Skip to main content

Improved Kernel Density Estimation Self-organizing Incremental Neural Network to Perform Big Data Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11302))

Included in the following conference series:

Abstract

Plenty of data are generated continuously due to the progress in the field of network technology. Additionally, some data contain substantial noise, while other data vary their properties in according to various real time scenarios. Owing to these factors, analyzing big data is difficult. To address these problems, an adaptive kernel density estimation self-organizing neural network (AKDESOINN) has been proposed. This approach is based on the kernel density estimation self-organizing incremental neural network (KDESOINN), which is an extension of the self-organizing incremental neural network (SOINN). An SOINN can study the distribution using the input data online, while KDESOINN can estimate the probability density function based on this information. The AKDESOINN can adapt itself to the changing data properties by estimating the probability density function. Further, the experimental results depict that AKDESOINN succeeds in maintaining the performance of KDESOINN, while depicting an ability to adapt to the changing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amimi, S., Ilias Gerostathopoulos, I,. Prehofer, C.: Big data analytics architecture for real-time traffic control. In: 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, pp. 710–715 (2017)

    Google Scholar 

  2. Anker, S., Asselbergs, F.W., Brobert, G., Vardas, P., Grobbee, D.E., Cronin, M.: Big data in cardiovascular disease. Eur. Hear. J. 38(24), 1863–1865 (2017)

    Article  Google Scholar 

  3. Deng, Z., Chung, F.L., Wang, S.: FRSDE: fast reduced set density estimator using minimal enclosing ball approximation. Pattern Recognit. 41(4), 1363–1372 (2008)

    Article  Google Scholar 

  4. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632, MIT Press, USA (1995)

    Google Scholar 

  5. Furao, S., Hasegawa, O.: An incremental network for on-line unsupervised classification and topology learning. Neural Netw. 19(1), 90–106 (2006)

    Article  Google Scholar 

  6. Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Netw. 20(8), 893–903 (2007)

    Article  Google Scholar 

  7. Furao, S., Hasegawa, O.: A fast nearest neighbor classifier based on self-organizing incremental neural network. Neural Netw. 211(10), 1537–1547 (2008)

    MATH  Google Scholar 

  8. Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On optimal data-based bandwidth selection in kernel density estimation. Biometrika 78(2), 263–269 (1991)

    Article  MathSciNet  Google Scholar 

  9. Huber, P.J., Ronchetti, E.M.: Robust Statistics. International Encyclopedia of Statistical Science, pp. 1248–1251. Springer Press, Berlin (2011)

    Chapter  Google Scholar 

  10. Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)

    Article  MathSciNet  Google Scholar 

  11. John, W.S.: Big data: a revolution that will transform how we live, work, and think. Int. J. Advert. 33(1), 181–183 (2014)

    Article  Google Scholar 

  12. Kawewong, A., Pimup, R., Hasegawa, O.: Incremental learning framework for indoor scene recognition. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 496–502. Bellevue (2013)

    Google Scholar 

  13. Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13, 2529–2565 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Kim, W., Hasegawa, O.: Prediction of tropical storms using self-organizing incremental neural networks and error evaluation. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing. ICONIP 2017. LNCS, vol. 10636, pp. 846–855. Springer Press, Cham (2017). https://doi.org/10.1007/978-3-319-70090-8_86

    Chapter  Google Scholar 

  15. Kim, W., Hasegawa, O.: Time series prediction of tropical storm trajectory using self-organizing incremental neural networks and error evaluation. J. Adv. Comput. Intell. Intell. Inform. 22(4), 465–474 (2018)

    Article  Google Scholar 

  16. Rob, K., Gavin, M.: What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets. Big Data & Society 3(1) (2016)

    Google Scholar 

  17. Kristan, M., Leonardis, A., Skočaj, D.: Multivariate online kernel density estimation with Gaussian kernels. Pattern Recognit. 44, 2630–2642 (2011)

    Article  Google Scholar 

  18. Laney, D.: 3D data management: controlling data volume, velocity, and variety. META group research note 6, 1 (2001)

    Google Scholar 

  19. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds,) Proceedings of COMPSTAT 2010, pp. 177–186. Springer Press, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  20. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  Google Scholar 

  21. Lobell, D.B., et al.: Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863), 607–610 (2008)

    Article  Google Scholar 

  22. Nakamura, Y., Hasegawa, O.: Nonparametric density estimation based on self-organizing incremental neural network for large noisy data. IEEE Trans. Neural Netw. Learn. Syst. 28(1), 8–17 (2017)

    Article  Google Scholar 

  23. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  24. Chris, P.P.: Big knowledge from big data in functional genomics. Emerg. Top. Life Sci. 1(3), 245–248 (2017)

    Article  Google Scholar 

  25. Zurada, J.M.: Introduction to Artificial Neural Systems. West, St. Paul (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonjik Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, W., Hasegawa, O. (2018). Improved Kernel Density Estimation Self-organizing Incremental Neural Network to Perform Big Data Analysis. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11302. Springer, Cham. https://doi.org/10.1007/978-3-030-04179-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04179-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04178-6

  • Online ISBN: 978-3-030-04179-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics