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Abstract

This study presents the results of a series of simulation experiments
that evaluate and compare four different manifold alignment methods un-
der the influence of noise. The data was created by simulating the dy-
namics of two slightly different double pendulums in three-dimensional
space. The method of semi-supervised feature-level manifold alignment
using global distance resulted in the most convincing visualisations. How-
ever, the semi-supervised feature-level local alignment methods resulted in
smaller alignment errors. These local alignment methods were also more
robust to noise and faster than the other methods.

1 Introduction

Manifold alignment of two data sets assumes that they have similar underlying
manifolds. The aim is to find a mapping between the two data sets so that the
underlying manifold structure can be better recognised. Due to its generality
manifold alignment has great potential to be useful in various domains. In
the past it has been applied to facial expression analysis by image sequence
alignment [6, 10, 17, 24, 26], graph matching [7], image classification [9, 25],
and bioinformatics [21]. However, due to its high computational demands and
the complexity of manifold data, manifold alignment still requires substantial
further research and development to increase its impact in practical applications.

Real-world data is often sampled from a high-dimensional space and can
be modelled as a set of points that lie on a low-dimensional non-linear mani-
fold [12]. This also applies to data collected from robot kinematics or human
motion which could be represented in form of dynamical system trajectories
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on low-dimensional manifolds [4]. It has been shown that motion data can be
transferred from a human to a robot or between robots by aligning the corre-
sponding manifolds [3, 5]. In this context, the ability of manifold learning and
manifold alignment to represent non-linear data is critical [18]. An example
that can illustrate this is a double pendulum and its non-linear dynamics [13].

The contribution of this study is an experimental comparison of several ex-
isting manifold alignment algorithms using data sampled from the motions of
two simulated double pendulums in three-dimensions. Previous restricted pilot
experiments, had focused on a pendulum in two dimensions [1]. The present
paper also it investigates the stability of the methods under the influence of
noise. It introduces the concepts of normalised distances along with pairwise
correspondence measures [8]. The experimental evaluation focuses on visualisa-
tions and measuring the proximity of alignments and the execution time of the
algorithms.

Figure 1: Double pendulum motion in 3D. x, y and z are the local axes of limb
l1 and x′, y′ and z′ are the local axes of limb l2. (ex, ey, ez) is the end-effector.

2 Double Pendulum Data

The simulated data used in our experiments represents the motion of a three-
dimensional double pendulum similar to a two-limb robot arm as shown in
Figure 1. The two limbs are denoted l1 and l2 and the joints are denoted R1

and R2. One end of l1 is fixed at R1 and can rotate around this joint. The other
end of l1 is attached to l2 at joint R2. l2 can rotate freely around joint R2. The
end point of the arm, that is, the end of l2 not attached to R2, is also known as
the end-effector and has coordinates (ex, ey, ez). The coordinate system follows
the right-hand rule and has its origin at joint R1. θ1y and θ1z are the angles of
l1 with the y and z axes, respectively, and θ2y′ and θ2z′ are the angles of l2 with
the y′ and z′ axes, respectively. The feature vector for each sample point was
calculated from the kinematics at the joints and the end-effector coordinates
were calculated using forward kinematics:

(ex, ey, ez, cos θ1y, cos θ1z, cos θ2y′ , cos θ2z′ , sin θ1z, sin θ1y, sin θ2y′ , sin θ2z′) (1)

The data sets were generated from two similar double pendulums, which had dif-
ferent limb lengths and slightly different limb length ratios, where we restricted
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the experiments to the case l2 < l1 (Figure 1):

Pendulum 1: (l2/l1) = 0.75/1.25 = 0.60

Pendulum 2: (l2/l1) = 1.25/1.56 = 0.80,

The data was acquired using increments of 30◦ on all four axes y, z, y′ and
z′. As a result, the number of instances was (360/30)4 = 20736 and the size
of each of these data sets was 20736 × 11. If the following sections refer to
data sets X and Y it is assumed that the data is arranged in the form of
matrices of dimension 20736 × 11. The correspondence subsets of X and Y
comprise corresponding points in both sets that have the same or similar joint
angles. They were selected by using 90◦ joint angle steps between two instances
in the same data set. Therefore each of the two correspondence subsets had
(360/90)4 = 256 instances which was about 10% of the data set.

In the experiments, uniformly distributed white noise was added in two
different ways to the data. First, noise was added to the joint angles and the
noise range was incremented from 0◦ to ±10◦ in steps of 1◦. The second type of
noise was added to the end effector coordinates. The range of this coordinate
noise was increased from 0 to ±1.0 in steps of 0.1.

(a) Approach 1 (b) Approach 2

Figure 2: (a) Approach 1 : Dimensionality reduction is applied to X and Y ,
which yields low-dimensional manifolds SX and SY , respectively. The manifolds
are then mapped into a joint space as aligned manifolds S∗X and S∗Y . (b) Ap-
proach 2: A joint matrix Z is generated from X and Y by regularisation of
correspondence information. Then, dimensionality reduction is applied to ob-
tain the low-dimensional aligned manifolds SX and SY . The green areas in both
approaches indicate the correspondence subsets.

3 Manifold Alignment Methods

We address two general approaches to align manifolds. Each of them has two
stages (Figure 2). In Approach 1 the data sets are first mapped into a low-
dimensional space and then alignment is performed as described by Wang et
al. [21]. In Approach 2, first a joint manifold is created to represent the union of
the given manifolds and then the joint manifold is mapped to a lower dimensional
latent space as described by Ham et al. [10]. Approach 2 was also described
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as a generalised semi-supervised manifold alignment framework by Wang and
Mahadevan [22], where the joint manifolds can be constructed using different
characteristics of the data based on the application.

Wang and Mahadevan [22] further distinguished between two levels of ma-
nifold alignment: instance-level alignment (Inst) and feature-level alignment
(Feat). For instance-level alignment, their method computes a non-linear low-
dimensional embedding based on an alignment of the instances in the data.
The embedding results in a direct matching of corresponding instances in align-
ment space. In contrast, feature-level alignment builds on mapping functions of
features which map any associated instance or set of instances into the newly
aligned domain.

The present study applied the following four methods to the double pen-
dulum data sets. Method 1 followed Approach 1 ([21] and Figure 2 (a).) and
methods 2-3 followed the semi-supervised Approach 2 ([22] and Figure 2 (b)).
Further, each of the four methods had an instance-level and a feature-level ver-
sion that was addressed in separate experiments (see overview in Figure 3):

• Method 1: Locality Preserving Projection (LPP) [11] is used for feature-
level dimensionality reduction, and Laplacian eigenmaps (eigenmaps) [2] is
used for instance-level dimensionality reduction, as the first stage, in two
different experiments. In the second stage (Figure 2 (a)) we followed [21]
and employed Procrustes analysis [14] to align the two data sets in low-
dimensional space.

• Method 2: For semi-supervised manifold alignment preserving local geo-
metry [22], first, the joint manifold Z was calculated using the graph
Laplacians for X and Y . Then, eigenvalue decomposition of the joint
manifold provided instance-level alignment and generalised eigenvalue de-
composition provided feature-level alignment.

• Method 3: For semi-supervised manifold alignment using local weights [20]
the intermediary joint manifold Z was formed by weights for X and Y ,
which were calculated for each set using a k-nearest neighbour graph and
the heat kernel. Similar to Method 2 the low-dimensional manifolds were
mapped by eigenvalue decomposition of joint matrices in two experimental
components.

• Method 4: For semi-supervised manifold alignment preserving global
geometry [23] the joint manifold Z was generated using the global dis-
tances of corresponding pairs in X ∪ Y . The eigenvalue decomposition
of Z provided the dimensionality reduction to obtain the aligned low-
dimensional manifolds in the case of instance-level alignment. Generalised
eigenvalue decomposition was used to reduce the dimensionality in the case
of feature-level alignment.

4 Performance Evaluation

To measure the performance of the alignment methods, we assumed that all
instances of one data set can be mapped one-to-one to instances in the other
data set. The widths of the resulting manifolds originating from the same data
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Figure 3: Overview of methods used in the experiments where the general struc-
ture of Approach 1 and 2 is detailed in Figure 2.

set could vary for the different methods. As a result of scaling, the distances
between corresponding points could be larger between “wider” manifolds and
smaller between “narrower” manifolds. To obtain comparable distance measure-
ments between the two aligned low-dimensional manifolds, the distances were
normalised by the maximum width of the two manifolds as follows:

Di =
‖SX(i)− SY (i)‖

maxj=1,...,n
k=1,...,n

(‖SX(j)− SX(k)‖, ‖SY (j)− SY (k)‖)
(2)

where SX(i) and SY (i) are corresponding points for i = 1, ..., n and n is the
number of points that represent each of the manifolds. The matching errors of
the alignments were measured using the average of the Di, denoted by ∆. That
is, ∆ indicates the closeness of the aligned manifolds in low-dimensional space.
The standard deviation of the Di, denoted by σ, represents the consistency or
smoothness of the alignment where a smaller σ indicates a smoother alignment.
∆ and σ could be used to measure the quality of an alignment if it was successful.

5 Results

Both limbs of the double pendulum rotated freely in three dimensions. The re-
sulting manifolds were too complex to be visualised in full in a three-dimensional
graph. Therefore, we used snapshots of 90◦ steps for the motion of limb l1 and of
10◦ steps for limb l2. Figure 4 shows that feature-level manifold alignment using
global distance resulted in six small spheres that were distributed regularly on a
bigger sphere. The small spheres represent the motion of limb l2 and the bigger
sphere represents the motion of limb l1. Ergo this figure can be interpreted as
sections in time of the expected shape of the aligned manifolds of pendulum
motion. The results from the other three methods for feature level alignment
show complex shapes that include partially collapsed submanifolds. For the
instance-level cases the manifolds collapsed completely into line segments.

Table 1 shows results for the feature-level cases where ∆ and σ were lowest
for Method 3. The execution time of each method for same datasets is shown
in the last column of 1. Due to the involvement of high dimensional matrix
multiplication, the manifold alignment using global distance required a signifi-
cantly higher execution time than the others. Figures 5 and 6 show the aligned
manifolds in the feature level cases after application of joint angle and coor-
dinate noise, respectively. Both limbs of the double pendulums were rotating
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Procrustes
analysis

Local Laplacian Local weight Global distance

Feat Inst Feat Inst Feat Inst Feat Inst

Figure 4: 3D motion manifold alignments using snapshots in 90◦ steps for one
limb and 10◦ steps for the other limb. The output of the feature-level manifold
alignment using global distance (column 7) displays six small spheres represent-
ing the motion of l2 which are distributed on a larger sphere representing the
motion of l1.

Table 1: Summary of the performance of manifold alignment methods: Feature-
level manifold alignment using local weights achieved the lowest ∆ and σ (3rd
row).

Method Level ∆ σ Time(s)

1Procrustes analysis Feature 1.37× 10−05 6.20× 10−06 393
2Local Laplacian Feature 1.22× 10−07 5.08× 10−08 382
3Local weights Feature 1.22 × 10−07 4.92 × 10−08 343
4Global distance Feature 2.76× 10−06 7.38× 10−07 6.3× 104

in three-dimensional spherical motion. Ergo the overall motion manifold can
be described as the cross product of two spheres (as indicated in column 7 of
Figure 4). The visualisations of the outcome of manifold alignment preserving
global geometry are shown in column 4 of Figures 5 and 6. The results seemed
to be robust to noise and the visualisation were as expected. On the other hand,
manifold alignments using the local Laplacian and local weights resulted in lower
∆ and σ (Figure 7) but visually more complex outcomes that also significantly
varied under the influence of noise (Figures 5 and 6).

6 Discussion and Conclusion

This study compared four different manifold alignment methods (Figure 3). The
data sets were generated by simulating the motion of two three-dimensional dou-
ble pendulums that differed in the lengths of their arms. Where the joint angles
of the two pendulums were equal, they were recorded as corresponding pairs,
and this was exploited in the manifold alignment and performance evaluation.

We also investigated the effects of two different types of noise on the align-
ment of these data sets. First, random noise was added to the joint angles to
observe the stability of the alignment with respect to actuator irregularities.
Then, random noise was added to the end effector coordinates to observe the
stability of the alignment methods with respect to jittery motions of the arm
or noise in the data recordings. The performance of these methods was evalu-
ated quantitatively by measuring the proximity of the corresponding points and
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Figure 5: Feature-level alignment of manifolds under the influence of different
levels of joint angle noise: Each graph visualises a different way of aligning the
two pendulum manifolds. Each row shows the results for a different level of
joint angle noise.

qualitatively using visualisations. The experiments were conducted in Matlab
2016b on a high-performance computer cluster equipped with Xenon CPUs and
500GB RAM where all experiments for this paper could be executed in a total
running time of about eighteen days. Individual running times are reported in
Table 1.

The approach of alignment preserving global geometry produced the most
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Figure 6: Feature-level alignment of manifolds under the influence of different
levels of coordinate noise: Each graph visualises a different way of aligning the
two pendulum manifolds. Each row shows the results for a different level of
coordinate noise.

convincing visualisations but was also much slower than the other methods.
The methods using local weights resulted in the numerically smallest align-
ment errors (Table 1). One possible interpretation is that local methods had
an advantage because the experiments were limited to data from two similarly
configured pendulums. Another interpretation is that parts of the manifolds
collapsed, i.e., they were projected onto line segments during the manifold lear-
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(a)

(b)

Figure 7: Performance graphs of manifold alignment methods that align the
pendulum data with additional (a) joint angle noise and (b) end effector noise.
The x-axes show the noise range. The y-axes show the averages ∆ where the
error bars are the standard deviations σ of the correspondence distances of the
aligned manifolds. ∆ and σ for manifold alignment using local weights and
local Laplacian are lower than for the other methods and this result is not much
affected by any of the added noise.

ning process. This is supported by the visualisations in Figures 4, 5 and 6. The
observed instabilities of the local and instance level methods require further
investigation.

Traditional robotic motion control engines often rely on inverse kinemat-
ics and can be difficult to adapt when the robot configuration changes [15].
Chalodhorn and Rao found that direct use of kinematics data from a human
motion capture system to replicate human movement in a robot can result in
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dynamically unstable motion [5]. This instability is the result of differences in
the degrees-of-freedom and inadequate physical parameters for a robot to match
human motion. The outcomes of the present study support the hypothesis that
manifold alignment could provide a mapping between motion trajectories of
similar manifolds. Moreover, a feature-level alignment approach could align
trajectories on manifolds that may include out-of-sample extensions that may
be generated during changes of configurations.

One of the purposes of dimensionality reduction is to process data faster
while requiring less memory than the calculations in high dimensions. Feature-
level alignment provides a function that can map instances from high-dimensional
feature space to low-dimensional alignment space. This function can map any
new sample, whether it was included in the training data set or not, to the
aligned manifolds. In contrast, the instance-level methods require a complete
recalculation of the alignment mapping for each new sample. Therefore, feature-
level alignment can perform better than instance-level alignment when out-of-
sample extension processing is necessary [19]. The latter could be the case, for
example, when the robot configuration changes.

In future research, the findings of this study could possibly become useful for
the task of motion imitation [16]. Using manifold alignment transfer learning
between robot arms could be achieved by copying previously trained stable
motions from one robot to another where the robots’ arms could have different
limb length proportions.

Acknowledgements

FA was supported by by a UNRSC50:50 PhD scholarship at the University of
Newcastle, Australia. The authors are grateful to the UON ARCS team who
facilitated access to the UON high performance computing system.

References

[1] Fayeem Aziz, Aaron S. W. Wong, James Welsh, and Stephan K. Chalup.
Performance comparison of manifold alignment methods applied to pendu-
lum dynamics. In Proceedings of the Applied Informatics and Technology
Innovation Conference. (in press) Springer, 2016.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396, 2003.

[3] Botond Bocsi, Lehel Csato, and Jan Peters. Alignment-based transfer lear-
ning for robot models. In The 2013 International Joint Conference on
Neural Networks (IJCNN), pages 1–7. IEEE, 2013.

[4] Rawichote Chalodhorn, David B. Grimes, Keith Grochow, and Rajesh P. N.
Rao. Learning to walk through imitation. In Proceedings of the 20th Inter-
national Joint Conference on Artifical Intelligence, IJCAI’07, pages 2084–
2090, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

10



[5] Rawichote Chalodhorn and RajeshP N. Rao. Learning to imitate human
actions through eigenposes, volume 264 of Studies in Computational Intel-
ligence, book section 15, pages 357–381. Springer Berlin Heidelberg, 2010.

[6] Z. Cui, S. Shan, H. Zhang, S. Lao, and X. Chen. Image sets alignment
for video-based face recognition. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2626–2633, June 2012.

[7] F. Escolano, E. Hancock, and M. Lozano. Graph matching through entropic
manifold alignment. In 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2417–2424, 2011.

[8] Ke Fan, Ajmal Mian, Wanquan Liu, and Ling Li. Unsupervised manifold
alignment using soft-assign technique. Machine Vision and Applications,
27(6):929–942, 2016.

[9] Ricardo Guerrero, Christian Ledig, and Daniel Rueckert. Manifold align-
ment and transfer learning for classification of Alzheimer’s disease, pages
77–84. Springer International Publishing, Cham, 2014.

[10] Jihun Ham, Daniel Lee, and Lawrence Saul. Semisupervised alignment
of manifolds. In Proceedings of the Annual Conference on Uncertainty in
Artificial Intelligence, volume 10, pages 120–127. AISTATS, 2005.

[11] Xiaofei He and Partha Niyogi. Locality preserving projections. In S. Thrun,
L. K. Saul, and B. Schölkopf, editors, Advances in Neural Information
Processing Systems, volume 16, pages 153–160. MIT Press, 2004.

[12] D. Huang, Z. Yi, and X. Pu. Manifold-based learning and synthesis. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(3):592–606, June 2009.

[13] Jakob Søndergaard Jensen. Non-linear dynamics of the follower-loaded
double pendulum with added support-excitation. Journal of Sound and
Vibration, 215(1):125–142, 1998.

[14] Bin Luo and E. R. Hancock. Feature matching with Procrustes alignment
and graph editing. In Image Processing And Its Applications, 1999. Seventh
International Conference on (Conf. Publ. No. 465), volume 1, pages 72–76,
July 1999.

[15] Amir Mosavi and Annamaria Varkonyi. Learning in robotics. International
Journal of Computer Applications, 157(1):0975–8887, 2017.

[16] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345–1359, Oc-
tober 2010.

[17] Yuru Pei, Fengchun Huang, Fuhao Shi, and Hongbin Zha. Unsupervised
image matching based on manifold alignment. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 34(8):1658–1664, August 2012.

[18] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geo-
metric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–23, 2000.

11



[19] Chang Wang. A geometric framework for transfer learning using manifold
alignment. Ph.d. thesis, Department of Computer Science, University of
Massachusetts Amherst, UMass Amherst, September 2010.

[20] Chang Wang, Peter Krafft, and Sridhar Mahadevan. Manifold alignment,
chapter Manifold alignment, pages 95–120. CRC Press, December 2011.

[21] Chang Wang and Sridhar Mahadevan. Manifold alignment using procrustes
analysis. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pages 1120–1127, New York, NY, USA, 2008. ACM.

[22] Chang Wang and Sridhar Mahadevan. A general framework for manifold
alignment. In AAAI Fall Symposium: Manifold Learning and Its Applica-
tions, pages 79–86. AAAI Press, 2009.

[23] Chang Wang and Sridhar Mahadevan. Manifold alignment preserving
global geometry. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI), pages 1743–1749. AAAI
Press, 2013.

[24] Xianwang Wang and Ruigang Yang. Learning 3D shape from a single
facial image via non-linear manifold embedding and alignment. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010,
pages 414–421, June 2010.

[25] Hsiuhan L. Yang and Melba M. Crawford. Manifold alignment for multi-
temporal hyperspectral image classification. In 2011 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pages 4332–4335,
July 2011.

[26] Deming Zhai, Bo Li, Hong Chang, Shiguang Shan, Xilin Chen, and Wen
Gao. Manifold alignment via corresponding projections. In Proceedings of
the British Machine Vision Conference, pages 1–11. BMVA Press, 2010.

12


	1 Introduction
	2 Double Pendulum Data
	3 Manifold Alignment Methods
	4 Performance Evaluation
	5 Results
	6 Discussion and Conclusion

