Skip to main content

Smart Transducers for Energy Scavenging and Sensing in Vibrating Environments

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 539))

Abstract

The possibility to scavenge energy from vibration and to measure, at the same time, additional information, such as physical characteristics of the incoming source of energy, is of great interest in the modern research. This includes autonomous sensing elements, smart transducers and innovative methods of measurements also in the context of “industry 4.0”. The pursued approach concerns an electromagnetic transducer able to harvest energy coming from the environment (kinetic source of energy), as consequence, charges will be accumulated inside a storage capacitor. It is also capable to measure the mechanical power and transmits the information by using an optical method. It is worth noting that the proposed architecture works without conditioning circuits or active elements. The smart transducer for energy scavenging is designed and experiments are performed showing the suitability of the proposed device.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Toh, W.Y., Tan, Y.K., Koh, W.S., Siek, L.: Autonomous wearable sensor nodes with flexible energy harvesting. IEEE Sens. J. 14(7), 2299–2306 (2014)

    Article  Google Scholar 

  2. Zhang, B., Zhang, L., Deng, W., Jin, L., Chun, F., Pan, H., Wang, Z.L.: Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 11(7), 7440–7446 (2017)

    Article  Google Scholar 

  3. Andò, B., Baglio, S., La Malfa, S., Pistorio, A., Trigona, C.: A smart wireless sensor network for AAL. In: 2011 IEEE International Workshop on Measurements and Networking Proceedings (M&N), pp. 122–125 (2011)

    Google Scholar 

  4. Kazmierski, T.J., Beeby, S.: Energy Harvesting Systems. Springer (2014)

    Google Scholar 

  5. Trigona, C., Dumas, N., Latorre, L., Andò, B., Baglio, S., Nouet, P.: Exploiting benefits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibrations. Procedia Eng. 25, 819–822 (2011)

    Article  Google Scholar 

  6. Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C., Guan, Y.L.: Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)

    Article  Google Scholar 

  7. Zhou, F., Joshi, S.N., Dede, E.M.: Thermal energy harvesting with next generation cooling for automotive electronics. In: Thermal Management of Onboard Charger in E-Vehicles Reliability of Nano-sintered Silver Die Attach Materials Thermal Energy Harvesting with, vol. 16 (2017)

    Google Scholar 

  8. Chen, Z., Law, M.K., Mak, P.I., Martins, R.P.: A single-chip solar energy harvesting IC using integrated photodiodes for biomedical implant applications. IEEE Trans. Biomed. Circuits Syst. 11(1), 44–53 (2017)

    Article  Google Scholar 

  9. Tuna, G., Gungor, V.C., Gulez, K.: Energy harvesting techniques for industrial wireless sensor networks. In: Hancke, G.P., Gungor, V.C. (eds.) Industrial Wireless Sensor Networks: Applications, Protocols, Standards, and Products, pp. 119–136 (2017)

    Google Scholar 

  10. Andò, B., Baglio, S., L’Episcopo, G., Marletta, V., Savalli, N., Trigona, C.: A BE-SOI MEMS for inertial measurement in geophysical applications. IEEE Trans. Instrum. Meas. 60(5), 1901–1908 (2011)

    Article  Google Scholar 

  11. Naifar, S., Bradai, S., Viehweger, C., Kanoun, O.: Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation 106, 251–263 (2017)

    Google Scholar 

  12. Roundy, S., Rabaey, J.M., Wright, P.K.: Energy Scavenging for Wireless Sensor Networks. Springer, New York, LLC (2004)

    Book  Google Scholar 

  13. Bloem, J., Van Doorn, M., Duivestein, S., Excoffier, D., Maas, R., Van Ommeren, E.: The Fourth Industrial Revolution. Things to Tighten the Link Between IT and OT (2014)

    Google Scholar 

  14. Spies, P., Pollak, M., Mateu, L.: Handbook of Energy Harvesting Power Supplies and Applications. CRC Press (2015)

    Google Scholar 

  15. Shepard Jr., J.F., Chu, F., Kanno, I., Trolier-McKinstry, S.: Characterization and aging response of the d 31 piezoelectric coefficient of lead zirconate titanate thin films. J. Appl. Phys. 85(9), 6711–6716 (1999)

    Article  Google Scholar 

  16. Naifar, S., Bradai, S., Keutel, T., Kanoun, O.: Design of a vibration energy harvester by twin lateral magnetoelectric transducers. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1157–1162 (2014)

    Google Scholar 

  17. Bradai, S., Naifar, S., Keutel, T., Kanoun, O.: Electrodynamic resonant energy harvester for low frequencies and amplitudes. In: IEEE International Instrumentation and Measurement Technology Conference I2MTC, pp. 1152–1156 (2014)

    Google Scholar 

  18. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley (2014)

    Google Scholar 

  19. Beninato, A., Trigona, C., Ando, B., Baglio, S.: A PZT-based energy sensor able to store energy and transmit data. In: IEEE Sensors Applications Symposium (SAS), pp. 1–5 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Trigona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naifar, S., Trigona, C., Bradai, S., Baglio, S., Kanoun, O. (2019). Smart Transducers for Energy Scavenging and Sensing in Vibrating Environments. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics