Skip to main content

A Semantic Parsing Based LSTM Model for Intrusion Detection

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11304))

Included in the following conference series:

Abstract

Nowadays, with the great success of deep learning technology, using deep learning method to solve information security issues has become a study hot spot. Although some literal works have tried to solve intrusion detection problem via recurrent neural network, these methods do not give a detailed framework and specific data processing progress. We propose a novel semantic parsing based Long Short-Term Memory (LSTM) network framework in this paper. The proposed method uses the semantic representations of network data. The novel conversion process of various forms of network data to semantic description is given in detail. Experiments on NSL_KDD data sets show our proposed model outperforms most of the standard classifier. Results show that the semantic description has reserved information of the data and our semantic parsing based LSTM model provides a novel way to solve anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canbay, Y., Sagiroglu, S.: A hybrid method for intrusion detection. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 156–161. IEEE (2015)

    Google Scholar 

  2. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE–13(2), 222–232 (1987)

    Article  Google Scholar 

  3. Dhanabal, L., Shantharajah, S.: A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 4(6), 446–452 (2015)

    Google Scholar 

  4. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  5. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)

    Article  Google Scholar 

  6. Gao, H.H., Yang, H.H., Wang, X.Y.: Ant colony optimization based network intrusion feature selection and detection. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3871–3875. IEEE (2005)

    Google Scholar 

  7. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  8. Haq, N.F., Onik, A.R., Shah, F.M.: An ensemble framework of anomaly detection using hybridized feature selection approach (HFSA). In: 2015 SAI Intelligent Systems Conference (IntelliSys), pp. 989–995. IEEE (2015)

    Google Scholar 

  9. Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International Conference on Platform Technology and Service (PlatCon), pp. 1–5. IEEE (2016)

    Google Scholar 

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 858–866. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_87

    Chapter  Google Scholar 

  12. Sahu, S., Mehtre, B.M.: Network intrusion detection system using J48 decision tree. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2023–2026. IEEE (2015)

    Google Scholar 

  13. Sheikhan, M., Jadidi, Z., Farrokhi, A.: Intrusion detection using reduced-size RNN based on feature grouping. Neural Comput. Appl. 21(6), 1185–1190 (2012)

    Article  Google Scholar 

  14. Srinoy, S.: Intrusion detection model based on particle swarm optimization and support vector machine. In: IEEE Symposium on Computational Intelligence in Security and Defense Applications, CISDA 2007, pp. 186–192. IEEE (2007)

    Google Scholar 

  15. Staudemeyer, R.C., Omlin, C.W.: Evaluating performance of long short-term memory recurrent neural networks on intrusion detection data. In: Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference, pp. 218–224. ACM (2013)

    Google Scholar 

  16. Syarif, I., Zaluska, E., Prugel-Bennett, A., Wills, G.: Application of bagging, boosting and stacking to intrusion detection. In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 593–602. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31537-4_46

    Chapter  Google Scholar 

  17. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD cup 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  18. Teng, L., et al.: A collaborative and adaptive intrusion detection based on SVMs and decision trees. In: 2014 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 898–905. IEEE (2014)

    Google Scholar 

  19. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Qin, Z. (2018). A Semantic Parsing Based LSTM Model for Intrusion Detection. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11304. Springer, Cham. https://doi.org/10.1007/978-3-030-04212-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04212-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04211-0

  • Online ISBN: 978-3-030-04212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics