Skip to main content

Potential Probability of Negative Triples in Knowledge Graph Embedding

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11303))

Abstract

In this paper, we propose the concept of triples’ potential probability. Typically, knowledge graph only contains positive triples. Most of knowledge representation methods treat the replaced triples, which replace the head/tail entities or relations with other entities or relations randomly, as negative triples. Actually, not all triples are absolutely negative triples after substitution. It could be a positive triple essentially, but has not been discovered yet. Considering the problems arising from the above situation, we propose the potential probability to solve it. First, we utilize the co-occurrence of relations and paths in the knowledge graph to find potentially correct probabilities of some negative triples. Then we add these triples with potential probabilities to the training model. Finally, we take the experiments on two translation-based models, TransE and TransH, using four public datasets. Experimental results show that our method greatly enhances the performance of the target embedding models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singhal, A.: Official Google Blog: Introducing the Knowledge Graph: things, not strings, pp. 1–8. Official Google Blog (2012)

    Google Scholar 

  2. Liu, Z., Li, K., Qu, D.: Knowledge graph based question routing for community question answering. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, El-Sayed M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 721–730. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_73

    Chapter  Google Scholar 

  3. Fellbaum, C.: WordNet: An Electronic Lexical Database, vol. 71, p. 423. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD Conference, pp. 1247–1250 (2008)

    Google Scholar 

  5. Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5 (2012)

    Google Scholar 

  6. Jia, Y., Wang, Y., Jin, X., Lin, H., Cheng, X.: Knowledge graph embedding: a locally and temporally adaptive translation-based approach. ACM Trans. Web 12(2), 1–33 (2017)

    Article  Google Scholar 

  7. Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically smooth knowledge graph embedding. In: Meeting of the Association for Computational Linguistics and the, International Joint Conference on Natural Language Processing, pp. 84–94 (2015)

    Google Scholar 

  8. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 705–714, Lisbon, Portugal (2015)

    Google Scholar 

  9. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: International Conference on Neural Information Processing Systems, pp. 2787–2795. Curran Associates Inc. (2013)

    Google Scholar 

  10. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1112–1119. AAAI Press (2014)

    Google Scholar 

  11. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  12. Lin, Y., Liu, Z., Zhu, X., Zhu, X., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, vol. 108, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  13. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing, pp. 687–696 (2015)

    Google Scholar 

  14. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 985–991. AAAI Press (2016)

    Google Scholar 

  15. Bordes, A., Glorot, X., Weston, J.: Joint learning of words and meaning representations for open-text semantic parsing. In: Proceedings of International Conference on Artificial Intelligence & Statistics, pp. 127–135 (2012)

    Google Scholar 

  16. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  Google Scholar 

  17. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: International Conference on Neural Information Processing Systems, pp. 926–934. Curran Associates Inc. (2013)

    Google Scholar 

  18. Xie, R., Liu, Z., Sun, M.: Does William Shakespeare really write Hamlet? knowledge representation learning with confidence. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  20. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings (2017)

    Google Scholar 

  21. Wang, Z., Zhang, J., Feng, J. Chen, Z.: Knowledge Graph and Text Jointly Embedding. In: EMNLP, pp. 1591–1601 (2014)

    Google Scholar 

  22. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2659–2665. AAAI Press (2016)

    Google Scholar 

  23. Ouyang, X., Yang, Y., He, L., Chen, Q., Zhang, J.: Representation learning with entity topics for knowledge graphs. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds.) KSEM 2017. LNCS (LNAI), vol. 10412, pp. 534–542. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63558-3_45

    Chapter  Google Scholar 

  24. Xie, R., Liu, Z., Luan, H. Sun, M.: Image-embodied knowledge representation learning. In: IJCAI, pp. 3140–3146 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyue Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, S., Fang, W. (2018). Potential Probability of Negative Triples in Knowledge Graph Embedding. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04182-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04181-6

  • Online ISBN: 978-3-030-04182-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics