Skip to main content

Knowledge Graph-Based Core Concept Identification in Learning Resources

  • Conference paper
  • First Online:
Semantic Technology (JIST 2018)

Abstract

The automatic identification of core concepts addressed by a learning resource is an important task in favor of organizing content for educational purposes and for the next generation of learner support systems. We present a set of strategies for core concept identification on the basis of a semantic representation built using the open and available knowledge in the so-called Knowledge Graphs (KGs). Different unsupervised weighting strategies, as well as a supervised method that operates on the semantic representation, were implemented for core concept identification. In order to test the effectiveness of the proposed strategies, a human-expert annotated dataset of 96 learning resources extracted from MOOCs was built. In our experiments, we show the capacity of the semantic representation for the core-concept identification task as well as the superiority of the supervised method.

This work was partially supported by COLCIENCIAS PhD scholarship (Call 647-2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://wiki.dbpedia.org.

  2. 2.

    https://yago-knowledge.org.

  3. 3.

    https://www.wikidata.org/wiki/Wikidata:Main_Page.

  4. 4.

    https://github.com/dbpedia-spotlight/dbpedia-spotlight.

  5. 5.

    https://aylien.com.

  6. 6.

    https://www.ibm.com/watson/alchemy-api.html.

  7. 7.

    http://babelfy.org.

  8. 8.

    Source: https://en.wikipedia.org/wiki/Class_(computer_programming).

  9. 9.

    In this example, DBpedia was used as KG and DBpedia Spotlight as annotation service.

  10. 10.

    https://www.w3.org/TR/sparql11-property-paths/.

  11. 11.

    https://www.w3.org/TR/rdf-sparql-query/.

  12. 12.

    https://networkx.github.io.

  13. 13.

    https://github.com/ceteri/pytextrank.

  14. 14.

    https://github.com/Ruframapi/CCI.

  15. 15.

    https://github.com/coursera-dl.

References

  1. Boudin, F.: A comparison of centrality measures for graph-based keyphrase extraction. In: IJCNLP (2013)

    Google Scholar 

  2. Changuel, S., Labroche, N., Bouchon-Meunier, B.: Resources sequencing using automatic prerequisite-outcome annotation. ACM Trans. Intell. Syst. Technol. 6(1), 6:1–6:30 (2015). https://doi.org/10.1145/2505349

    Article  Google Scholar 

  3. Estivill-Castro, V., Limongelli, C., Lombardi, M., Marani, A.: DAJEE: a dataset of joint educational entities for information retrieval in technology enhanced learning. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016. ACM (2016)

    Google Scholar 

  4. Färber, M., Ell, B., Menne, C., Rettinger, A.: A comparative survey of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web J., pp. 1–26, July 2015. http://www.semantic-web-journal.net/system/files/swj1141.pdf

  5. Farhat, R., Jebali, B., Jemni, M.: Ontology based semantic metadata extraction system for learning objects. In: Chen, G., Kumar, V., Kinshuk, Huang, R., Kong, S.C. (eds.) Emerging Issues in Smart Learning, pp. 247–250. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-44188-6_34

    Chapter  Google Scholar 

  6. Foster, J.M., Sultan, M.A., Devaul, H., Okoye, I., Sumner, T.: Identifying core concepts in educational resources. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries. JCDL 2012, pp. 35–42. ACM, New York (2012). https://doi.org/10.1145/2232817.2232827

  7. Grévisse, C., Manrique, R., Mariño, O., Rothkugel, S.: Knowledge graph-based teacher support for learning material authoring. In: Serrano, C.J., Martínez-Santos, J. (eds.) CCC 2018. CCIS, vol. 885, pp. 177–191. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98998-3_14

    Chapter  Google Scholar 

  8. Grévisse, C., Manrique, R., Mariño, O., Rothkugel, S.: SoLeMiO: semantic integration of learning material in office. In: Proceedings of E-Learn: World Conference on E-Learning 2018. Association for the Advancement of Computing in Education (AACE) (in press)

    Google Scholar 

  9. Ichinose, S., Kobayashi, I., Iwazume, M., Tanaka, K.: Ranking the results of DBpedia retrieval with SPARQL query. In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 306–319. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06826-8_23

    Chapter  Google Scholar 

  10. Jebali, B., Farhat, R.: Ontology-based semantic metadata extraction approach. In: 2013 International Conference on Electrical Engineering and Software Applications, pp. 1–5, March 2013. https://doi.org/10.1109/ICEESA.2013.6578408

  11. Krieger, K., Schneider, J., Nywelt, C., Rösner, D.: Creating semantic fingerprints for web documents. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics. WIMS 2015, pp. 11:1–11:6 (2015). https://doi.org/10.1145/2797115.2797132

  12. Limongelli, C., Lombardi, M., Marani, A., Taibi, D.: Enrichment of the dataset of joint educational entities with the web of data. In: 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), pp. 528–529 (2017)

    Google Scholar 

  13. Manrique, R., Cueto-Ramirez, F., Mariño, O.: Comparing graph similarity measures for semantic representations of documents. In: Serrano, C.J., Martínez-Santos, J. (eds.) CCC 2018. CCIS, vol. 885, pp. 162–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98998-3_13

    Chapter  Google Scholar 

  14. Manrique, R., Herazo, O., Mariño, O.: Exploring the use of linked open data for user research interest modeling. In: Solano, A., Ordoñez, H. (eds.) CCC 2017. CCIS, vol. 735, pp. 3–16. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66562-7_1

    Chapter  Google Scholar 

  15. Manrique, R., Mariño, O.: How does the size of a document affect linked open data user modeling strategies? In: Proceedings of the International Conference on Web Intelligence. WI 2017, pp. 1246–1252. ACM, New York (2017). https://doi.org/10.1145/3106426.3109440

  16. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems. I-Semantics 2011, pp. 1–8. ACM, New York (2011)

    Google Scholar 

  17. Mirizzi, R., Ragone, A., Di Noia, T., Di Sciascio, E.: Ranking the linked data: the case of DBpedia. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 337–354. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13911-6_23

    Chapter  Google Scholar 

  18. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017). https://doi.org/10.3233/SW-160218

    Article  Google Scholar 

  19. Piao, G., Breslin, J.G.: Analyzing aggregated semantics-enabled user modeling on Google+ and Twitter for personalized link recommendations. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. UMAP 2016, pp. 105–109. ACM, New York (2016). https://doi.org/10.1145/2930238.2930278

  20. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)

    Book  Google Scholar 

  21. Roy, D., Sarkar, S., Ghose, S.: Automatic extraction of pedagogic metadata from learning content. Int. J. Artif. Intell. Educ. 18(2), 97–118 (2008)

    Google Scholar 

  22. Siehndel, P., Kawase, R., Nunes, B.P., Herder, E.: Towards automatic building of learning pathways. In: Proceedings of the 10th International Conference on Web Information Systems and Technologies, pp. 270–277 (2014). https://doi.org/10.5220/0004837602700277

  23. Sultan, M.A., Bethard, S., Sumner, T.: Towards automatic identification of core concepts in educational resources. In: Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries. JCDL 2014, pp. 379–388. IEEE Press, Piscataway (2014)

    Google Scholar 

  24. Waitelonis, J., Exeler, C., Sack, H.: Enabled generalized vector space model to improve document retrieval. In: Proceedings of the Third NLP&DBpedia Workshop (NLP & DBpedia 2015) co-located with the 14th International Semantic Web Conference 2015 (ISWC 2015), Bethlehem, Pennsylvania, USA, 11 October 2015, pp. 33–44 (2015). http://ceur-ws.org/Vol-1581/paper4.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Manrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manrique, R., Grévisse, C., Mariño, O., Rothkugel, S. (2018). Knowledge Graph-Based Core Concept Identification in Learning Resources. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds) Semantic Technology. JIST 2018. Lecture Notes in Computer Science(), vol 11341. Springer, Cham. https://doi.org/10.1007/978-3-030-04284-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04284-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04283-7

  • Online ISBN: 978-3-030-04284-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics