Skip to main content

Prediction Based on Online Extreme Learning Machine in WWTP Application

  • Conference paper
  • First Online:
  • 2556 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11305))

Abstract

Predicting the plant process performance is essential for controlling in wastewater treatment plant (WWTP), which is a complex nonlinear time-variant system. Extreme learning machine (ELM) is a single-hidden layer feed-forward neural network (SLFN), which randomly generates the feed-forward parameters without tuning the parameters from the input to the output layer. The output weights are calculated via the theory of Moore-Penrose generalized inverse and the minimum norm least-squares. In this paper, online extreme learning machine (Online ELM) is proposed as a predictor in WWTP, which trains the output weights and predicts the next outputs according to the real-time data collected from the process in an online manner. Furthermore, extensive comparison studies have been conducted by using other four neural network structures, including extreme learning machine, ELM with kernel, online sequential ELM (OSELM) and back propagation (BP) neural network.

Q. Yang—This work is supported by the National Natural Science Foundation of China (61673347, U1609214, 61751205).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suescun, J., Irizar, I., Ostolaza, X., et al.: Dissolved oxygen control and simultaneous estimation of oxygen uptake rate in activated-sludge plants. Water Environ. Res. 70(3), 316–322 (1998)

    Article  Google Scholar 

  2. Vreko, D., Hvala, N., Kocijan, J.: Wastewater treatment benchmark: what can be achieved with simple control? Water Sci. Technol. 45(4–5), 127–134 (2002)

    Article  Google Scholar 

  3. Wett, B., Ingerie, K.: Feedforward aeration control of a biocos wastewater treatment plant. Water Sci. Technol. 43(3), 85–91 (2001)

    Article  Google Scholar 

  4. Wahab, N.A., Katebi, R., Balderud, J.: Multivariable PID control design for activated sludge process with nitrification and denitrification. Biochem. Eng. J. 45(3), 239–248 (2009)

    Article  Google Scholar 

  5. Ferrer, J., Rodrigo, M.A., Seco, A., et al.: Energy saving in the aeration process by fuzzy logic control. Water Sci. Technol. 38(3), 209–217 (1998)

    Article  Google Scholar 

  6. Traore, A., Grieu, S., Puig, S., et al.: Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant. Chem. Eng. J. 111(1), 13–19 (2005)

    Article  Google Scholar 

  7. Punal, A., Rodriguez, J., Franco, A., et al.: Advanced monitoring and control of anaerobic wastewater treatment plants: diagnosis and supervision by a fuzzy-based expert system. Water Sci. Technol. 43(7), 191–198 (2001)

    Article  Google Scholar 

  8. Zhu, G., Peng, Y., Ma, B., et al.: Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal. Chem. Eng. J. 151(1–3), 195–201 (2009)

    Article  Google Scholar 

  9. Yang, Q., Jagannathan, S., Sun, Y.: Robust integral of neural network and error sign control of MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3278–3286 (2015)

    Article  MathSciNet  Google Scholar 

  10. Qiao, J.F., Han, G., Han, H.G.: Neural network online modeling and controlling method for multi variable control of wastewater treatment processes. Asian J. Control 16(4), 1213–1223 (2014)

    Article  MathSciNet  Google Scholar 

  11. Han, H.G., Qiao, J.F.: Adaptive dissolved oxygen control based on dynamic structure neural network. Appl. Soft Comput. 11(4), 3812–3820 (2011)

    Article  Google Scholar 

  12. Han, H.G., Qiao, J.F., Chen, Q.L.: Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Eng. Practice 20(4), 465–476 (2012)

    Article  Google Scholar 

  13. Han, H.G., Wu, X.L., Qiao, J.F.: Real-time model predictive control using a self-organizing neural network. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1425–1436 (2013)

    Article  Google Scholar 

  14. Han, H.G., Qiao, J.F.: Nonlinear model-predictive control for industrial processes: an application to wastewater treatment process. IEEE Trans. Ind. Electron. 61(4), 1970–1982 (2014)

    Article  Google Scholar 

  15. Han, H.G., Zhang, L., Hou, Y., et al.: Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 402–415 (2016)

    Article  MathSciNet  Google Scholar 

  16. Han, H.G., Wang, L.D., Qiao, J.F.: Hierarchical extreme learning machine for feedforward neural network. Neurocomputing 128, 128–135 (2014)

    Article  Google Scholar 

  17. Lin, M., Zhang, C., Su, C.: Prediction of effluent from WWTPS using differential evolutionary extreme learning machines. In: 2016 35th Chinese Control Conference (CCC), pp. 2034–2038. IEEE (2016)

    Google Scholar 

  18. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

    Google Scholar 

  19. Shrivastava, N.A., Panigrahi, B.K.: A hybrid wavelet-ELM based short term price forecasting for electricity markets. Int. J. Electr. Power Energy Syst. 55, 41–50 (2014)

    Article  Google Scholar 

  20. Mahmoud, T.K., Dong, Z.Y., Ma, J.: A developed integrated scheme based approach for wind turbine intelligent control. IEEE Trans. Sustain. Energy 8(3), 927–937 (2017)

    Article  Google Scholar 

  21. Zeng, Y., Xu, X., Shen, D., et al.: Traffic sign recognition using kernel extreme learning machines with deep perceptual features. IEEE Trans. Intell. Transp. Syst. 18(6), 1647–1653 (2017)

    Google Scholar 

  22. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  23. Jeppsson, U., Pons, M.N.: The COST benchmark simulation model current state and future perspective. Control Eng. Practice 12(3), 299–304 (2004)

    Article  Google Scholar 

  24. Copp, J.B.: The COST Simulation Benchmark: Description and Simulator Manual: a Product of COST Action 624 and COST Action 628. EUP-OP (2002)

    Google Scholar 

  25. Liang, N.Y., Huang, G.B., Saratchandran, P., et al.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  26. Yang, Q., Ge, S.S., Sun, Y.: Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators. Automatica 60, 92–99 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, W., Yang, Q. (2018). Prediction Based on Online Extreme Learning Machine in WWTP Application. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11305. Springer, Cham. https://doi.org/10.1007/978-3-030-04221-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04221-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04220-2

  • Online ISBN: 978-3-030-04221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics