Studies in Computational Intelligence

Volume 802

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

e-mail: kacprzyk@ibspan.waw.pl

The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence—quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output.

The books of this series are submitted to indexing to Web of Science, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink.

More information about this series at http://www.springer.com/series/7092

Robert K. Nowicki

Rough Set–Based Classification Systems

Robert K. Nowicki Institute of Computational Intelligence Częstochowa University of Technology Częstochowa, Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-030-03894-6 ISBN 978-3-030-03895-3 (eBook)
https://doi.org/10.1007/978-3-030-03895-3

Library of Congress Control Number: 2018960671

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1		roductionerences	1 5
2	Rou	igh Set Theory Fundamentals	7
	2.1	Elements of the Rough Set Theory	7
		2.1.1 Approximation Space	7
		2.1.2 Information System and Decision Table	9
	2.2	Rough Fuzzy Sets and Fuzzy Rough Sets	10
	2.3	Simulation Investigations	11
		2.3.1 Benchmark Datasets	12
		2.3.2 Data Preparation	13
	Refe	erences	15
3 Rough Fuzzy Classification Systems		ngh Fuzzy Classification Systems	17
	3.1	Fuzzy and Neuro-Fuzzy Classification Systems	18
		3.1.1 Fuzzy Systems Components	18
		3.1.2 Neuro–Fuzzy Classifiers	28
		3.1.3 Training of Neuro–Fuzzy Inference Systems	39
	3.2	Mamdani–Type Rough Fuzzy Classifiers	41
		3.2.1 Classifiers with CA Defuzzification	43
		3.2.2 Classifiers with DCOG Defuzzification	45
	3.3	Logical Type Rough Fuzzy Classifiers	47
		3.3.1 Classifiers with DCOG Defuzzification	47
		3.3.2 Classifiers with MICOG Defuzzification	51
	3.4	Illustrative Examples	53
	3.5	Summary	68
	Refe	erences	68

viii Contents

4	Fuz	zy Rough Classification Systems	71
	4.1	Non-singleton Fuzzification Fuzzy Inference System	71
		4.1.1 Mamdani-Type Systems	72
		4.1.2 Logical Type Systems	77
	4.2	Non-singleton Fuzzification in Fuzzy Rough Inference	
		System	79
	4.3		86
	4.4	Summary	92
	Refe	erences	92
5	Rou	gh Neural Network Classifier	95
	5.1		95
		5.1.1 Architecture	95
			96
			97
	5.2		98
		•	99
			00
			.06
		5.2.4 Levenberg–Marquardt Algorithm for Rough Neural	
			08
	5.3		09
			09
			10
		· · · · · · · · · · · · · · · · · · ·	11
	5.4		12
			13
			14
		· · · · · · · · · · · · · · · · · · ·	16
	5.5		16
		<u>.</u>	17
			22
	5.6	· · · · · · · · · · · · · · · · · · ·	30
		•	31
6	Rou	gh Nearest Neighbour Classifier	33
U	6.1		.33
	6.2		.34
	0.2		.35
		<u> •</u>	.35 .36
			.36
			.30 .38
			.20 39
		A CARLO IN COURT A LOSSITIVATION FOR EXISTENCE VIOLENCE V	

Contents ix

	6.3	Illustrative Examples	40
		6.3.1 Examples of the Cases with Missing Input Values 1	40
		6.3.2 Examples of the Cases with Interval Input Values 1	43
	6.4	Summary	57
	Refe	erences	58
7	Ense	embles of Rough Set–Based Classifiers	61
	7.1	Ada-Boost Meta-Algorithm	62
			62
		7.1.2 Building Procedure	63
	7.2	Negatively Correlated Learning (NCL)	64
		7.2.1 Cooperative Ensemble Learning System (CELS) 1	65
		7.2.2 NCL via Correlation–Corrected Data (NCCD) 1	65
	7.3	Ada-Boost Meta-Algorithm for Rough Subsystems	65
		7.3.1 Rough Ada–Boost in Operation	65
		7.3.2 Building Procedure	66
	7.4	Negative Correlated Learning for Rough Set–Based	
		Classifiers	67
	7.5	Illustrative Examples	67
		7.5.1 Examples of the Cases with Missing Input Values 1	67
		7.5.2 Examples of the Cases with Interval Input Values 1	70
	7.6	Summary	83
	Refe	erences	83
8	Fina	al Remarks 1	85
	Refe	erences	87

Symbols

List of the most important symbols used in the book:

U,U_i	The universe of discourse, which is a set of
	objects or states under classification
$V,\ V_i$	The universe of discourse, which is a set of
	features values of objects under classification
Y, Y_i	Space of a direct output of a classifier
$Z, Z_i = [0, 1]$	Space of object memberships to class level
	(degree)
Q	Set of features of objects under classification
$C \subseteq Q$	Set of condition features
$D \subseteq Q$	Set of decision features
$P \subseteq C$	Set of condition features used in a classification
	process, with known values
$G \subseteq C$	Set of condition features not used in a classi-
	fication process, with unknown values
\Re	Set of real numbers
\Re^n	<i>n</i> -dimensional space of vectors of real numbers
$X \subseteq U$	Set of objects or states
$\omega_j \subseteq U$	Class of objects
Ω	Set of classes under consideration
R	Relation, fuzzy relation
$[x]_R$	Equivalence class (atom) determined by object
	x and relation R
$ ilde{P}$	Indiscernibility relation determined by set P
$\overline{R}X$	<i>R</i> -upper approximation of set <i>X</i>
<u>R</u> X	<i>R</i> -lower approximation of set <i>X</i>
$\{\underline{R}X, \overline{R}X\}$	Rough set
$A \subseteq U, A \subseteq V, B \subseteq Z$	Fuzzy sets
, ,	- J

xii Symbols

$A_i' \subseteq V_i$	Fuzzy set obtained in fuzzification of real value v_i
$A' = A'_1 \times A'_2 \times \ldots \times A'_n \subseteq V$	Fuzzy set obtained in fuzzification of vector v
$A_i^r \subseteq V_i$	Fuzzy set occurring in an antecedent of rule R^r
-1 = 11	concerning feature q_i
$A^r = A_1^r \times A_2^r \times \ldots \times A_n^r \subseteq V$	Fuzzy set occurring in consequence of rule R^r
$B_j^r \subseteq Z_j$	Fuzzy set occurring in consequence of rule R^r
J = J	concerning the membership of an object under
	classification to class ω_i
$B_{\ j}^{\prime r}\subseteq Z_{j}$	Fuzzy set which is the result of inference based
j = j	on rule R^r , concerning the membership of an
	object under classification into class ω_i
$B_j'\subseteq Z_j$	Fuzzy set which is the result of inference,
j	concerning the membership of an object under
	classification into class ω_j
$x \in U, x_i \in U_i$	Object or state under classification
$q_i \in \mathcal{Q}$	Feature of an object or state under classification
$\mathbf{q} = [q_1, q_2, \ldots, q_n]$	Vector of features of an object under
	classification
$c_i \in C$	Condition feature of an object under
r	classification
$\mathbf{c} = [c_1, c_2, \ldots, c_n]$	Vector of condition features of an object under
	classification Vector of condition features used in a classifi-
\mathbf{c}_{P}	cation process, with known values
\mathbf{c}_G	Vector of condition features not used in a
C G	classification process, with unknown values
$d, d_i \in D$	Decision feature
$d, d_i \in Y$	Reference (desired) output value
$v_i \in V_i$	Value of feature q_i
$\mathbf{v} = [v_1, v_2, \dots, v_n] \in V$	Vector of feature values of an object under
(1/ 2/ / 10]	classification
$\mathbf{v}_P \in V_P$	Vector of feature values of an object under
	classification, used in classification process,
	with known values
$\mathbf{v}_G \in V_G$	Vector of feature values of an object under
	classification, not used in a classification pro-
	cess, with unknown values
<u>y</u>	Output variable of a fuzzy inference system
\overline{y}	Real value which is a representative of fuzzy set
=r	B', the result of defuzzification
$\overline{\mathcal{Y}}^r$	Real value which is a representative of fuzzy set
	B^r , the result of defuzzification or the only element of the core of set B^r
-	
\overline{z}_j	Representative of set B_j in classifiers

Symbols xiii

n	Number of considered condition features of an
	object under classification, cardinality of set C
$i=1,2,\ldots,n$	Index of single input of a fuzzy system, index of
	a subsequent condition feature
n_P	Number of condition features of an object under
	classifications used in a classification process,
	with known values, cardinality of set P
n_G	Number of condition features of an object under
	classifications not used in a classification pro-
	cess, with unknown values, cardinality of set G
m	Number of considered classes, the number of
	decision features
ω_j	Single class with index <i>j</i>
τ	Index of a simple sample in a training or testing
	sequence
$ au_{ extbf{max}}$	Number of samples in a training or testing
	sequence
υ	Index of a single group of samples in a training
22	or testing sequence
Υ	Number of groups in a training or testing
	sequence
t T	Index of a subsystem in an ensemble
T	Number of the subsystems in an ensemble
h_t	Hypothesis inferred from the subsystem with
N/	index t
N	Number of rules in a decision system
$r=1,2,\ldots,N$	Index of a single rule
$\mu_A(x)$	Membership function of fuzzy set A
$sgn(a) \ A \cup B$	Sign of value a
	Sum of (fuzzy) sets A and B Sum of n (fuzzy) sets A_i
$\bigcup_{i=1}^{n} A_{i}$ $A \cap B$	
	Intersection of (fuzzy) sets A and B Intersection of n (fuzzy) sets A_i
$\bigcap_{i=1}^{n} A_i$ $\neg A$	
$A \times B$	Complement of set <i>A</i> Cartesian product of (fuzzy) sets <i>A</i> and <i>B</i>
$R \circ S$	Composition of fuzzy sets (fuzzy relation)
$K \circ S$	R and S
T(a,b)	t-norm of a and b
* * *	t-norm of <i>n</i> values (variables)
$T(a_1, a_2,, a_n) = \prod_{i=1}^n a_i$	thorn of n values (variables)
S(a,b)	t-conorm of a and b
$S(a_1, a_2,, a_n) = \sum_{i=1}^{n} a_i$	t-norm of <i>n</i> values (variables)
N(a)	Fuzzy negation