Skip to main content

Two-Phase Transmission Map Estimation for Robust Image Dehazing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11306))

Abstract

A robust two-phase transmission map estimation framework is proposed in this paper for single image dehazing. The proposed framework first estimates the coarse transmission map through the statistical assumption of dark channel prior (DCP). To refine the coarse transmission map, a novel image-gradient-guided high-order variational method is then proposed in the second phase. The resulting L1-regularized high-order nonsmooth optimization problem will be effectively solved using the primal-dual algorithm. Once the fine transmission map is accurately obtained, the final haze-free image could be restored based on the haze imaging model of Koschmieder. To further enhance dehazing performance, an improved tolerance mechanism is incorporated into the proposed method to suppress the undesirable artifacts usually produced by DCP in large sky regions. Numerous experiments on both synthetic and realistic images were performed to compare our proposed method with several state-of-the-art dehazing methods. Dehazing results have illustrated the superior performance of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. Comput. Vis. Image Understand. 165, 1–16 (2017)

    Article  Google Scholar 

  2. Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J. Autom. Sinica 4(3), 410–436 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)

    Article  Google Scholar 

  4. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  5. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34(1), 13 (2014)

    Article  Google Scholar 

  6. Ono, S., Yamada, I.: Color-line regularization for color artifact removal. IEEE Trans. Comput. Imaging 2(3), 204–217 (2016)

    Article  MathSciNet  Google Scholar 

  7. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: IEEE CVPR, pp. 1674–1682 (2016)

    Google Scholar 

  8. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: IEEE ICCP, pp. 1–9 (2017)

    Google Scholar 

  9. Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 72 (2008)

    Article  Google Scholar 

  10. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Patt. Anal. Mach. Int. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  11. Gibson, K.B., Vo, D.T., Nguyen, T.Q.: An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 21(2), 662–673 (2012)

    Article  MathSciNet  Google Scholar 

  12. Tripathi, A.K., Mukhopadhyay, S.: Single image fog removal using anisotropic diffusion. IET Image Process. 6(7), 966–975 (2012)

    Article  MathSciNet  Google Scholar 

  13. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Patt. Anal. Mach. Int. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  14. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE Trans. Image Process. 24(1), 120–129 (2015)

    Article  MathSciNet  Google Scholar 

  15. Li, Z., Zheng, J.: Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process. 24(12), 5432–5441 (2015)

    Article  MathSciNet  Google Scholar 

  16. Li, L., Feng, W., Zhang, J.: Contrast enhancement based single image dehazing via TV-L1 minimization. In: IEEE ICME, pp. 1–6 (2014)

    Google Scholar 

  17. Fang, F., Li, F., Zeng, T.: Single image dehazing and denoising: a fast variational approach. SIAM J. Imaging Sci. 7(2), 969–996 (2014)

    Article  MathSciNet  Google Scholar 

  18. Liu, R.W., Xiong, S., Wu, H.: A second-order variational framework for joint depth map estimation and image dehazing. In: IEEE ICASSP, pp. 1433–1437 (2018)

    Google Scholar 

  19. Wang, W., Yuan, X., Wu, X., Liu, Y.: Dehazing for images with large sky region. Neurocomputing 238, 365–376 (2017)

    Article  Google Scholar 

  20. Gao, Y., Hu, H.M., Wang, S., Li, B.: A fast image dehazing algorithm based on negative correction. Signal Process. 103, 380–398 (2014)

    Article  Google Scholar 

  21. Liu, Y., Li, H., Wang, M.: Single image dehazing via large sky region segmentation and multiscale opening dark channel model. IEEE Access 5, 8890–8903 (2017)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  23. Ancuti, C., Ancuti, C.O., Timofte, R., et al.: NTIRE 2018 challenge on image dehazing: methods and results. In: CVPR, pp. 1004–1014 (2018)

    Google Scholar 

  24. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  25. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  26. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: All-in-one dehazing network. In: ICCV, pp. 4770–4778 (2017)

    Google Scholar 

  27. Zhang, H., Sindagi, V., Patel, V.M.: Multi-scale single image dehazing using perceptual pyramid deep network. In: CVPR, pp. 902–911 (2018)

    Google Scholar 

  28. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: NIPS, pp. 2672–268 (2014)

    Google Scholar 

  29. Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: CVPR, pp. 8202–8211 (2018)

    Google Scholar 

  30. Tan, R.: Visibility in bad weather from a single image. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  31. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: ICCV, pp. 2201–2208 (2009)

    Google Scholar 

  32. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  33. Liu, R.W., Shi, L., Yu, C.H., Wang, D.: Box-constrained second-order total generalized variation minimization with a combined L1,2 data-fidelity term for image reconstruction. J. Electron. Imaging 24(3), 033026 (2015)

    Article  Google Scholar 

  34. Liu, R.W., Shi, L., Huang, W., Xu, J., Yu, C.H., Wang, D.: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imaging 32(6), 702–720 (2014)

    Article  Google Scholar 

  35. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  36. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optimiz. Theor. Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  Google Scholar 

  37. Lu, W., Duan, J., Qiu, Z., Pan, Z., Liu, R.W., Bai, L.: Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 39(14), 4208–4233 (2016)

    Article  MathSciNet  Google Scholar 

  38. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.: 51609195), and the Fund of Hubei Key Laboratory of Transportation Internet of Things (No.: WHUTIOT-2017B003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Wen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shu, Q., Wu, C., Liu, R.W., Chui, K.T., Xiong, S. (2018). Two-Phase Transmission Map Estimation for Robust Image Dehazing. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04224-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04223-3

  • Online ISBN: 978-3-030-04224-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics