Skip to main content

Impact of Compression Ratio and Reconstruction Methods on ECG Classification for E-Health Gadgets: A Preliminary Study

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

Abstract

In IoT applications, it is often necessary to achieve an optimal trade-off between data compression and data quality. This study investigates the effect of Compressed Sensing and reconstruction algorithms on ECG arrhythmia detection using SVM classifiers. To neutralise the mutual effect of compression and reconstruction algorithms on one another, we consider each reconstruction algorithms with various compression ratios and vice versa. The employed reconstruction algorithms are Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). We employ two steps: (a) identifying proper compression ratio that withholds essential information of ECG signals, (b) assessing the impact of two reconstruction algorithms and their exactness on quality of classification. The findings of this study are threefold: (a) Remarkably, the SVM classifier requires few samples to detect ECG arrhythmia. (b) The results indicate for compression ratios up to around 1:7 ECG signals are recovered then classified with the same quality for both algorithms. However, by increasing compression ratio BP outperforms OMP in terms of ECG arrhythmia detection. (c) Negative correlation between compression ratio and signal quality is observed, that is intuitive enough to realise the trade-off between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. QardioCore. https://getqardio.com/qardiocore-wearable-ecg-ekg-monitor-iphone/. Accessed 09 Sept 2018

  2. Zareei, S., Deng, J.D.: Energy harvesting modelling for self-powered fitness gadgets: a feasibility study. Int. J. Parallel Emergent Distrib. Syst., 1–17 (2017)

    Google Scholar 

  3. Übeyli, E.D.: ECG beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Process. 17(3), 675–684 (2007)

    Article  Google Scholar 

  4. Güler, İ., Übeyli, E.D.: ECG beat classifier designed by combined neural network model. Pattern Recognit. 38(2), 199–208 (2005)

    Article  Google Scholar 

  5. Azariadi, D., Tsoutsouras, V., Xydis, S., Soudris, D.: ECG signal analysis and arrhythmia detection on IoT wearable medical devices. In: 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4, May 2016

    Google Scholar 

  6. Rajesh, K.N., Dhuli, R.: Classification of imbalanced ECG beats using re-sampling techniques and adaboost ensemble classifier. Biomed. Signal Process. Control 41, 242–254 (2018)

    Article  Google Scholar 

  7. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  8. da Silva Luz, E.J., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2016)

    Article  Google Scholar 

  9. Zareei, S., Babaee, E., Salleh, R., Moghadam, S.: Employing orphan nodes to avoid energy holes in wireless sensor networks. Commun. Netw. 5(03), 625 (2013)

    Article  Google Scholar 

  10. Cao, J., Wang, W., Zhou, S., Inman, D.J., Lin, J.: Nonlinear time-varying potential bistable energy harvesting from human motion. Appl. Phys. Lett. 107(14), 143904 (2015)

    Article  Google Scholar 

  11. Zareei, S., Sedigh, A.H.A., Deng, J.D., Purvis, M.: Buffer management using integrated queueing models for mobile energy harvesting sensors. In: IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–5. IEEE (2017)

    Google Scholar 

  12. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)

    Article  Google Scholar 

  13. Carrillo, R.E., Polania, L.F., Barner, K.E.: Iterative algorithms for compressed sensing with partially known support. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3654–3657, March 2010

    Google Scholar 

  14. Dixon, A.M.R., Allstot, E.G., Gangopadhyay, D., Allstot, D.J.: Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)

    Article  Google Scholar 

  15. Shen, D., et al.: Web-page classification through summarization. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2004, pp. 242–249. ACM (2004)

    Google Scholar 

  16. Cosman, P.C., Gray, R.M., Olshen, R.A.: Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc. IEEE 82(6), 919–932 (1994)

    Article  Google Scholar 

  17. Craven, D., McGinley, B., Kilmartin, L., Glavin, M., Jones, E.: Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Heal. Inform. 19(2), 529–540 (2015)

    Article  Google Scholar 

  18. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  19. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  20. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  21. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 40–44, November 1993

    Google Scholar 

  22. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  23. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  24. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  Google Scholar 

  25. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  26. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  27. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). Cited By 3341

    Article  Google Scholar 

  28. Thiam, P., Meudt, S., Palm, G., Schwenker, F.: A temporal dependency based multi-modal active learning approach for audiovisual event detection. Neural Process. Lett. 48, 709–732 (2017)

    Article  Google Scholar 

  29. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

    Book  MATH  Google Scholar 

  30. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  31. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  32. Blanco-Velasco, M., Cruz-Roldán, F., Moreno-Martínez, E., Godino-Llorente, J.-I., Barner, K.E.: Embedded filter bank-based algorithm for ECG compression. Signal Process. 88(6), 1402–1412 (2008)

    Article  Google Scholar 

  33. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Zareei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zareei, S., Deng, J.D. (2018). Impact of Compression Ratio and Reconstruction Methods on ECG Classification for E-Health Gadgets: A Preliminary Study. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics