Skip to main content

Proposal of Carrier-Wave Reservoir Computing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Abstract

Reservoir computing is highly compatible with physical waves such as optical wave and spin wave. In such wave-realized reservoir computing, signals are not limited to the raw signals, or baseband signals, but also expressed as frequency-shifted signals having a carrier. This paper proposes such a reservoir computing architecture, namely, carrier-wave reservoir computing. We present its construction and suitable learning dynamics with which we deal with the phase information explicitly. The merits of the proposed carrier-wave reservoir computing are its frequency-dependent processing functions, frequency-domain multiplexing ability and explicit phase-information utilization. It is also useful for material evaluation from the viewpoint of computational ability in the reservoir computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Special issue: Reservoir computing. J. IEICE (to appear)

    Google Scholar 

  2. Antonik, P., Duport, F., Smerieri, A., Hermans, M., Haelterman, M., Massar, S.: Online training of an opto-electronic reservoir computer. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 233–240. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26535-3_27

    Chapter  Google Scholar 

  3. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_63

    Chapter  Google Scholar 

  4. Georgiou, G.M., Koutsougeras, C.: Complex domain backpropagation. IEEE Trans. Circ. Syst. II 39(5), 330–334 (1992)

    Article  Google Scholar 

  5. Hirose, A.: Continuous complex-valued back-propagation learning. Electron. Lett. 28(20), 1854–1855 (1992)

    Article  Google Scholar 

  6. Hirose, A., Eckmiller, R.: Behavior control of coherent-type neural networks by carrier-frequency modulation. IEEE Trans. Neural Netw. 7(4), 1032–1034 (1996)

    Article  Google Scholar 

  7. Hirose, A., Eckmiller, R.: Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain. Appl. Optics. 35(5), 836–843 (1996)

    Article  Google Scholar 

  8. Hirose, A., et al.: Complex-valued neural networks for wave-based realization of reservoir computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10637, pp. 449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_47

    Chapter  Google Scholar 

  9. Hirose, A., et al.: Complex-valued neural networks to realize energy-efficient neural networks including reservoir computing. In: International Symposium on Nonlinear Theory and Its Applications (NOLTA), Cancun. A2L-E-3 (2017)

    Google Scholar 

  10. Jaeger, H., Haars, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  11. Kawata, S., Hirose, A.: Coherent lightwave neural network systems: use of frequency domain. World Scientific Publishing Co., Singapore (2003)

    Chapter  Google Scholar 

  12. Kawata, S., Hirose, A.: Coherent optical adaptive filter that has an arbitrary generalization characteristic in frequency-domain by using plural path difference. In: International Conference on Artificial Neural Networks (ICANN) 2003 / International Conference on Neural Information Processing (ICONIP), pp. 426–429, June 2003

    Google Scholar 

  13. Kawata, S., Hirose, A.: Coherent optical neural network that learns desirable phase values in frequency domain by using multiple optical-path differences. Opt. Lett. 28(24), 2524–2526 (2003)

    Article  Google Scholar 

  14. Kawata, S., Hirose, A.: Frequency-multiplexed logic circuit based on a coherent optical neural network. Appl. Opt. 44(19), 4053–4059 (2005)

    Article  Google Scholar 

  15. Kawata, S., Hirose, A.: Frequency-multiplexing ability of complex-valued Hebbian learning in logic gates. Int. J. Neural Syst. 12(1), 43–51 (2008)

    Google Scholar 

  16. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Trans. Signal Process. 39, 2101–2104 (1991)

    Article  Google Scholar 

  17. Limmanee, A., Kawata, S., Hirose, A.: Phase signal embedment in densely frequency-multiplexed coherent neural networks. In: OSA Topical Meeting on Information Photonics (OSA-IP), Charlotte. No. ITuA2, June 2005

    Google Scholar 

  18. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  Google Scholar 

  19. Mori, R., Tanaka, G., Nakane, R., Hirose, A., Aihara, K.: Computational performance of echo state networks with dynamic synapses. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 264–271. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_29

    Chapter  Google Scholar 

  20. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep. 5, 10487 (2015)

    Article  Google Scholar 

  21. Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body dynamics as a computational resource. J. Roy. Soc. Interface 11, 20140437 (2018)

    Article  Google Scholar 

  22. Nakane, R., Tanaka, G., Hirose, A.: Demonstration of spin-wave-based reservoir computing for next-generation machine-learning devices. In: International Conference on Magnetism (ICM), San Francisco, pp. 26–27, July 2018

    Google Scholar 

  23. Nakane, R., Tanaka, G., Hirose, A.: Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018)

    Article  Google Scholar 

  24. Takeda, S., et al.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_24

    Chapter  Google Scholar 

  25. Tanaka, G., et al.: Exploiting heterogeneous units for reservoir computing with simple architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 187–194. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_20

    Chapter  Google Scholar 

  26. Tanaka, G., et al.: Nonlinear dynamiccomdynamic of memristive networks and its application to reservoir computing. In: International Symposium on Nonlinear Theory and Its Applications (NOLTA), Cancun. A2L-E-2 (2017)

    Google Scholar 

  27. Tanaka, G., et al.: Waveform classification by memristive reservoir computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10637, pp. 457–465. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_48

    Chapter  Google Scholar 

  28. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review. arXiv preprint. arXiv:1808.04962 (2018)

  29. Torrejon, J., et al.: Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017)

    Article  Google Scholar 

  30. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  Google Scholar 

  31. Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proc. IEEE 63, 719–720 (1975)

    Article  Google Scholar 

  32. Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based reservoir computing by synchronization of coupled oscillators. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 198–205. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26555-1_23

    Chapter  Google Scholar 

  33. Yamane, T., et al.: Simulation study of physical reservoir computing by nonlinear deterministic time series analysis. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10634, pp. 639–647. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_66

    Chapter  Google Scholar 

  34. Yamane, T., et al.: Dynamics of reservoir computing at the edge of stability. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 205–212. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirose, A. et al. (2018). Proposal of Carrier-Wave Reservoir Computing. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics