Skip to main content

Sparse Approximation for Gaussian Process with Derivative Observations

  • Conference paper
  • First Online:
Book cover AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

Abstract

We propose a sparse Gaussian process model to approximate full Gaussian process with derivatives when a large number of function observations t and derivative observations \(t'\) exist. By introducing a small number of inducing point m, the complexity of posterior computation can be reduced from \(\mathcal {O}((t+t')^{3})\) to \(\mathcal {O}((t+t')m^{2})\). We also find the usefulness of our approach in Bayesian optimisation. Experiments demonstrate the superiority of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riihimäki, J., Vehtari, A.: Gaussian processes with monotonicity information. In: Proceedings of the Thirteenth International Conference on AIStat (2010)

    Google Scholar 

  2. Siivola, E., Vehtari, A., Vanhatalo, J., González, J.: Bayesian optimization with virtual derivative sign observations. arXiv preprint arXiv:1704.00963 (2017)

  3. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in Gaussian process models of dynamic systems. In: NIPS (2003)

    Google Scholar 

  4. Jauch, M., Peña, V.: Bayesian optimization with shape constraints. arXiv preprint arXiv:1612.08915 (2016)

  5. Li, C., Rana, S., Gupta, S., Nguyen, V., Venkatesh, S.: Bayesian optimization with monotonicity information (2017)

    Google Scholar 

  6. Yang, A., Li, C., Rana, S., Gupta, S., Venkatesh, S.: Efficient Bayesian optimisation using derivative meta-model. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11013, pp. 256–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97310-4_29

    Chapter  Google Scholar 

  7. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In: Advances in Neural Information Processing Systems, pp. 1257–1264 (2006)

    Google Scholar 

  8. Snelson, E., Ghahramani, Z.: Variable noise and dimensionality reduction for sparse Gaussian processes. arXiv preprint arXiv:1206.6873 (2012)

  9. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6(Dec), 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Li, C., Gupta, S., Rana, S., Nguyen, V., Venkatesh, S., Shilton, A.: High dimensional Bayesian optimization using dropout. arXiv preprint arXiv:1802.05400 (2018)

  11. Rana, S., Li, C., Gupta, S., Nguyen, V., Venkatesh, S.: High dimensional Bayesian optimization with elastic gaussian process. In: International Conference on Machine Learning, pp. 2883–2891 (2017)

    Google Scholar 

  12. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  13. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  14. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  15. Mockus, J.: Application of Bayesian approach to numerical methods of global and stochastic optimization. J. Glob. Optim. 4(4), 347–365 (1994)

    Article  MathSciNet  Google Scholar 

  16. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

    Article  Google Scholar 

  17. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv preprint arXiv:0912.3995 (2009)

  18. Finkel, D.E.: Direct optimization algorithm user guide. CRSC 2, 1–14 (2003)

    Google Scholar 

Download references

Acknowledgment

This research was partially funded by the Australian Government through the Australian Research Council (ARC). Prof Venkatesh is the recipient of an ARC Australian Laureate Fellowship (FL170100006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, A., Li, C., Rana, S., Gupta, S., Venkatesh, S. (2018). Sparse Approximation for Gaussian Process with Derivative Observations. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics