machine k is turned on. The model, whose utilisation will be
described in the experimental section (Section , is built on top of the IBM-
ILOG CPLEX Optimization Studio CP Optimizer and its details are as follows.

Let O be the set of problem operations assigned to machine k = 1,..., M
and Uy, be a set of auxiliary unit-duration operations, assigned to a dummy unary
machine mirroring k (it is worth noting that the two sets Oy and Uy represent
separate processing orders of activities). The introduction of the auxiliary set of
operations Uy E| is necessary to represent the position of each activity a € O in
the processing orders imposed among the operations assigned to each machine
k € R. More concretely, the auxiliary unit-duration operations indirectly imple-
ment the definition of a successor function SM, (returning the successor of each
operation a for each total order imposed on the set of operations Oy, assigned to a
machine k). To the best of our knowledge, this workaround is necessary because
we want to use the native OPL construct to implement the global constraints
unary-resource(Oy) for efficiency reasons, and the successor function is not
natively present in the OPL language (see IBM ILOG CPLEX Optimization
Studio OPL Language Reference Manual, Version 12 Release 7.1).

Operationally, the set of unit-duration operations u € Uy can be assigned
to the dummy machine k& (in the same fashion of the operations a) so that, for
each processing order imposed on a machine k, ag < a1 < ... <a; < ... < ap,
an identical order is imposed on the unit-duration operations uy < u; < ... <
u; < ... =< ups. In this manner, the position i of the operation a; coincides with
the start-time value of the unit-duration operation u;. For the reasons above,

3 We were inspired to adopt this solution by a post on a discussion board on the website
www.or-exchange.com about the explicit representation of an interval position in a
OPL sequence. This discussion board does not seem available anymore.
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the starting times s, of the operations u € Ui must be added to the model
as additional set of decision variables. In addition, a specific global constraint
is added in the CP model given below to impose the same order among the
activities in the sets Oy and Uy, see constraints .

The definition represents the successor function SM,,, such that the
position of the operation p € Oy, coincides with the start-time value s, of its
corresponding unit-duration operation ) € Uy, and the successor ¢ (if exists)
corresponds to the unary activity «(9 € Uy, such that Sy = S, +1. Whereas,
according to Section |2 the energy objective WEC is the sum of the unload
energy consumption E}’,fq (i.e., when a machine is Idle, switched Off, or switched
to a Stand-by state) of each pair of contiguous operations (p, ¢) assigned on the
same machine k (2b)), where d,q = s, — e, is the difference between ¢’s start time
and p’s end time. The makespan objective C,,q, is described at line .

o 1 Ful? € Uy : s,0) = 5,0 + 1 (2)
P nil otherwise
E;fq = min{P/idle dpfb
P].:tand—by (dpq _ Tk’rump-up—standby) + P];"amp—up 11];'11,mp—up-sta,ndby7
P):amp-up Tl;ramp-up-ojj} (2b)
WEC= Y E}, (2¢)
k=1,...,M pEOy,
q=S My, q#nil
mazr — a a 2d
C I;lea())({s + pa}t (2d)

Once all the necessary definitions have been provided and all the variables
have been introduced, we present the CP model (optimisation criteria and con-
straints). Line represents the lexicographic minimisation of the objective
pair WEC and C,,4, with the energy WEC as primary objective. According
to the implemented e-constraint method [9] for calculating the Pareto set, we
optimise the energy WEC, while we impose an upper bound to the other objec-
tive Chuaq in the form Ciuar < Ce (see ) The constraints in represent
the linear orderings imposed on the set of operations {2 by the set of jobs J.
Constraints impose to the set O of operations requiring machine &k to
be contained in the spanning operations OnOff;,, k = 1,..., M. More specif-
ically, for each operation v € Oy, the following constraints sonog, < s, and
5y + Pv < Sonog, + Ponog,, hold, such that operation OnOff; starts together
with the first present operation in Oy according to the order imposed on the
k-th machine, and ends together with the last present operation.

Constraints , , and impose that the minimal energy is consumed
between the end of the first and the beginning of the second task, for each pair
of contiguous activities (p,q) on a resource k. These constraints rely on the as-
Sumption that P]:tand—by < P]idle < P]:amp—up and T]:amp—up—standby < Tkramp—up—oﬁ;

under such assumptions, there are two cutoff values, ngle'smndby and T}, tandby-off

(depicted in Figure , such that if s, —e, € [0, T, ,idle'St“"dby] the minimal energy
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. idle-standb standby-o,
state is Idle, when s, — e, € (T}, VT Y ﬁ]

is Stand-by, otherwise the minimal energy state is Off.

the minimal energy state

lex min (WEC, Crmax) (3a)
s.t.:

Cinaz < Ce (3b)

So+po < sy, vENR\{biny,--,O0Nny} (3¢)

span(OnOff,, Ox) k=1,..,.M (3d)

ed, € {0,1,2} pe N (3e)
(

SMy, =qA(edp =0) = sq —ep < T,zdlﬁ’“’mdby 3f)
SMp,=qA(edp =1) = sq —ep > T,idle'sm"dby ASq—ep < lem"dby'oﬁ (3g)
SMy =g A (edy = 2) = 54 — e > Ty vl (3h)
same-sequence(Oy,Ux) k=1,..., M (3i)
su < (0K =D u€Uy k=1,...,.M (3j)
unary-resource(Op) k=1,..., M (3k)
unary-resource(Up) k=1,..., M (31)
A4 ALY 4 AT < O k=1,..., M (3m)

We introduce a set of decision variables ed, € {0,1,2}, p € 2 (constraint
(3e])) representing the unload state (i.e., 0 when machine is Idle, 1 when it is
switched to a Stand-by state, and 2 when switched Off) imposed on every pair of
contiguous activities (p, ¢) on the same machine. The constraints in impose
the same order between the activities in the two sets Oy and Uy by means of the
global constraints same-sequence(Oy,Uy). The constraints in bound the
start-time value of each unit-duration operation u to |Oy|—1 operations assigned
to the machine k. and represents the non-overlapping constraints im-
posed by the machines M to the operations in Oy and Uy, through the global
constraints unary-resource (Oy) and unary-resource (Uy), respectively.

Finally, represents the so-called energy aware constraints imposed on
the subset of (energy) decision variables ed,, associated to each subset of opera-
tions Ok, k = 1,..., M. The rational behind this constraints is the following: for
each machine k, the set of operations Oy requiring that machine must be totally
ordered. In addition, according to the values of the decision variables ed,,, with
u € O, a minimum (non zero) delay equal to T, *""™*" “standby (when ed, = 1) or
TP 2=l (when ed, = 2), must be inserted between the operation u and its
successor (if it exists). Hence, each machine’s total order has a lower-bound of the
total execution time (from the start-time of the first operation to the end-time
of the last one) which can be calculated as the sum of the three terms At} +
Atztmd'by + Atzﬁ, such that: At}"™ = 37 _, pu is the sum of the operation

. . . . . standby __ ramp-up-standby .
processing times in machine k; At =D ucon, edy=1 Lk is the

minimum total delay due to Stand-by states; At;ﬁ = Eueok, ed,=2
the minimum total delay due to Off states. Such lower-bound cannot be greater

T]:u,mp—up—oﬁ is
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Fig. 3. Minimal energy consumption E;,fq between two consecutive operations (p, q).

than the solution makespan C,,.., hence decisions on the variables ed, can be
pruned according to the constraints (3ml). This new propagation rule is the main
innovation with respect to work [10], and we evaluate it in Section

3.2 The bi-criterion e-constraint method

A well-known multi-objective optimization method to generate the Pareto front
is the e-constraint method [9]. It works by choosing one objective function as
the only objective and properly constraining the remaining objective functions
during the optimisation process. Through a systematic variation of the constraint
bounds, different elements of the Pareto front can be obtained.

Algorithm [I] presents the e-constraint method for the case of a bi-criterion
objective function f = (f(1), f(2)). The algorithm is used in the experimental
section of the work and takes the following inputs: (i) the objective f, (ii) the

bounds fsl)n and fggz on the second component of the objective, and (iii) the
decrement value 6. As previously mentioned, the method iteratively leverages
a procedure provided in input to solve constrained optimization problems, i.e.,
the CP() procedure corresponding to the constraint programming model previ-
ously described. Note that we consider a slightly different e-constraint method,
such that the given CP procedure considers a lexicographic minimisation instead
of single-objective minimisation problem, with f(!) as primary and f® as sec-
ondary key. The algorithm proceeds as follows: after initializing the constraint
bound € to the ff,?gz value, a new solution S is computed by calling CP() at
each step of the while solving cycle. If S is not dominated by any of the exist-
ing solutions in the current Pareto front approximation P, then S is inserted
in P, and all the solutions possibly dominated by S are removed from P. The
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Algorithm 1 Bi-criterion e-constraint method

Require: The objective f, the bounds f,(,i)n and f$2),, and the decrement value &
P+
€ ¢ fide;
while € > ) do
S+ CP(f, ¢);
if (S#nil)A(AS €P:S <S)then
P+ (PU{SH\{S eP:5< S}
end if
€<+ €—0;
end while
return P

rationale behind this method is to iteratively tighten the constraint bound by a
pre-defined constant § at each step of the solving cycle.

4 Experimental results

In this section we will analyze the results we have obtained with our CP proce-
dure, and compare such results with the state of the art in [§, 10]. In our work,
we test our model against three well-known JSP instances called, respectively,
FT06, FT10 and FT20 (as considered in [§]). These instances were introduced by
Fisher and Thompson [3], and are characterized by different dimensions (number-
of-jobs x number-of-machines): FT06 (6 x 6), FT10 (10 x 10), and FT20 (20 x 5).
According to the literature, the optimal makespan of these instances is 55, 930
and 1165, respectively. The energy values for the machines are those described
in the toy example of Section [2] In our tests, we have compared our results with
those present in two recent works [8, [I0] and related to the machine behavior
policies P3 and P4 introduced in Section [2| as these are the most interesting
from the energy minimization standpoint. From the analysis performed in Sec-
tion [2] it is certain that the solutions obtained with the P4 policy will exhibit
energy consumptions lower than or equal to those obtained with the P3 policy,
due to the additional possibility of switching machines to Stand-by state.

Figure [4 graphically presents a comparison of the obtained results in in-
stances FT10 and FT20 (results for FT06 instance can only be found in Tables
and using policies P3 and P4. In particular, the plots labelled “MayFEtAl-2015”
and “OddiFtAl-2017” describe the Pareto front approximations reported in [§]
and [I0], respectively, whereas the plots labelled “CP” describe the Pareto front
approximations obtained with our new constraint programming model using the
set of energy-aware constraints described in Section

In these tests, for the CP model we allowed for a maximum 5 minutes for
each F'T06 solution and a maximum 15 minutes for each F'T'10 and F'T20 solu-
tions. The proposed CP model has been implemented on the IBM-ILOG CPLEX
Optimization Studio V. 12.7.1.0, a state-of-the-art commercial CP development
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Fig. 4. Pareto set approximations: instances FT10 and FT20 using policies 3 and 4

toolkit, and executed on a Core(TM)2 Duo CPU, 3.33 Ghz under Windows 10.
Therefore, we used the same running times and the same machine as in [I0].

As the Figure [4] shows, our new CP model demonstrates a further improve-
ment over the existing results, especially for the FT20 instance. Relatively to
the FTO06 instance, the new energy-aware constraints do not produce any im-
provement, most likely because the solutions obtained in [I0] are already opti-
mal. The energy-aware propagation rule is less effective on the FT10 instance,
as the “short” activity chains that characterize each machine (note that the
jobs/machines ratio is 1) do not allow the propagation rule to efficiently evalu-
ate the impact of each state decision on the ed, variables (see the CP model in
Section . On the FT20 instance, the new CP model provides interesting re-
sults, further improving on the solutions obtained in [I0] for both the P3 and the
P4 policies, confirming that the proposed propagation rule is more effective on
instances characterized by a higher jobs/machines ratio. The exact numerical
figures related to the Pareto front approximations shown in Figure[d]are reported
in Tables [1| and |2 respectively for the P3 and P4 policies. Overall, if we com-
pare policies 3 and 4, we can observe that the latter usually obtains solutions
with lower energy consumption. This means that, as expected, the additional
possibility of switching the machine to Stand-by state is indeed beneficial. For
example, in the FTO06 instance we were able to reduce the WEC from 126 to
124, while maintaining the optimal makespan of 55. Also, in the solution with
the optimal makespan (1165) of FT20, the WEC is reduced from 150 to 120.
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Table 1. Pareto set approximations data relative to Figure [4] (Policy P3)

Problem|Pareto Set approximation - set of pairs (M KS, WEC)

FT06  MayEtAI-2015: { (60, 146), (59, 152), (57, 176), (56, 180), (55, 192) J
OddiEtAI-2017: { (55, 126) }
CP: { (55, 126) }

P10 |MayEtA-2015: { (1121, 2708), (1111, 3270), (1097, 3378), (1087, 3430), (1045, 3626),
(1034, 3678), (1028, 3792), (1017, 3864), (1016, 4008), (1010, 4188), (998, 4208), (988,
4310), (984, 4570), (982, 4758), (978, 4908), (974, 5840), (963, 5912), (939, 6001), (930,
6013) }
OddiEtAT-2017: { (1020, 3188), (990, 3658), (980, 3950), (970, 4424), (950, 4446), (940,
5178), (930, 5354) }
CP: { (1010, 3826), (970, 4252), (950, 4378), (940, 4726) }

F0  |OAdIELAT2017: { (1185, 0), (1175, 60), (1165, 294)
CP: { (1185, 0), (1175, 60), (1165, 150) J

Table 2. Pareto set approximations data relative to Figure [4] (Policy P4)

Problem[Pareto Set approximation - set of pairs (MK S, WEC)

MayBtAI-2015: { (60, 146), (59, 152), (58, 174), (57, 176), (56, 178), (55, 192) }

OddiEtAI-2017: { (55, 124) }

CP: { (55, 124) }

FT10 | MayEtA-2015: { (1121, 2708), (1111, 3268), (1097, 3378), (1087, 3406), (1060, 3512),
(1045, 3626), (1034, 3658), (1028, 3792), (1017, 3852), (1010, 3972), (998, 4208), (988,

4310), (984, 4538), (978, 4886), (963, 5182), (951, 5307), (940, 5402), (930, 5786) }

OddiEtAL-2017: { (1060, 3258), (1040, 3440), (990, 3880), (950, 4356), (945, 4922,

(930, 5332) }

CP: { (1060, 3356), (1010, 3764), (990, 3918), (970, 4226), (960, 4228), (950, 4772),

(940, 5150), (930, 5370) }

OddiEtAI-2017: { (1195, 6), (1185, 18), (1165, 210) }

CP: { (1235, 0), (1195, 6), (1185, 12), (1178, 18), (1165, 120) }

FT06

FT20

5 Conclusions

In this paper we have considered a bi-objective optimization in the job shop
scheduling problem. We minimise at the same time the makespan and the energy
consumption. To this end, we consider an energy model in which each machine
can be Off, Stand-by, Idle or Working. To solve this complex problem we designed
a constraint-programming approach based on a model that exploits energy aware
constraints. Our proposal is analyzed and compared against the current state-of-
the-art algorithms, obtaining better results. For future work we plan to consider
even more realistic energy models. For example if we do not consider the setup
and working states together, or also if we consider a flexible environment, i.e.
a task can be performed by several machines, each one with different energy
consumptions and/or processing times. On the other hand, we can also consider
less rich models, for example not quantifying costs but dividing them in costly
and non-costly. In this case we expect worse results overall, but it can be a viable
approach in some settings where quantifying costs can be difficult.
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