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Abstract. In this paper, we study a swarm of robots that has to select
one aggregation site in an environment in which two sites are available. It
is known in the literature that, in presence of asymmetries in the environ-
ment, robot swarms are able to perform a collective choice and aggregate
in one among two possible sites, for example the largest of the two. We
focus on an aggregation scenario where the environment is morpholog-
ically symmetric. The two aggregation sites are identical with only one
exception: their colour. In addition, in the swarm only a proportion of
robots, that we call the informed robots, possess extra information con-
cerning on which specific site the swarm is required to aggregate. The
rest of the robots are non-informed, thus they do not possess the above
mentioned extra information. In simulation-based experiments we show
that, if no robot in the swarm is informed, the swarm is able to break the
symmetry and aggregates on one of the two sites at random. However,
the introduction of a small proportion of informed robots is enough to
break the symmetry: the majority of the swarm aggregates on the site
preferred by the informed robot. Additionally, the swarm is also able to
completely aggregate on one of the two sites when only half the robots
are informed, independently from the swarm size among those we con-
sidered. Finally, we analyse how the time dynamics of the aggregation
process depend on the proportion of informed robots.

Keywords: swarm robotics · self-organisation · aggregation · informed
leaders

1 Introduction

Swarm robotics is a sub-domain of a larger research area dedicated to the design
and control of multi-robot systems [26, 4]. Swarm robotics is characterised by
the following distinctive elements: i) the use of distributed embodied control,
that is, each robot has is own on-board control system in charge of determining
the robot’s behaviour; ii) local perception, that is, each robot can sense and
communicate only within a given range using sensors and actuators mounted
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on its body; iii) the use of indirect communication: given that the robots of a
swarm are “anonymous”, any single agent can not selectively choose a specific
message receiver, but rather communicate implicitly through modification of the
environment in which they operate, by emitting sound or by generating other
types of signal that are eventually detected by other agents.

Research in swarm robotics generally focuses on the design of individual con-
trol mechanisms underpinning a desired collective response, which emerges in a
self-organised way from the interactions of system components (i.e., the robots
and their environment) [4]. Examples of such collective responses are area cov-
erage [19], chain formation [27], collective decision-making and task partition-
ing [23, 25, 29], cooperative transport [1], and collective motion [14].

One of the main building blocks in swarm robotics is collective decision-
making, the ability to make a collective decision without any centralised lead-
ership, but only via local interaction and communication. Several types of col-
lective behaviours can be seen as instances of collective decision making [30, 31],
including collective motion where robots have to agree on a common direction
of motion, and aggregation where robots have to agree on a common location
in the environment. In a seminal study illustrated in [10], the authors study
collective decision making in the context of collective motion looking at what
happens when implicit leaders are introduced. These special individuals, also
called informed individuals, have a preferred direction of motion and they bias
the collective decision in that direction. The rest of the swarm does not have
any preferred direction of motion, nor is able to recognise informed individuals
as such. The authors show that the accuracy of the group motion towards the
direction known by the informed agents increases asymptotically as the propor-
tion of informed individuals increases. Moreover, the authors show that larger
the group, the smaller the proportion of informed individuals needed to guide
the group with a given accuracy.

In swarm robotics, the framework of implicit leaders has been studied mainly
in the context of collective motion [8, 13, 14]. Inspired by these works, we study
the effect of implicit leaders in another collective behaviour strongly linked to
collective decision-making: self-organised aggregation [9, 18, 2]. Aggregation pro-
cesses are extremely common in biological systems [5], resulting in clusters of
agents at common areas in the environment. Self-organised aggregation (i.e., an
aggregation process not driven by exogenous forces) has been studied in a va-
riety of biological systems [11, 20] and also implemented on distributed robotic
systems [16, 15, 18]. Indeed, aggregation is often a necessity for many collective
systems as it is a prerequisite for other cooperative behaviours [12, 28].

Aggregation has been studied as a best-of-n collective decision-making prob-
lem [30] in [17] and in [7]. In both studies, the authors have considered the
presence of two circular aggregation sites in the environment, the only two areas
where robots can stop, that are indistinguishable to the robots. In [17], the au-
thors considered two cases: in the first one, where the two sites have equal size,
under special circumstances the swarm can break the symmetry and aggregate
on one of the two sites at random; in the second one, where the two sites have



Self-organised Aggregation in Swarms of Robots with Informed Robots 3

different sizes, robots are able to collectively chose the biggest among the two
aggregates. In a setting that is similar to the second one in [17], using a different
model, the authors of [7] design a swarm able to select the smallest site that can
host the entire swarm, rather than the biggest one.

Differently from the aggregation studies mentioned above, and analogously to
the studies performed within collective motion [10], in this paper we introduce
“informed” robots in the context of self-organised aggregation, and we study
how they impact the aggregation dynamics. Informed robots are members of
the swarm that have been informed a priori about the aggregation site to stop
on, in an environment that offers multiple sites for aggregation. Apart from
the preference on the site on which to aggregate, the behaviour of informed
robots is controlled by exactly the same mechanisms of non-informed robots.
The roles of informed robots is to influence the aggregation dynamics, in a very
indirect way, since none of the robots has any means to discriminate informed
from non-informed robots. We perform our study with a series of simulation
experiments on the simplest possible scenario, represented by a circular arena
with two aggregation sites: the desired one coloured in black, and the one to
be avoided, coloured in white. The results of our simulations show interesting
relationships between swarm size and proportion of informed agents, both on
quality and speed of convergence on the desired aggregation site.

The rest of the paper is structured as follows. Section 2 describes the self-
organised aggregation method used. In Section 3, we present the experimental
setup and how we study the effect of informed robots. Section 4 presents the
results of our study. Finally, in section 5, we discuss the significance of our
results for the swarm robotics community, and we point to interesting future
directions of work.

2 Methods

Each robot is controlled by a probabilistic finite state machine (PFSM, see also
Figure 1a), similar to the one employed in [20, 2, 9, 6]. The robots’ controller is
made of three states: Random Walk (RW), Stay (S), and Leave (L). When in
state RW, the movement of the robot is characterised by an isotropic random
walk, with a fixed step length (5 seconds, at 10 cm/s), and turning angles chosen
from a wrapped Cauchy probability distribution characterised by the following
PDF [21]:

fω(θ, µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 < ρ < 1, (1)

where µ = 0 is the average value of the distribution, and ρ determines the dis-
tribution skewness. For ρ = 0 the distribution becomes uniform and provides no
correlation between consecutive movements, while for ρ = 1 a Dirac distribution
is obtained, corresponding to straight-line motion. In this study ρ = 0.5. Any
robot in state RW is continuously performing an obstacle avoidance behaviour.
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(a) (b)

Fig. 1. (a) State diagram of the robots’ controller. (b) The robots’ arena with the black
and white aggregation site.

To perform obstacle avoidance, first the robot stops, and then it keeps on chang-
ing its headings of a randomly chosen angle uniformly drawn in [0, π] until no
obstacles are perceived.

A robot that, while performing random walk, reaches any of the two aggre-
gation site, it stops with probability (Pstay). This probability is computed using
the following function:

Pstay = 0.03 + 0.48 ∗ (1− e−an); (2)

with n corresponding to the number of other robots currently stationing on
the site that are perceived by the robot currently deciding whether to stop or
not; and a = 0.6. This function was first introduced in [6]. It interpolates the
probability table considered in classical studies such as [20, 9]. Once the robot
has decided to stop based on Pstay, it moves forward for a limited number of
time in order to avoid stopping at the border of the site thus creating barriers
preventing the entrance to other robots, and then transitions from state RW to
state S. Once in state S the robot leaves the aggregation site with probability
Pleave. This probability is computed in the following:

Pleave = e−bn; (3)

with b = 2.6. This function was also introduced in [6]. A robot that decides
to leave the aggregation site based on Pleave transitions from state S to state
L. Both Pstay and Pleave are sampled every 20 time steps. When in state L,
the robot moves away from the site by moving forward while avoiding collisions
with other robots until it no longer perceives the site. At this point, the robot
transitions from state L to state RW.

In our model we consider two kinds of robots: informed and non-informed.
Informed robots are agents that possess extra information on what is the site
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on which the swarm has to aggregate. Ideally, this extra information could be
either generated by additional sensors, mounted only on informed robots, which
allow these robots to perceive the quality difference between the two aggregation
sites, or communicated by the experimenter with the intention to influence the
swarm aggregation dynamics. In our simulated scenario, we consider aggregation
sites in two different colours: black and white. Informed robots are aware that
the task requires to stop only on the black site. Therefore, they ignore the white
site, and only stop on the black site based on Pstay, as described above. Non-
informed robots do not possess this extra information, therefore they can stop
both on the black and on the white site based on Pstay, as described above.

3 Experimental Setup

In this set of simulations, a swarm of robots is randomly initialised in a circular
area with the floor coloured in grey except for two circular aggregation sites
one coloured in white and one in black (see Figure 1b). The task of the robots
is to find and aggregate on the black site. Some of the robots are informed on
which site to aggregate. The proportion of informed robots, henceforth denoted
as ρI is systematically varied from ρI = 0 (i.e., none of the robots is informed
on which site to aggregate) to ρI = 1 (all the robots are informed on which
site to aggregate) with a step size of 0.1. We run three different experimental
conditions, in which we varied the swarm size. As aggregation performance are
heavily influenced by swarm density [6], in this paper we have decided to study
scalability by keeping the swarm density constant. Therefore, the diameter of the
area, as well as the diameters of the two sites, is varied as well. Table 1 reports a
summary of our experimental conditions. In all conditions, the diameter of each
aggregation site is large enough to accommodate all the robots of the swarm.

Each experimental condition can be divided in 11 groups which differ in
the proportion of informed robots ρI . For each proportion ρI , we execute 200
independent runs. In each run, the robots are randomly initialised within the
arena, and then they are left free to act according to actions determined by
their PFSM for 10.0000 time steps. One simulated second corresponds to 10
time steps.

We use ARGoS multi engine simulator [24]. The simulation environment
models the circular arena as detailed above, and the kinematic and sensors read-
ings of the Foot-bots mobile robots [3]. The robot sensory apparatus includes
the proximity sensors positioned around the robot circular body, four ground

Table 1. Table showing the characteristics of each experimental condition.

experimental conditions swarm size (N) arena diameter (m)
aggregation site

diameter (m)
1 20 8.3 1.8

2 50 12.9 2.8

3 100 19.2 4.0
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(a) (b)

(c)

Fig. 2. Results of the experiments without informed robots (ρI = 0). The graphs show
frequency histograms of the proportion of robots aggregating on the largest aggregate
(max(Φb, Φw)) for swarms of size a) N=20; b) N=50; and c) N=100.

sensors positioned two on the front and two on the back of the robot underside,
and the range and bearing sensor. The proximity sensors are used for sensing
and avoiding the walls of the arena. The readings of each ground sensors is set to
0.5 if the sensor is on grey, to 1 if on white, and 0 if on black. A robot perceives
an aggregation site when all the four ground sensors return a value different from
0.5. Range and bearing sensors are used for inter-robot obstacle avoidance and
for sensing the number of neighbours: the robots send a signal whenever they
are stationing on a site. These signals are used by the robots to estimate the
parameter n necessary to compute Pstay and Pleave.

4 Results

The main aim of this study is to look at how informed robots influence the
aggregation dynamics in a task in which there are two possible aggregation
sites, that can be differentiated only by informed robots. To do this, we used
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as performance indicator the proportion of robots aggregated on black site as
Φb = Nb

N and on white site as Φw = Nw

N (where Nb and Nw are the number
of robots aggregated on the black and white site, respectively) during the last
100.000 time steps of each run. The goal of the swarm is to maximise Φb and to
minimise Φw. Note that Φb + Φw ≤ 1 as it is possible that not all robots have
aggregated in either site by the end of the run.

Prior to testing the effect of informed robots, we conduct a first set of ex-
periments to validate our model. The model we used (see Section 2), is strongly
influenced by the work of Garnier et al. [17]. According to this study, in pres-
ence of perfectly symmetrical aggregation sites, this aggregation model results
in a symmetry breaking, whereby robots tend to chose one of the two sites at
random. They aggregate in the chosen site, provided that the site is big enough
to host the entire swarm. This symmetry breaking property is an essential fea-
ture of a self-organised aggregation method as it provides the positive feedback
mechanism necessary for such behaviour. In order to test whether our model has
this feature, we have executed experiments without informed robots in order to
replicate the results in [17]. To calculate the strength of the positive feedback
mechanism, we calculate the proportion of robots aggregated in the largest ag-
gregate as max(Φb, Φw), independently on whether it is on the black or the white
site. Results are shown in Figure 2 in form of frequency distribution. The graphs
shows that, independently on the swarm size, the distribution looks multi-modal,
with the highest peak at 1.0. This indicates that, for all considered swarm sizes,
the swarm is able to create large aggregates around one of the sites at random.

We introduce informed robots and analyse how aggregation performance de-
pend on their proportion ρI . The results are shown in Figure 3. We notice that
for all swarm size, and when no robot is informed in the swarm (ρI = 0.0), both
Φb and Φw are centred around 0.5 with a strong variation. As we saw above,
this may be explained by the fact that robots chose one aggregate at random
under these conditions. Importantly, the introduction of as little as 10% of in-
formed robots clearly breaks the equal-frequency bimodal aggregation dynamics
between the black and the white sites and generates new dynamics that tend to
bring the majority (about 60%) of the robots on the black site. Furthermore, all
three graphs show a similar trend in which the higher the number of informed
robots, the higher the proportion of robots aggregated on the black site. This
trend is non-linear and reaches saturation at around ρI = 0.5. With as little as
30% of informed robots, the majority of the runs finishes with more than 90%
of the robots aggregated on the black site (see black boxes for ρI = 0.3 in all
graphs in Figure 3). For the smallest swarm size (N=20, see Figure3a) 50% of
informed robots is enough to bring forth very robust and consistent aggrega-
tion dynamics that take the entire swarm on the black site. For medium and
large swarm, similar robust and consistent dynamics can be observed when the
proportion of informed robots is at least 60%. In summary, the above results
indicate that with a proportion of informed robots varying from 0.3 to 0.5 of
the entire swarm, it is possible to generate robust and consistent aggregation
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(a) (b)

(c)

Fig. 3. Graphs showing the percentage of aggregated robots on the white site (i.e., Φw,
see grey boxes) and on the black site (Φb, see black boxes) for swarms of size a) N=20;
b) N=50; and c) N=100. In each graph, the x-axis refers to the proportion of informed
robots.

dynamics that take the totally of the swarm on a single site, in a task in which
two possible aggregation sites are available.

The graphs in Figure 4 show details on the time dynamics of the aggrega-
tion process for three different values of ρI (ρI = 0.1 in Figure 4a, ρI = 0.3 in
Figure 4b, and ρI = 0.6 in Figure 4c) and with the largest swarm size N=100.
All figures feature a non-linear increase of the proportion of robots aggregated
on the black site (i.e., Φb), which eventually reaches saturation. By increasing
the percentage of informed robots, we initially observe that distribution of con-
vergence values changes dramatically from ρI = 0.1 to ρI = 0.3. In the latter
case, we already observe a good percentage of the runs converging to all robots
aggregated on the black site, as the dashed top curve in Figure 4b corresponds
to the 75% percentile. When we increase ρI to 0.6, we observe that the varia-
tion between the different runs reduces dramatically while converging, and that
all quartile of the distributions tend to converge to Φb = 1. Additionally, we
can also notice that, the higher the proportion of informed robots, the steeper
the slope of the curve during both the first and the second phase. That is, by
progressively increasing ρI the aggregation dynamics unfold in such a way that
higher proportion of robots aggregated on the black site appear earlier during
the run. To conclude, we can state that both speed (in terms of convergence)
and accuracy (in terms of increase of percentage of robots aggregating on the
desired site) of the aggregation process increase with increasing proportion of
informed robots.
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(a) (b)

(c)

Fig. 4. Graphs showing the median (see continuous line), the first and third quartile
(see dashed lines) of the proportion of robots aggregated on the black site (Φb) at every
time step for 200 runs with swarm size N=100. In a) 10% of the swarm is informed; in
b) 30% of the swarm is informed; in c) 60% of the swarm is informed.

5 Conclusions

In this paper, we have contributed to the wider agenda of studying the role of
implicit leaders in the context of collective decision making. We have focused on
self-organised aggregation in the simplest possible scenario whereby two sym-
metrical but differently coloured sites are present. We considered a swarm of
robots divided in two sets: informed robots, that possess extra information on
which site the swarm has to aggregate, and non-informed robots which do not
possess this extra information.

We conducted experiments using the ARGoS simulator in which we varied
the proportion of informed robots from 0% to 100%. Our results show that,
in absence of informed robots, robots can either split between the two sites,
or break the symmetry randomly by aggregating in one of them. As soon as
informed robots are introduced, the symmetry is instead immediately broken
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and increasingly more robots aggregate on the black site. When at least 50%
of the robots are informed, the entire swarm aggregates on the black site, for
all swarm sizes we have considered. We have also shown that the speed and
accuracy of convergence is also strongly affected by the proportion of informed
robots.

This study has the potential to be extended in many possible ways. First, in
the context of aggregation, our next step will be to extend the study to more
complex scenarios. We plan to test the discrimination capabilities of our swarms
with informed robots in environments with more than two aggregation sites.
These can include: environments with only one black (i.e., the correct) site and
several white sites; environments with multiple black and white sites, in which
we require the swarm to aggregate only on one of the black sites; environments
with several different options (e.g. colours), which would correspond to a best-of-
n problem with n > 2 [30]; scenarios where informed robots may have conflicting
information about which is the best site and conflict resolution strategies need
to be devised. Secondly, in our vision, we also plan to introduce implicit leaders
in other collective behaviours. Finally, our framework can also have a practical
relevance in the context of human-swarm interaction [22], whereby informed
robots can correspond to robots that are controlled or tele-operated by humans,
which would in turn introduce the human in the loop in order to study how
humans can interact and control swarm of robots.
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8. Çelikkanat, H., Şahin, E.: Steering self-organized robot flocks through externally
guided individuals. Neural Computing and Applications 19(6), 849–865 (Sep 2010)

9. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a
swarm of miniature robots (2011)

10. Couzin, I., Krause, J., Franks, N., Levin, S.: Effective leadership and decision
making in animal groups on the move. Nature 433, 513–516 (2005)



Self-organised Aggregation in Swarms of Robots with Informed Robots 11

11. Deneubourg, J., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence of
cooperation. The Biological Bulletin 202(3), 262–267 (2002)
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