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Abstract. EEG-based brain-machine interfaces offer an alternative means
of interact with the environment relying solely on interpreting brain ac-
tivity. They can not only significantly improve the life quality of people
with neuromuscular disabilities, but also present a wide range of oppor-
tunities for industrial and commercial applications. This work focuses
on the development of a real-time brain-machine interface based on pro-
cessing and classification of motor imagery EEG signals. The goal was
to develop a fast and reliable system that can function in everyday noisy
environments. To achieve this, various filtering, feature extraction, and
classification methods were tested on three data sets, two of which were
recorded in a noisy public setting. Results suggested that the tested linear
classifier, paired with band power features, offers higher robustness and
similar prediction accuracy, compared to a non-linear classifier based on
recurrent neural networks. The final configuration was also successfully
tested on a real-time system.
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1 Introduction

Electroencephalography (EEG) is a non-invasive method for recording electrical
activity of the brain, where the data is collected by means of electrodes positioned
on the scalp. The obtained voltage signal is very weak and requires amplification
before digital conversion and storage. Further steps generally consist of noise
reduction procedures, followed by methods for interpreting the obtained data
which are governed by the target application (Fig. 1).
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In the case of EEG based brain-machine interfaces (BMI), the goal is to de-
code the user’s intent from the recorded signals. This allows the user to interact
with his/her environment without using the default neuromuscular pathways.
Such interfaces are mainly used to help people whose medical conditions hin-
der their muscle manipulation abilities, but alternative uses (e.g. mental state
monitoring) are also being actively developed.

The structure of a generic EEG-based brain-machine interface can be seen
in Fig. 1. The brain signals are captured and digitised through EEG recording
equipment. The general approach for the signal processing is to first filter out
the noise and artefacts, then extract relevant features, and finally feed them to a
trained classifier that produces a prediction of the user’s intent. This classifica-
tion output can then be used to control an arbitrary system that may also send
feedback to the user. Several EEG-based brain-machine interfaces have already
been developed [23, 12], exploiting different control mechanisms.

Fig. 1. Structure of a generic EEG-based brain-machine interface.

An EEG based BMI can be based on different signal features that can be
manipulated and controlled by the user through a set of mental strategies. This
work focuses on frequency features of the signals (brain rhythms), which are
associated with activity levels within different areas of the brain cortex [4]. The
rhythms can be detected in localised frequency bands over different regions of
the scalp. The BMI developed in this work uses rhythms detected over the motor
cortex. The rhythms exhibit changes in amplitude related to real or imagined
movement of various body parts [14, 17]. Through the mental strategy of motor
imagery (MI), these amplitude changes can be voluntarily triggered by imagin-
ing limb movement, most commonly of the hands and feet. Several interfaces
based on this principle have already been developed [16, 22, 5].
However, most motor imagery based brain-machine interfaces rely on laboratory
conditions and professional recording equipment with wet electrodes to produce
results with high reliability and prediction accuracy [16, 20, 18]. This work at-
tempted to place the interface in a real world setting by testing a wide array of
signal processing and classification methods not only on data sets recorded in
laboratory conditions, but also on sets that contain notable amounts of noise.
In addition, it explored the usage of novel classifiers based on recurrent neural
networks that can process sequential temporal features. The best performing
methods were in the end also tested in a noisy environment using compact, low



Development of a real-time MI-based EEG BCI 3

cost hardware with dry electrodes where the goal was to determine a possibility
of using the simple and reliable real-time interface for everyday use.

This article first presents the used data sets and software framework in sec-
tions 2 and 3, respectively. Sections 4 and 5 introduce the implemented filtering,
feature extraction and classification methods used for processing the motor im-
agery EEG signals. The implemented methods are then tested and evaluated in
section 6 with respect to the research goals. Section 6.3 presents real-time opera-
tion of the system with dry electrodes using previously found optimal processing
methods and section 7 provides conclusion of this work.

2 Data Set Descriptions

For offline testing and method selection, three motor imagery data sets were
used.

