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Abstract. In reaction systems, preimages and n-th ancestors are sets of
reactants leading to the production of a target set of products in either
1 or n steps, respectively. Many computational problems on preimages
and ancestors, such as finding all minimum-cardinality n-th ancestors,
computing their size, or counting them, are intractable. In this paper we
propose a characterization of n-th ancestors as a Boolean formula, and we
define an operator able to compute such a formula in polynomial time. Our
formula can be exploited to solve all preimage and ancestors problems and,
therefore, it can be directly used to study their complexity. In particular,
we focus on two problems: (i) deciding whether a preimage/n-th ancestor
exists (ii) finding a preimage/n-th ancestor of minimal size. Our approach
naturally leads to the definition of classes of systems for which such
problems can be solved in polynomial time.

Keywords: Reaction Systems, Ancestor computation, Computational
Complexity, Causality Relations.

1 Introduction

Inspired by natural phenomena, many new computational formalisms have been
introduced to model different aspects of biology. Basic chemical reactions inspired
the reaction systems, a qualitative modeling formalism introduced by Ehrenfeucht
and Rozenberg [16, 11]. It is based on two opposite mechanisms, namely facilitation
and inhibition. Facilitation means that a reaction can occur only if all its reactants
are present, while inhibition means that the reaction cannot occur if any of its
inhibitors is present. A rewrite rule of a reaction system (called reaction) is hence
a triple (R, I, P ), where R, I and P are sets of objects representing reactants,
inhibitors and products, respectively, of the modeled chemical reaction. A reaction
system is represented by a set of reactions having such a form, together with a
(finite) support set S containing all of the objects that can appear in a reaction.
The state of a reaction system consists of a finite set of objects describing the
biological entities that are present in the real system being modeled. The presence
of an object in the state expresses the fact that the corresponding biological
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entity, in the real system being modeled, is present in a number of copies as high
as needed. This is the threshold supply assumption and characterizes reaction
systems.

A reaction system evolves by means of the application of its reactions. The
threshold supply assumption ensures that different reactions never compete for
their reactants, and hence all the applicable reactions in a step are always applied.
The application of a set of reactions results in the introduction of all of their
products in the next state of the system.

The main advantages of investigating reaction systems is that they have a
clean computational model allowing precise formal analisys and they can be
considered as reference for other computing system (e.g. [17, 1]).

Computational complexity of some problems related to the dynamics of
reaction systems has been extensively studied (e.g. in [21, 20, 17, 14, 15]). In [14,
15], Dennunzio et al. introduced the concept of preimage and n-th ancestor.
Roughly speaking, a n-th ancestor is a set of objects that lead to the production
of a target set of objects after n evolution steps, while a preimage is a 1-th
ancestor. The authors studied the complexity of several problems related to n-th
ancestors by defining reductions between well known hard problems and the
corresponding n-th ancestor problem. They proved that finding a minimal size
preimage or ancestor, computing their size, or counting them are all intractable
problems.

In this paper we propose a constructive method to reason on preimages and
n-th ancestors. Indeed, we define a formula able to characterize all n-th ancestors
of a given set of objects. Such a formula is obtained by revising the idea of
formula based predictor introduced in [3, 2, 4, 6, 5, 7]. A formula based predictor
is a logic formula that exactly characterizes all states leading to a given product
in a given number of steps. It allows the study of all causal dependencies of one
object from the others and therefore enhances previous works on causality in
reaction systems [12], systems biology [18, 8, 9] and natural computing [13].

Following the same approach, here we define a n-ancestors formula that
fully characterizes all n-th ancestors. Moreover, we define an operator able
to compute the formula in polynomial time. To exploit this formula to solve
problems as deciding the existence of n-th ancestors or the computation of a
minimal size preimage or ancestor, one more step is needed. Such a step is a logic
transformation of the formula into a Disjunctive Normal Form (DNF), possibily
minimized with respect to the number of terms (i.e., conjunctions) or to the
number of propositional symbols occurring in it.

The proposed approach allows us to study the complexity of the preimage and
n-th ancestor problems in a constructive way, and to identify classes of reaction
systems for which these problems can be solved in polynomial time.

The paper is organized as follows. Section 2 introduces (Closed) reaction
systems, preimage and n-th ancestor. Section 3 presents some preliminary notions.
The definition of n-th ancestors formulas is given in Section 4 together with an
effective operator to compute them. In Section 5 we bound the complexity of the
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n-th ancestors formula. Finally, Section 6 lists some conditions under which the
existence and minimal size of ancestors can be computed in polynomial time.

2 Closed Reaction Systems

In this section we recall the basic definition of reaction system [16, 11]. Let S be a
finite set of symbols, called objects. A reaction is formally a triple (R, I, P ) with
R, I, P ⊆ S, composed of reactants R, inhibitors I, and products P . Reactants
and inhibitors R ∪ I of a reaction are collectively called resources of such a
reaction, and we assume them to be disjoint (R ∩ I = ∅), otherwise the reaction
would never be applicable. The set of all possible reactions over a set S is denoted
by rac(S). Finally, a reaction system is a pair A = (S,A), where S is a finite
support set, and A ⊆ rac(S) is a set of reactions.

The state of a reaction system is described by a set of objects. Let a =
(Ra, Ia, Pa) be a reaction and T a set of objects. The result resa(T ) of the
application of a to T is either Pa, if T separates Ra from Ia (i.e. Ra ⊆ T and
Ia∩T = ∅), or the empty set ∅ otherwise. The application of multiple reactions at
the same time occurs without any competition for the used reactants (threshold
supply assumption). Therefore, each reaction which is not inhibited can be applied,
and the result of the application of multiple reactions is cumulative. Formally,
given a reaction system A = (S,A), the result of application of A to a set T ⊆ S
is defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

An important feature of reaction systems is the assumption about the non-
permanency of objects: the objects carried over to the next step are only those
produced by reactions. All the other objects vanish, even if they are not involved
in any reaction.

Given a initial set D0 the semantics of a Closed reaction system can be simply
defined as the result sequence, δ = D1, . . . , Dn where each set Di, for i ≥ 1, is
obtained from the application of reactions A to the state obtained at the previous
step Di−1 ; formally Di = resA(Di−1) for all 1 ≤ i < n. The sequence of states
of the reaction system coincides with the result sequence δ = D1, . . . , Dn. In [14,
15], the authors introduce the idea of preimage and n-th ancestor. For simplicity,
we define them for a single product s.

Definition 1. Let A = (S,A) be a r.s. and s ∈ S. A set D0 is a n-th ancestor

of s if s ∈ res(n)A (D0). D0 is called a preimage of s if D0 is a 1-th ancestor of s.

The same concepts can be naturally extended to sets of products.

3 Causal Predicates in Reaction Systems

In our formulas, we use objects of reaction systems as propositional symbols.
Formally, we introduce the set FS of propositional formulas on S defined in the
standard way: S∪{true, false} ⊆ FS and ¬f1, f1∨f2, f1∧f2 ∈ FS if f1, f2 ∈ FS .
The propositional formulas FS are interpreted with respect to subsets of the
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objects C ⊆ S. Intuitively, s ∈ C denotes the presence of element s and therefore
the truth of the corresponding propositional symbol. The complete definition of
the formula satisfaction relation is as follows.

Definition 2. Let C ⊆ S for a given set of objects S. Given a propositional
formula f ∈ FS, the satisfaction relation C |= f is inductively defined as follows:

C |= s iff s ∈ C, C |= true,
C |= ¬f ′ iff C 6|= f ′, C |= f1 ∨ f2 iff either C |= f1 or C |= f2,
C |= f1 ∧ f2 iff C |= f1 and C |= f2.

In the following, ≡ stands for the logical equivalence on propositional formulas
FS . Moreover, given a formula f ∈ FS , with atom(f) we denote the set of
propositional symbols that appear in f .

Given a formula f , a Disjunctive Normal Form (DNF) of f can be computed
by applying the following procedure:

1. Put the negations next to the atomic objects using De Morgan’s laws;
2. Put the conjunctions within the disjunctions using the distributive law;
3. Simplify the obtained formula using the the idempotent, negation, domination

and negation laws.

Alternatively, we can construct the complete DNF of f by constructing the
truth table of f and representing with a conjunction all rows that have a truth
value 1. It is worth noting that both methods are exponential in the worst case.
Indeed, in the first method the application of the distributive laws (step 2) can
be exponential; while in the second method the construction of the truth table is
exponential in the number of variables of f .

Any DNF formulation of the formula allows us to efficiently solve problems
such as determining the existence of a preimage or of a n-th ancestor (see
Section 6 for more details) or to find the minimal-cardinality preimage or n-th
ancestor. However, altough not strictly necessary, it can be convenient to consider
a compact DNF representation of f so that it can be more easily verified. This
requires a

Logic minimization step: further simplify the formula, in exact or heuristic
way, in order to derive a DNF minimal with respect to the number of terms
(i.e., conjunctions) or to the number of literals occurring in it, or any other
given cost metric.

This last step is computationally expensive, as logic minimization is an NP-hard
problem1 [19, 22]. However, since near minimum solutions are sufficient, the
logic minimization step can be performed applying heuristic methods to produce
solutions that are near to the optimum in a relatively short time. In particular,
in our setting, we are interested in deriving a compact logic expression contain-
ing only essential propositional symbols, i.e., symbols on which the expression
actually depends. Thus, in this context, we can apply heuristic techniques (e.g.,

1 More precisely, the decision version of the problem of finding a minimal DNF
representation of a Boolean function f starting from its truth table is NP -complete,
while it becomes NPNP -complete starting from a DNF for f .
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the ESPRESSO heuristic minimizer [10]) to produce near minimal prime and
irredundant DNF formulas, i.e., DNF where each conjunction corresponds to a
prime implicant2 of the function represented by the expression (primality), and
no conjunction can be deleted without changing the function represented by the
expression (irredendancy). Indeed, non essential propositional symbols cannot
appear in any prime implicant of a given Boolean function.

Let us denote with min(f) the DNF obtained after the exact or heuristic
logic minimization step. For any formula f ∈ FS , min(f) is equivalent to f and
is minimal with respect to the number of terms (i.e., conjunctions) or to the
number of literals occurring in it, or to any other chosen cost function. Thus, for
any reasonable cost function we have f ≡ min(f) and atom(min(f)) ⊆ atom(f)
and there exists no formula f ′ such that f ′ ≡l f and atom(f ′) ⊂ atom(min(f)).

The causes of an object in a reaction system are defined by a propositional
formula on the set of objects S. First of all we define the applicability predicate
of a reaction a as a propositional logic formula on S describing the requirements
for applicability of a, namely that all reactants have to be present and inhibitors
have to be absent. This is represented by the conjunction of all atomic formulas
representing reactants and the negations of all atomic formulas representing
inhibitors of the considered reaction.

Definition 3. Let a = (R, I, P ) be a reaction with R, I, P ⊆ S for a set of
objects S. The applicability predicate of a, denoted by ap(a), is defined as follows:
ap(a) =

(∧
sr∈R sr

)
∧
(∧

si∈I ¬si
)
.

The causal predicate of a given object s is a propositional formula on S repre-
senting the conditions for the production of s in one step, namely that at least
one reaction having s as a product has to be applicable.

Definition 4. Let A = (S,A) be a r.s. and s ∈ S. The causal predicate of s in
A, denoted by cause(s,A) (or cause(s), when A is clear from the context), is
defined as follows3: cause(s,A) =

∨
{(R,I,P )∈A|s∈P} ap ((R, I, P )) .

We introduce a simple reaction system as running example.

Example 5. Let A1 = ({A, . . . , G}, {a1, a2, a3}) be a reaction system with

a1 = ({A}, {}, {B}) a2 = ({C,D}, {}, {E,F}) a3 = ({G}, {B}, {E}).

The applicability predicates of the reactions are ap(a1) = A, ap(a2) = C ∧D and
ap(a3) = G ∧ ¬B. Thus, the causal predicates of the objects are

cause(A) = cause(C) = cause(D) = cause(G) = false,
cause(B) = A, cause(F ) = C ∧D, cause(E) = (G ∧ ¬B) ∨ (C ∧D).

2 A prime implicant of a Boolean function f is a conjunction of literals, that implies f
and s. t. removing any literal results in a new conjunction that does not imply f .

3 We assume that cause(s) = false if there is no (R, I, P ) ∈ A such that s ∈ P .
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4 Characterizing the n-th ancestors

We aim to define a formula characterizing all the initial sets D0 that lead to
the production of a given product s ∈ S after exactly n steps. Note that the
formula for the n-th ancestor of a set of products {s1, s2, ...., sm} ⊆ S can be
obtained by combining in conjunction all the n-ancestors formulas for each si
with i ∈ {1, ...,m} (see Corollary 10).