The first used data set was recorded for the purposes of a BCI competition
[6], and was publicly available online. It contains left hand, right hand, legs and
tongue MI trials and was recorded in a monopolar fashion. 288 MI trials were
recorded per person (72 per MI class) and only two of the 9 subjects were used
in this work to match the size of the following data sets. The selected subjects
correspond to the two presented in more detail in [13].
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Fig. 2. Recording setup and sample recorded signals for (a) bipolar wet data and (b)
monopolar dry data.

The second set was recorded for the purposes of this work and contains only
left and right hand MI classes. It was recorded in a bipolar fashion, using wet
electrode pairs F7-T3, F3-C3, Fz-Cz, F4-C4, and F8-T4, with respect to the
international 10-20 system [11] (Fig. 2a). The signals were captured using an
MLAEC1 EEG Electro-Cap System, an ML138 Octal Bioamp and a PowerLab
16/35 data acquisition system (all from AD Instruments). The set consists of
two subjects and 96 trials per subject (48 per MI class).

The third set was also recorded within the frame of this work and again
contains left and right hand MI classes. It was recorded in a monopolar fashion
using dry electrodes at locations C3, C4, F3 and F4 (according to the interna-
tional 10-20 system) with ear reference (Fig. 2b). The set consists of 192 trials
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per subject, 96 per MI group, recorded on two subjects. Hardware details are
listed in section 6.3.

The second and third data set were recorded in the entrance hall to an engi-
neering research building - an environment containing electromagnetic noise, as
well as potential distractions for the subjects in the form of random by-passers
and their conversations.

In all of the recordings, the MI trials follow the timing scheme presented in
Fig. 3. Each trial started with a fixation cross appearing on the screen, which
prompted the subject to focus. After 2 s, a cue indicating which class of motor
imagery the subject should perform appeared on screen. The subjects were asked
to perform motor imagery until the fixation cross disappeared at t = 6 s. After
a short break, the next trial initiated. No feedback was provided to the subjects
while recording.

Fig. 3. Reference data trial timing scheme. Image adapted from [6].

3 Software Framework

In this work, a software framework was developed to support implementations of
different processing methods. It was developed as a set of class hierarchies in the
Python language. It was chosen because it is user friendly and well supported
in terms of libraries that provide high level data structures and tools for signal
processing and machine learning. Speed was not a primary objective as the brain
rhythm changes are relatively slow and highly optimised processing algorithms
would not significantly improve the overall response time.

4 Signal Processing

A traditional approach to EEG signal processing was taken, where filtering,
feature extraction, and classification methods were implemented and evaluated.
The methods were developed to support multivariate temporal data as all of the
data sets contained recordings from multiple channels.

4.1 Signal Filtering

The family of digital temporal filters was considered for the purpose of reducing
the amount of noise in the signals, as well as for isolating the frequency bands
of interest from the recordings.
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Even though finite impulse response (FIR) filters have been suggested for
scientific EEG signal processing purposes [21], infinite impulse response (IIR)
filters were found to be more appropriate in this setting. They offer significantly
lower delay times than FIR filters, which greatly influences the responsiveness
of the system. Although FIR filters are always stable, IIR instability issues can
be easily avoided with proper design [21, 3]. The filtered signals are not recorded
for the purpose of detailed inspection but are instead passed to various machine
learning techniques. Minor signal distortions therefore do not significantly affect
the results, as long as the same filter is applied to all of the processed data.

4.2 Feature Extraction Methods

Features can be extracted from the time- or frequency-domain of the EEG signal.
The choice of extraction methods depends on where the sought information is
encoded. In this case, the implemented features were focused on the frequency
domain. Four methods were investigated: Band power, Autoregressive, Hjorth
parameters, and FFT features.

1) Band power features rely on isolating a frequency band of interest from
the signal using a band-pass filter and then squaring and averaging the result to
obtain a temporal power signal in that band. These features were already exten-
sively used in EEG experiments [14, 15], giving solid results. They are compu-
tationally inexpensive and offer a very high temporal resolution which is equal
to the signal’s sampling rate. In this case, the features were constructed using a
set of 5th order band-pass Butterworth IIR filters in frequency bands 8-12 Hz,
12-16 Hz and 16-28 Hz, where the first and last band correspond to mu and beta
brain rhythm frequencies that hold information about imagined movement.

2) Autoregressive (AR) modelling is a parametric spectral method, mean-
ing that it encodes spectral information into a selected number of parameters
[3]. Those parameters are therefore very appropriate for distinguishing between
signals that differ in the frequency spectrum, such as motor imagery record-
ings. The method implementation computes estimates of the AR coefficients by
solving the Yule-Walker equations directly [3], using biased estimates for the au-
tocorrelation sequence. The optimal number of AR parameters per EEG channel
was here found to be 7, according to the Akaike Information Theoretic Criterion
[3] and result inspection.

3) Hjorth parameters [9] can easily be calculated in the time domain, but also
contain information from the frequency domain, making them suitable for this
application. For each of the EEG channels, three parameters were computed.

4) The Fast Fourier Transform (FFT) was the basis for the last set of features.
Segments of separate EEG channels were transformed and then averaged in
frequency bands of interest or output as a whole sequence.

5 Classification Methods

Two classification methods were implemented in the work and their training was
window based: the MI trials (refer to Fig. 3) were split into windows of length
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1 s, with an 80% overlap. The windows whose centres fell between 4.5 and 5.5 s
in the trial scheme were isolated and used for classifier training, after extracting
the relevant features. Trial splitting, as well as feature extraction and training
was performed simultaneously on all the relevant channels.

5.1 Linear classifier

The first classification method was based on the linear discriminant analysis
(LDA) classifier [8] and also served as a benchmark for system validation, com-
paring it to results obtained in [13]. The one-versus-rest classification scheme
was used, where a separate LDA classifier was trained for each of the MI groups.

5.2 Neural network based nonlinear classifier

The second method was based on recurrent neural networks, chosen by their
ability to process sequences and produce non-linear decision boundaries. The
core of the networks was Long Short-Term Memory (LSTM) units, which were
designed to solve the vanishing gradient problems in sequence modelling through
their gated structure. The architecture of an example LSTM based classifier can
be seen in Fig. 4. The figure presents an unfolded architecture, showing how
the network processes the sequences through time. On the lowest level, vectors
from the input x are passed to the first LSTM layer L1, which passes its current
results to the second LSTM layer L2 (each circle in the figure represents an
array of units). In the next time step, the first layer receives a new vector from
the input sequence and its own recurrent connection (same holds for the sec-
ond layer). When the whole sequence has passed through the L1 and L2 layers,
a fully connected layer f gathers the results from separate LSTM units in L2

into the appropriate number of MI classes y. The network was trained through

Fig. 4. Unfolded neural classifier with two LSTM layers.

gradient-based optimisation of the chosen categorical cross-entropy loss function
[7]. The optimisation algorithm used was Adam [10], which is an adaptive learn-
ing rate algorithm with incorporated momentum. The network was trained in
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minibatches of 50 trials for 200 epochs. To prevent overfitting, the weight de-
cay regularisation strategy [7] was applied to weights in the input and recurrent
connections of the LSTM layers, as well as on the final fully connected layer.

In the design, several network hyperparameters were left to be optimised:
number of LSTM layers, number of units in each layer, initial learning rate for
the Adam algorithm and three weight decay parameters. These parameters were
found through a massive random search approach that required extensive par-
allelisation over roughly 500 CPU units in a cluster computing network (SLING
[2]). The search was executed in two stages, where the first found coarse parame-
ter values and the second refined them. For every data set presented in section 2
and every feature group described in section 4, roughly 2500 networks with ran-
dom hyperparameter values (in defined limits) were trained and cross-validated
(5-fold in the first stage, 10-fold in the second) to find relevant prediction ac-
curacy. The prediction accuracy was used as a basis for selecting the optimal
hyperparameter values. The overall network performances were compared and
optimal hyperparameter values were found to be: 1 LSTM layer with 50 units,
Adam learning rate in interval [10−3.9, 10−3.3], LSTM input and recurrent con-
nection weight decay in interval [10−5, 10−2] and the final fully connected layer
weight decay of 10−3.5.

6 Experimental Results

6.1 Feature extractor selection

In the first stage, all of the implemented feature extraction methods were tested
with both classifiers. For the neural classifier, the tests were implicitly performed
during the hyperparameter optimisation process and it was found that the fea-
ture group of band power sequences in ranges of 8-12 Hz, 12-16 Hz, and 16-28
Hz gave the best performance.

For the linear classifier, feature test results for subjects 1 and 2 from the
publicly available data set can be seen in Fig. 5. The figure presents the 5 tested
feature groups (band power, autoregressive, Hjorth parameters, FFT features
and their combination), with respect to their average prediction accuracy and
standard deviation obtained through 10-fold cross validation with the linear
classifier. In this case, the band power features (ranges of 8-12 Hz, 12-16 Hz and
16-28 Hz) gave highest prediction accuracy with small variance.

The results showed that the band power features offer the best prediction
accuracy over all data sets and both classifiers. Considering also their robust-
ness and low computational complexity, they were chosen as the default feature
extraction method for a real-time motor-imagery-based EEG brain-machine in-
terface.

6.2 Classifier selection

In the second stage, the implemented classifiers, paired with the selected band
power features from the previous section, were compared with the goal of de-
termining which is the most appropriate for the available types of data and
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Fig. 5. Linear classifier performance with respect to different feature extraction meth-
ods for the publicly available data set. The methods include band power (BP), autore-
gressive (AR), Hjorth parameters (Hjorth), FFT features (FFT) and their combination
(All).

training paradigm. The classifiers were trained and tested on the 6 subjects
from the three available data sets described in section 2. The MI trials were split
into windows of length 1 s, with an 80% overlap. Windows with centres between
4.5 and 5.5 s in the trial scheme were used for training the classifiers. Unbiased
temporal prediction accuracies were obtained through 10-fold cross validation.
Example comparisons for subjects from different data sets can be seen in Fig. 6.
The plots represent averaged classification accuracy through the trials (refer to
trial scheme in Fig. 3) and the shaded blue area indicates its standard devia-
tion. The vertical red and cyan lines indicate the cues that prompted the user to
start and stop imagined movement. Before the MI start, classification accuracy
moves around 25% and 50% for the subjects. These two percentages correspond
to random guessing between 4 and 2 MI classes, respectively.

Inspecting results presented in Fig. 6, as well as those from the other sub-
jects, it was found that the linear classifier is a more appropriate choice for the
interface. It offers the same or better performance than the neural classifier at
significantly lower complexity. It is also robust, deterministic and allows faster
training through its closed-form optimisation solution.

The neural classifier, on the other hand, has a longer training time due to its
nonlinear nature and the chosen iterative optimisation methods. The classifier’s
performance also substantially depends on hyperparameter values which take
quite some time and effort to determine for a specific problem. However, the
neural classifier may have the potential to outperform the linear if a different
training approach was taken and more data was available.
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(a) Linear (left) and neu-
ral (right) classifier temporal
accuracy plots using the BP
feature for subject 1 from
the publicly available data
set.
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(b) Linear (left) and neu-
ral (right) classifier temporal
accuracy plots using the BP
feature for subject 1 from
the recorded bipolar data set
with wet electrodes.
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(c) Linear (left) and neu-
ral (right) classifier tempo-
ral accuracy plots using the
BP feature for subject 2
from the recorded monopo-
lar data set with dry elec-
trodes.

Fig. 6. Comparison of linear and neural classifier performance.

6.3 Real-time motor imagery based control

The experiment was performed by one untrained, able-bodied male subject aged
24, who has previously participated as subject 2 in the last recorded data set.
The test was based on two class motor imagery, where the subject imagined
movement of his left and right hands. The EEG signal was captured with dry
reusable electrodes from Florida Research Instruments, mounted at locations
C3 and C4 (according to the international 10-20 system) in monopolar montage
with reference on the left and ground on the right mastoid. The signals were
amplified and digitised with a battery powered prototype board developed by
Berger Neurorobotics [1], which was streaming the data to a dedicated computer
through a Bluetooth connection. The board had a fixed amplifier sensitivity of
100 µV and a sampling frequency of 240 Hz. The setup can be seen in Fig. 2b.

Taking into account the findings in Section 6, the linear one-versus-rest LDA
classifier was chosen to be used in the tests, along with the band power features
in ranges of 8-12 Hz, 12-16 Hz and 16-28 Hz. The classifier was trained on data
from subject 2 in the dry data set, using the training paradigm described in
Section 6.2 and channels C3 and C4.

The trained classifier, along with required supporting signal processing meth-
ods and framework functionality, was then ported to the dedicated computer
receiving the live data stream. The received data was accumulated and passed
to the classifier in segments of length 1 s with an 80% overlap, mirroring its
window-based training paradigm. With this setting, the classifier could produce
a new label every 0.2 s. To increase system stability, the classifier was expanded
with functionality to refrain from predicting a class label if its confidence was
too low.
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Fig. 7. Snapshots of the real-time experiment with their respective timings. Top row
shows right hand MI and bottom row shows left hand MI. The vertical red line indicates
the initial square position in each row. The video of the experiments can be seen at
www.manoonpong.com/SMC2018/video.mp4

In the experiment, live visual feedback in the form of a white square target on
a black background was available to the subject. A valid label produced by the
classifier caused the target to move a short distance in the left or right direction,
depending on the predicted class. If no valid label was produced, the target
stayed still. The results of the real-time experiment are shown as snapshots in
Fig. 7.

The implemented system was responsive and exhibited no noticeable lag
between subject mental activity and target movement. The developed framework
could process the provided input data stream in an efficient and timely manner,
appropriate for the implemented real time application.

During testing, it was evident that the target movement was influenced by
the subject’s mental activity and was not merely a product of random noise. In
the best cases, the subject could steadily move the target towards the left and
right edges of the feedback screen through continuous focus on the appropriate
MI class. However, the subject’s ability to reliably control the target deterio-
rated significantly with increasing fatigue. As the subject lost focus, the target
exhibited quivering behaviour due to random misclassification.

In the best cases, the subject was able to steadily control movement of the
target through motor imagery, which proves that the system could in principle
already be used in real life applications. It would, however, still need a consid-
erable amount of tuning before any such usage as its performance seemed quite
unstable in a number of trials.

The task at hand was physically and mentally tiring for the subject because
a high level of focus and minimal body movement were crucial for a success-
ful trial. As the subject grew increasingly fatigued with time, he lost control
over the target. The cause of this might be in different brain activity patterns
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that appeared when the subject was tired and could not be interpreted by the
system. The performance issue could therefore be partially resolved through sub-
ject training and collecting additional data to train the classifier, as well as to
determine the subject’s fatigue level and adjust the processing accordingly.

Future work will be focused on introducing adaptive methods with online
adjustment of the control and feature classification parameters [19].

7 Conclusion

This paper presents the development of a real-time motor imagery based EEG
brain-machine interface. Several filtering, feature extraction, and classification
methods were investigated, tested and compared with three data sets obtained
through different recording methods, with varying amounts of environmental
noise. The experiments show that band power features based on IIR filters, paired
with the one-versus-all LDA classifier give the best classification accuracies while
maintaining a comparably high level of robustness.

The best performing signal processing and classification methods were tested
in real-time, using wireless hardware with dry electrodes in a noisy environment.
The results were promising, showing that the interface performs well even with
an untrained subject.
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