We base our new definitions on the well know notions of formula based and
specialized formula predictors, originally presented in [3, 2, 4, 5], that characterize
all causes of an object in a given number of steps. Following this approach, all
n-th ancestors of an object s are characterized by a propositional formula f , i.e.,
they are all initial sets D0 that satisfy f according to the satisfaction relation
defined in Def. 2.

Definition 6 (n-Ancestors Formula). Let A = (S,A) be a r.s., s ∈ S and
f ∈ FS a propositional formula. We say that formula f is a n-ancestors formula
of s if it holds that D0 |= f ⇔ s ∈ Dn.

Note that if f is a n-ancestors formula of s and f ′ ≡ f then also f ′ is a n-ancestors
formula of s. Among all the equivalent formulas, it is convenient to choose the
one containing the minimal number of propositional symbols, so that they do not
contain inessential objects. This is formalized by the following approximation
order on FS .

Definition 7 (Approximation Order). Given f1, f2 ∈ FS we say that f1 vf

f2 if and only if f1 ≡ f2 and atom(f1) ⊆ atom(f2).

It can be shown that there exists a unique equivalence class of n-ancestors
formulas of s that is minimal w.r.t. the order vf .

We now define an operator Anc that allows n-ancestors formulas to be effec-
tively computed.

Definition 8. Let A = (S,A) be a r.s. and s ∈ S. We define a function Anc :
S × IN→ FS as follows: Anc(s, n) = Anca(cause(s), n− 1), where the auxiliary
function Anca : FS × IN→ FS is recursively defined as follows:

Anca(s, 0) = s Anca(s, i) = Anca(cause(s), i− 1) if i > 0
Anca((f ′), i) = (Anca(f ′, i)) Anca(f1 ∨ f2, i) = Anca(f1, i) ∨ Anca(f2, i)
Anca(¬f ′, i) = ¬Anca(f ′, i) Anca(f1 ∧ f2, i) = Anca(f1, i) ∧ Anca(f2, i)
Anca(true, i) = true Anca(false, i) = false

The function Anc( , n) gives a n-ancestors formula that, in general, is not in DNF
form and may not be minimal w.r.t. to vf . For this purpose we could apply
heuristic techniques to produce prime and irredundant quasi minimal DNF, that
are guaranteed to be minimal w.r.t. to vf .

Theorem 9. Let A = (S,A) be a r.s.. For any object s ∈ S,

– Anc(s, n) is the n-ancestors formula of s;
– min(Anc(s, n)) is the n-ancestors formula of s and is minimal w.r.t. vf .
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The proof of the previous result can be obtained by revisiting the proof of
Theorem 4.4 and Corollary 4.7 in [3]. The previous result extends naturally to
sets as follows.

Corollary 10. Let A = (S,A) be a r.s.. Given a set of objects {s1, ...., sm} ⊆ S,

–
∧

i∈{1,...,m} Anc(si, n) is a n-ancestors formula of {s1, ...., sm};

– min
(∧

i∈{1,...,m} Anc(si, n)
)

is a n-ancestors formula of {s1, ...., sm} and it

is minimal w.r.t. vf .

These constructive (minimal) characterizations of preimages and n-th ancestors
can be exploited for solving computational problems studied in [14, 15]. In partic-
ular, in Section 6 we will use n-ancestors formulas for studying the complexity
of checking the existence of preimages and n-th ancestors, and of computing
minimal preimages and n-th ancestors.

Example 11. Let us consider again the reaction system A1 of Ex. 5. Assume we
are interested in the 1-ancestors formula of E. Hence, we calculate it by applying
the function Anc:

Anc(E, 1) = Anca
(
(G ∧ ¬B) ∨ (C ∧D), 0

)
=

(
Anca(G, 0) ∧ ¬Anca(B, 0)

)
∨
(
Anca(C, 0) ∧ Anca(D, 0)

)
= (G ∧ ¬B) ∨ (C ∧D)

An initial set D0 satisfies Anc(E, 1) iff the execution of the reaction system starting
from D0 leads to the production of object E after 1 step. Furthermore, in this
case the obtained formula is also minimal given that min(Anc(E, 1)) = Anc(E, 1)
since Anc(E, 1) is already in minimal DNF. The 1-ancestors (or preimages) of E
are the sets D0 satisfying Anc(E, 1). They are all possible sets containing either
G but not B, or both C and D. Note that the 2-ancestor formula of E is equal
to false. Indeed,

Anc(E, 2) = Anca
(
(G ∧ ¬B) ∨ (C ∧D), 1

)
=

(
Anca(G, 1) ∧ ¬Anca(B, 1)

)
∨
(
Anca(C, 1) ∧ Anca(D, 1)

)
= (Anca(false, 0) ∧ ¬Anca(A, 0)) ∨ (Anca(false, 0) ∧ Anca(false, 0))
= (false ∧ ¬A) ∨ (false ∧ false)
≡ false

This means that there does not exist any 2nd ancestor of E, that is no D0 can
lead to E in two steps. Of course, also any n-ancestors formula of E with n > 2
is equal to false. Therefore, we can conclude that there does not exist any n-th
ancestor of E for any n > 2.

Example 12. Let us consider now the reaction system
A2 = ({A, . . . , L}, {a1, . . . , a8}) with the following reaction rules:

a1 = ({A}, {B}, {C}) a2 = ({C}, {}, {E, I}) a3 = ({G,B}, {}, {D})
a4 = ({B}, {}, {B}) a5 = ({H,B}, {}, {D}) a6 = ({E,D}, {}, {F})
a7 = ({I}, {}, {G}) a8 = ({L}, {}, {H})
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Assume we are interested in the 1-ancestors of F . We obtain the 1-ancestors
formula Anc(F, 1) = E ∧ D, expressing that any set containing {E,D} is a
1-ancestors (preimage) of F . Looking for the 2-nd ancestors of F , we obtain

Anc(F, 2) = Anca
(
(E ∧D), 1

)
=

(
Anca(E, 1) ∧ Anca(D, 1)

)
= Anca(C, 0) ∧ Anca((G ∧B) ∨ (H ∧B), 0)
= C ∧ ((Anca(G, 0) ∧ Anca(B, 0)) ∨ (Anca(H, 0) ∧ Anca(B, 0)))
= C ∧ ((G ∧B) ∨ (H ∧B)).

Note that min(Anc(F, 2)) = (C ∧ G ∧ B) ∨ (C ∧H ∧ B) in this case is simply
obtained by applying the distributive law that gives an already minimized DNF.

The 2-ancestors formula expresses that any set containing either {C,G, F}
or {C,H,B} is a 2-nd ancestors of F . Instead, as regards 3-ancestors we have

Anc(F, 3) = Anca
(
(E ∧D), 2

)
=

(
Anca(E, 2) ∧ Anca(D, 2)

)
= Anca(C, 1) ∧ Anca((G ∧B) ∨ (H ∧B)), 1)
= Anca(C, 1) ∧ ((Anca(G, 1) ∧ Anca(B, 1) ∨ (Anca(H, 1) ∧ Anca(B, 1)))
= Anca(A ∧ ¬B, 0) ∧ ((Anca(I, 0) ∧ Anca(B, 0) ∨ (Anca(L, 0) ∧ Anca(B, 0)))
= A ∧ ¬B ∧ ((I ∧B) ∨ (L ∧B))

This time min(Anc(F, 3)) = false therefore, we can be sure that it does not exist
any n-th ancestor of F for any n > 2.

5 Analysis of the structure of n-ancestors formulas

In this section we analyze the structure of the formula resulting from our operator,
giving an upper bound to its size and to its depth, i.e., the levels of nesting of
AND and OR operators.

To this aim, given a reaction system A = (S,A), we first define two auxiliary
notions: the maximum number of products and inhibitors in a rule of the system,
denoted cp(A), and the maximum number of rules sharing a product, denoted
mp(A). In the formal definition, |S| indicates the cardinality of the set S.

Definition 13. Given a reaction system A = (S,A), let

cp(A) = max{|R|+ |I| | (R, I, P ) ∈ A},
mp(A) = max{|p(A, s)| | s ∈ S} where p(A, s) = {(R, I, P ) ∈ A | s ∈ P}.

First observe that for each s ∈ S the size of the formula cause(s) in terms of
number of literals is at most cp(A) ·mp(A). Computing the n-ancestors formula
requires n steps. At the first step, the formula computed by our operator is
cause(s), for some s, whose maximal size is at most cp(A) · mp(A). At the
second step, each one of the cp(A) ·mp(A) literals of the previous formula has to
be substituted with its causes, obtaining a new formula whose size is at most
(cp(A) ·mp(A))2, and so on. Hence, the size of the resulting formula Anc(s, n) is at
most (cp(A) ·mp(A))n for each s ∈ S, namely the size of Anc(s, n) is polynomial
in cp(A) and mp(A), as long as n has a constant value. Therefore, the size of the
n-ancestors formula for the set product {s1, s2, ..., sm} ⊆ S is m ·(cp(A) ·mp(A))n

which is polynomial in m, cp(A) and mp(A).
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Let us now evaluate the depth of the formula. To this aim, the idea is to
measure the level of nesting of ∧-∨ operators. Intuitively, formula A is level 0,
formulas A∧B∧C, A∧(B∧C) and A∨B are level 1, formulas A∧(B∧C)∧(C∧D)
and A ∨ (B ∧ C) are level 2, and so on.

Definition 14. Let f ∈ FS, we call nesting level of f the maximum depth of its
representation through a AND-OR tree.

In order to bound the nesting level of Anc(s, n), we define the following:

Definition 15. Given a reaction system A = (S,A). We define

c(A) =

{
1 if cp(A) > 1;
0 otherwise.

p(A) =

{
1 if mp(A) > 1;
0 otherwise.

The next result bounds the nesting level of the formula Anc(s, n), for s ∈ S.

Theorem 16. Let A = (S,A) be a reaction system. For each s ∈ S, the nesting
level of the formula Anc(s, n), characterizing the n-th ancestors of s, is at most
n · (c(A) + p(A)).

Proof. Follows immediately from the definitions of Anc and of cause. ut

For a set {s1, s2, ..., sm} ⊆ S, we have the following result.

Corollary 17. Let A = (S,A) be a reaction system. The nesting level of the
formula

∧
i∈{1,...,m} Anc(si, n), characterizing the n-th ancestors of {s1, s2, ..., sm},

is at most 1 + n · (c(A) + p(A)).

6 Complexity of the existence and minimal size ancestors

Here we focus on the problem of existence and minimal size n-th ancestors. The
first problem consists in establishing whether a n-th ancestor of a given product
exists, while the second one deals with finding a n-th ancestor with a minimal
number of objects. We apply our constructive characterization to prove that in
some particular cases these problems can be solved in polynomial time. It is
worth noting that starting from a formula in DNF, both problems can be solved
in polynomial time. Indeed, the satisfability of a formula in DNF can be checked
in a time that is linear in the size of the formula4; analogously, an ancestor of
minimal size can be found in linear time scanning the DNF form in order to
select the conjunction with the minimal number of positive literals. Transforming
a formula into DNF may require exponential time. Therefore, our idea is to
identify conditions that guarantee that our operator returns a formula that it is
already in DNF. From Corollary 17 it follows that the size of such a formula is
polynomial.

The first result is related to preimages.

4 A formula in DNF is satisfiable if and only if at least one of its conjunctions is
satisfiable; and a conjunction is satisfiable if and only if it does not contain both a
symbol x and its complement ¬x.
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Theorem 18. Let A = (S,A) be a reaction system. For an object s ∈ S, the
existence and minimal size of the preimage can be solved in polynomial time.

Proof. The formula Anc(s, 1) is, by definition, a DNF. ut

We now investigate syntactical conditions under which existence and minimal
size n-th ancestor, with n > 1, can be computed in polynomial time. The first
condition we introduce is linear dependency.

Definition 19. Let A = (S,A) be a r.s.. The n-linear dependency of an object

s2 from an object s1, denoted s1
n
↪→ s2, is recursively defined as follows:

1. s1
1
↪→ s2 iff p(A, s) = 1 and either ({s1}, ∅, {s2}) ∈ A or (∅, {s1}, {s2}) ∈ A;

2. s1
n
↪→ s2 with n > 1 iff there exists s3 ∈ S such that s1

1
↪→ s3 and s3

n−1
↪→ s2.

Intuitively, s2 is n-linearly dependent from s1 if it can be produced from s1 in n
steps in a unique way and by producing a single element at each step.

The second property states when an object is n-linearly produced.

Definition 20. Let A = (S,A) be a reaction system. An object s2 is n-linearly
produced in A iff

– |p(A, s2)| = 0, or

– there exists s1 ∈ S such that s1
1
↪→ s2 and s1 is (n− 1)-linearly produced.

An object is linearly produced when it is n-linearly produced for all n.

Theorem 21. Let A = (S,A) be a reaction system. If ∀s ∈ S.|p(A, s)| ≤ 1, and
for every rule (R, I, P ) ∈ A all the objects in I are n-linearly produced, then, for
any s ∈ S, the existence and minimal size of the n-th ancestors of s can be solved
in polynomial time.

Proof. (Sketch) Since for every object s ∈ S we have |p(A, s)| ≤ 1, we know
that no ∨ operator is introduced in the computation of the n-ancestors formula.
Moreover, every object used as inhibitor is n-linearly produced, thus every
negated atom, in the computation of n steps, is replaced by a single literal. As a
consequence, a negation of a conjunctive formula (which could be transformed
in a disjunctive formula) never occurs. Hence, the n-ancestors formula of s is
simply a conjunction of literals of nesting level 1, a particular case of DNF. ut

The next result extends the previous one to sets of objects.

Corollary 22. Let A = (S,A) be a reaction system. If all the conditions of
Theorem 21 are satisfied, then, for any set {s1, s2, ...., sm} ⊆ S, the existence and
minimal size of the n-th ancestors can be solved in polynomial time.

Proof. (Sketch) The n-ancestors formula of a set of objects is, by definition, a
conjunctive formula of nesting level 1. Hence, the whole n-ancestors formula of
{s1, s2, ...., sm} is still a conjunctive formula of nesting level 1. ut
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Example 23. Let A3 = ({A, . . . , G}, {a1, . . . , a6}) be a reaction system with

a1 = ({A,B}, {}, {C}) a2 = ({D,E}, {F}, {A}) a3 = ({G}, {}, {F})
a4 = ({B}, {}, {G}) a5 = ({C,B}, {}, {D}) a6 = ({E}, {}, {E})

Since every object is produced by at most one rule (i.e. ∀s ∈ S.|p(A, s)| ≤ 1) and
the only inhibitor F is (linearly) produced by a reaction with a single reactant
which, in turn, is (linearly) produced by a reaction with a single reactant, then the
conditions of Theorem 21 and Corollary 22 are satisfied. Indeed, if we compute,
for instance, Anc(A, 2) we obtain C ∧D ∧ E ∧ ¬G that is in DNF.

Conditions expressed by Theorem 21 and Corollary 22 are not a characterization
of all reaction systems having a n-ancestors formula in DNF. Weaker conditions
can be found as, for instance, in the following proposition.

Proposition 24. Let A = (S,A) be a reaction system. If

– there exists s ∈ S such that |p(A, s)| ≥ 2, ∀s ∈ S/{s}, |p(A, s)| ≤ 1 and
∀(R, I, P ) ∈ A s 6∈ R, and

– for each rule (R, I, P ) ∈ A all the objects in I are n-linearly produced,

then, for any object s ∈ S, the existence and minimal size of the n-th ancestors
can be solved in polynomial time.

Proof. (Skech) Since there is only s ∈ S that is produced by more than one rule,
only cause(s) can contain the ∨ operator. Moreover s cannot appear as reactant
in any rule. Thus it cannot be introduced in the computation of the n-ancestors
formula of any other object. Further, every object used as inhibitor is n-linearly
produced, thus every negated atom, in the computation of n steps, is replaced
by a literal. Then, the n-ancestors formula of s is a DNF. ut

7 Conclusions and Future Works

We proposed a constructive characterization of all n-ancestors of a set product,
computed using an effective operator and exploited it to study the complexity
of the existence and minimal size of the n-th ancestors and we found that they
can be solved in polynomial time for reaction systems satisfying some syntactic
conditions. As future work, we plan to apply our results to real systems. Moreover,
we intend to investigate weaker syntactical conditions (corresponding to richer
classes of reaction systems for which the considered problems are polynomial)
and whether other computational problems could be solved in polynomial time
by exploiting our n-ancestors formula, possibly transformed into Conjunctive
Normal Form.
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