The Queue-Number of Posets of Bounded Width or Height

Kolja Knauer ${ }^{1 \star}$, Piotr Micek ${ }^{2}{ }^{\star \star}$ and Torsten Ueckerdt ${ }^{3}$
${ }^{1}$ Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France kolja.knauer@lis-lab.fr
${ }^{2}$ Jagiellonian University, Faculty of Mathematics and Computer Science, Theoretical Computer Science Department, Poland piotr.micek@tcs.uj.edu.pl
${ }^{3}$ Karlsruhe Institute of Technology (KIT), Institute of Theoretical Informatics, Germany torsten.ueckerdt@kit.edu

Abstract

Heath and Pemmaraju [9] conjectured that the queuenumber of a poset is bounded by its width and if the poset is planar then also by its height. We show that there are planar posets whose queue-number is larger than their height, refuting the second conjecture. On the other hand, we show that any poset of width 2 has queue-number at most 2 , thus confirming the first conjecture in the first non-trivial case. Moreover, we improve the previously best known bounds and show that planar posets of width w have queue-number at most $3 w-2$ while any planar poset with 0 and 1 has queue-number at most its width.

1 Introduction

A queue layout of a graph consists of a total ordering on its vertices and an assignment of its edges to queues, such that no two edges in a single queue are nested. The minimum number of queues needed in a queue layout of a graph G is called its queue-number and denoted by $\mathrm{qn}(G)$.

To be more precise, let G be a graph and let L be a linear order on the vertices of G. We say that the edges $u v, u^{\prime} v^{\prime} \in E(G)$ are nested with respect to L if $u<u^{\prime}<v^{\prime}<v$ or $u^{\prime}<u<v<v^{\prime}$ in L. Given a linear order L of the vertices of G, the edges $u_{1} v_{1}, \ldots, u_{k} v_{k}$ of G form a rainbow of size k if $u_{1}<\cdots<u_{k}<v_{k}<\cdots<v_{1}$ in L. Given G and L, the edges of G can be partitioned into k queues if and only if there is no rainbow of size $k+1$ in L, see [10].

The queue-number was introduced by Heath and Rosenberg in 1992 [10] as an analogy to book embeddings. Queue layouts were implicitly used before and have applications in fault-tolerant processing, sorting with parallel queues, matrix computations, scheduling parallel processes, and communication management in distributed algorithm (see [8|10|12]).

[^0]Perhaps the most intriguing question concerning queue-numbers is whether planar graphs have bounded queue-number.

Conjecture 1 (Heath and Rosenberg [10]).

The queue-number of planar graphs is bounded by a constant.
In this paper we study queue-numbers of posets. The parameter was introduced in 1997 by Heath and Pemmaraju 9 and the main idea is that given a poset one should lay it out respecting its relation. Two elements a, b of a poset are called comparable if $a<b$ or $b<a$, and incomparable, denoted by $a \| b$, otherwise. Posets are visualized by their diagrams: Elements are placed as points in the plane and whenever $a<b$ in the poset, and there is no element c with $a<c<b$, there is a curve from a to b going upwards (that is y-monotone). We denote this case as $a \prec b$. The diagram represents those relations which are essential in the sense that they are not implied by transitivity, also known as cover relations. The undirected graph implicitly defined by such a diagram is the cover graph of the poset. Given a poset P, a linear extension L of P is a linear order on the elements of P such that $x<_{L} y$, whenever $x<_{P} y$. (Throughout the paper we use a subscript on the symbol $<$, if we want to emphasize which order it represents.) Finally, the queue-number of a poset P, denoted by $\mathrm{qn}(P)$, is the smallest k such that there is a linear extension L of P for which the resulting linear layout of G_{P} contains no $(k+1)$-rainbow. Clearly we have $\mathrm{qn}\left(G_{P}\right) \leqslant \mathrm{qn}(P)$, i.e., the queue-number of a poset is at least the queue-number of its cover graph. It is shown in [9] that even for planar posets, that is posets admitting crossing-free diagrams, there is no function f such that $\mathrm{qn}(P) \leqslant f\left(\mathrm{qn}\left(G_{P}\right)\right)$.

Fig. 1. A poset and a layout with two queues (gray and black). Note that the order of the elements on the spine is a linear extension of the poset.

Heath and Pemmaraju [9] investigated the maximum queue-number of several classes of posets, in particular with respect to bounded width (the maximum number of pairwise incomparable elements) and height (the maximum number of pairwise comparable elements). A set with every two elements being comparable is a chain. A set with every two distinct elements being incomparable is an antichain. They proved that if $\operatorname{width}(P) \leqslant w$, then $\mathrm{qn}(P) \leqslant w^{2}$. The lower bound is attained by weak orders, i.e., chains of antichains and is conjectured to be the upper bound as well:

Conjecture 2 (Heath and Pemmaraju [9]).
Every poset of width w has queue-number at most w.

Furthermore, they made a step towards this conjecture for planar posets: if a planar poset P has width $(P) \leqslant w$, then $\mathrm{qn}(P) \leqslant 4 w-1$. For the lower bound side they provided planar posets of width w and queue-number $\lceil\sqrt{w}\rceil$.

We improve the bounds for planar posets and get the following:
Theorem 1. Every planar poset of width w has queue-number at most $3 w-2$. Moreover, there are planar posets of width w and queue-number w.

As an ingredient of the proof we show that posets without certain subdivided crowns satisfy Conjecture 2 (c.f. Theorem 5). This implies the conjecture for interval orders and planar posets with (unique minimum) 0 and (unique maximum) 1 (c.f. Corollary 22. Moreover, we confirm Conjecture 2 for the first non-trivial case $w=2$:

Theorem 2. Every poset of width 2 has queue-number at most 2.
An easy corollary of this is that all posets of width w have queue-number at most $w^{2}-w+1$ (c.f. Corollary 1 .

Another conjecture of Heath and Pemmaraju concerns planar posets of bounded height:

Conjecture 3 (Heath and Pemmaraju [9]).
Every planar poset of height h has queue-number at most h.
We show that Conjecture 3 is false for the first non-trivial case $h=2$:

Theorem 3. There is a planar poset of height 2 with queue-number at least 4.
Furthermore, we establish a link between a relaxed version of Conjecture 3 and Conjecture 1, namely we show that the latter is equivalent to planar posets of height 2 having bounded queue-number (c.f. Theorem 6). On the other hand, we show that Conjecture 3 holds for planar posets with 0 and 1 :

Theorem 4. Every planar poset of height h with 0 and 1 has queue-number at most $h-1$.

Organization of the paper. In Section 2 we consider general (not necessarily planar) posets and give upper bounds on their queue-number in terms of their width, such as Theorem 2, In Section 3 we consider planar posets and bound the queue-number in terms of the width, both from above and below, i.e., we prove Theorem 1. In Section 4 we give a counterexample to Conjecture 3 by constructing a planar poset with height 2 and queue-number at least 4 . Here we also argue that proving any upper bound on the queue-number of such posets is equivalent to proving Conjecture 1. Finally, we show that Conjecture 3 holds for planar posets with 0 and 1 and that for every h there is a planar poset of height h and queue-number $h-1$ (c.f. Proposition 3).

2 General Posets of Bounded Width

By Dilworth's Theorem [3], the width of a poset P coincides with the smallest integer w such that P can be decomposed into w chains of P. Let us derive Proposition 1 of Heath and Pemmaraju [9] from such a chain partition.

Proposition 1. For every poset P, if $\operatorname{width}(P) \leqslant w$ then $\mathrm{qn}(P) \leqslant w^{2}$.
Proof. Let P be a poset of width w and C_{1}, \ldots, C_{w} be a chain partition of P. Let L be any linear extension of P and $a<_{L} b<_{L} c<_{L} d$ with $a \prec d$ and $b \prec c$. Note that we must have either $a \| b$ or $c \| d$. If follows that if $a \in C_{i}, b \in C_{j}$, $c \in C_{k}$, and $d \in C_{\ell}$, then $(i, \ell) \neq(j, k)$. As there are only w^{2} ordered pairs (x, y) with $x, y \in[w]$, we can conclude that every nesting set of covers has cardinality at most w^{2}.

Note that in the above proof L is any linear extension and that without choosing the linear extension L carefully, upper bound w^{2} is best-possible. Namely, if $P=\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$ with comparabilities $a_{i}<b_{j}$ for all $1 \leqslant i, j \leqslant k$, then P has width k and the linear extension $a_{1}<\ldots<a_{k}<b_{k}<\ldots<b_{1}$ creates a rainbow of size k^{2}.

We continue by showing that every poset of width 2 has queue-number at most 2 , that is, we prove Theorem 2 .

Proof (Theorem 2). Let P be a poset of width 2 and minimum element 0 and C_{1}, C_{2} be a chain partition of P. Note that the assumption of the minimum causes no loss of generality, since a 0 can be added without increasing the width nor decreasing the queue-number. Any linear extension L of P partitions the ground set X naturally into inclusion-maximal sets of elements, called blocks, from the same chain in $\left\{C_{1}, C_{2}\right\}$ that appear consecutively along L, see Figure 2 . We denote the blocks by B_{1}, \ldots, B_{k} according to their appearance along L. We say that L is lazy if for each $i=2, \ldots, k$, each element $x \in B_{i}$ has a relation to some element $y \in B_{i-1}$. A linear extension L can be obtained by picking any minimal element $m \in P$, put it into L, and recurse on $P \backslash\{m\}$. Lazy linear extensions (with respect to C_{1}, C_{2}) can be constructed by the same process where additionally the next element is chosen from the same chain as the element before, if possible. Note that the existence of a 0 is needed in order to ensure the property of laziness with respect to B_{2}.

Now we shall prove that in a lazy linear extension no three covers are pairwise nesting. So assume that $a \prec b$ is any cover and that $a \in B_{i}$ and $b \in B_{j}$. As L is lazy, b is comparable to some element in $B_{j-1}($ if $j \geqslant 2$) and all elements in B_{1}, \ldots, B_{j-2} (if $j \geqslant 3$). With $a \prec b$ being a cover, it follows from L being lazy that $i \in\{j-2, j-1, j\}$. If $i=j$, then no cover is nested under $a \prec b$. If $i=j-1$, then no cover $c \prec d$ is nested above $a \prec b$: either $c \in B_{i}$ and $d \in B_{j}$ and hence $c \prec d$ is not a cover, or both endpoints would be inside the same chain, i.e., c, d are the last and first element of B_{j-2} and B_{j} or B_{i} and B_{i+2}, respectively. This implies $c<_{L} a<_{L} d<_{L} b$ or $a<_{L} c<_{L} b<_{L} r$, respectively, and $c \prec d$ cannot nest above $a \prec b$. If $i=j-2$, then no cover is nested above $a \prec b$. Thus, either

Fig. 2. A poset of width 2 with a 0 and a chain partition C_{1}, C_{2} and the blocks B_{1}, \ldots, B_{5} induced by a lazy linear extension with respect to C_{1}, C_{2}.
no cover is nested below $a \prec b$, or no cover is nested above $a \prec b$, or both. In particular, there is no three nesting covers and $\mathrm{qn}(P) \leqslant 2$.

Corollary 1. Every poset of width w has queue-number at most $w^{2}-2\lfloor w / 2\rfloor$.
Proof. We take any chain partition of size w and pair up chains to obtain a set S of $\lfloor w / 2\rfloor$ disjoint pairs. Each pair from S induces a poset of width at most 2, which by Theorem 2 admits a linear order with at most two nesting covers. Let L be a linear extension of P respecting all these partial linear extensions.

Now, following the proof of Proposition 1 any cover can be labeled by a pair (i, j) corresponding to the chains containing its endpoint. Thus, in a set of nesting covers any pair appears at most once, but for each i, j such that $(i, j) \in S$ only two of the four possible pairs can appear simultaneously in a nesting. This yields the upper bound.

For an integer $k \geqslant 2$ we define a subdivided k-crown as the poset P_{k} as follows. The elements of P_{k} are $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{k}\right\}$ and the cover relations are given by $a_{i} \prec b_{i}$ and $b_{i} \prec c_{i}$ for $i=2, \ldots, k, a_{i} \prec c_{i-1}$ for $i=1, \ldots, k-1$, and $a_{1} \prec c_{k}$; see the left of Figure 3 We refer to the covers of the form $a_{i} \prec c_{j}$ as the diagonal covers and we say that a poset P has an embedded P_{k} if P contains $3 k$ elements that induce a copy of P_{k} in P with all diagonal covers of that copy being covers of P.

Fig. 3. Left: The posets P_{2}, P_{3}, and P_{4}. Right: The existence of an element z with cover relation $z \prec x$ and non-cover relation $z<y$ gives rise to a gray edge from x to y.

Theorem 5. If P is a poset that for no $k \geqslant 2$ has an embedded P_{k}, then the queue-number of P is at most the width of P.

Proof. Let P be any poset. For this proof we consider the cover graph G_{P} of P as a directed graph with each edge $x y$ directed from x to y if $x \prec y$ in P. We call these edges the cover edges. Now we augment G_{P} to a directed graph G by introducing for some incomparable pairs $x \| y$ a directed edge. Specifically, we add a directed edge from x to y if there exists a z with $z<x, y$ in P where $z \prec x$ is a cover relation and $z<y$ is not a cover relation; see the right of Figure 3. We call these edges the gray edges of G.

Now we claim that if G has a directed cycle, then P has an embedded subdivided crown. Clearly, every directed cycle in G has at least one gray edge. We consider the directed cycles with the fewest gray edges and among those let $C=\left[c_{1}, \ldots, c_{\ell}\right]$ be one with the fewest cover edges.s First assume that C has a cover edge (hence $\ell \geqslant 3$), say $c_{1} c_{2}$ is a gray edge followed by a cover edge $c_{2} c_{3}$. Consider the element z with cover relation $z \prec c_{1}$ and non-cover relation $z<c_{2}$ in P. By $z<c_{2} \prec c_{3}$ we have a non-cover relation $z<c_{3}$ in P. Now if $c_{1} \| c_{3}$ in P, then G contains the gray edge $c_{1} c_{3}$ (see Figure 4(a)) and $\left[c_{1}, c_{3}, \ldots, c_{\ell}\right]$ is a directed cycle with the same number of gray edges as C but fewer cover edges, a contradiction. On the other hand, if $c_{1}<c_{3}$ in P (note that $c_{3}<c_{1}$ is impossible as $z \prec c_{1}$ is a cover), then there is a directed path Q of cover edges from c_{1} to c_{3} (see Figure $4(\mathrm{~b})$) and $C+Q-\left\{c_{1} c_{2}, c_{2} c_{3}\right\}$ contains a directed cycle with fewer gray edges than C, again a contradiction.

Fig. 4. Illustrations for the proof of Theorem 5

Hence $C=\left[c_{1}, \ldots, c_{\ell}\right]$ is a directed cycle consisting solely of gray edges. Note that by the first paragraph $\left\{c_{1}, \ldots, c_{\ell}\right\}$ is an antichain in P. For $i=2, \ldots, \ell$ let a_{i} be the element of P with cover relation $a_{i} \prec c_{i-1}$ and non-cover relation $a_{i}<c_{i}$, as well as a_{1} with cover relation $a_{1} \prec c_{\ell}$ and non-cover relation $a_{1}<$ c_{1}. As $\left\{c_{1}, \ldots, c_{\ell}\right\}$ is an antichain and $a_{i}<c_{i}$ holds for $i=1, \ldots, \ell$, we have $\left\{c_{1}, \ldots, c_{\ell}\right\} \cap\left\{a_{1}, \ldots, a_{\ell}\right\}=\emptyset$. Let us assume that $a_{1}<c_{j}$ in P for some $j \neq 1, \ell$. If $a_{1} \prec c_{j}$ is a cover relation, then there is a gray edge $c_{j} c_{1}$ in G (see Figure 4 (c)) and the cycle $\left[c_{1}, \ldots, c_{j}\right]$ is shorter than C, a contradiction. If $a_{1}<c_{j}$ is a noncover relation, then there is a gray edge $c_{\ell} c_{j}$ in G (see Figure 4(d)) and the cycle [c_{j}, \ldots, c_{ℓ}] is shorter than C, again a contradiction.

Hence, the only relations between a_{1}, \ldots, a_{ℓ} and c_{1}, \ldots, c_{ℓ} are cover relations $a_{1} \prec c_{\ell}$ and $a_{i} \prec c_{i-1}$ for $i=2, \ldots, \ell$ and the non-cover relations $a_{i}<c_{i}$ for $i=1, \ldots, \ell$. Hence a_{1}, \ldots, a_{ℓ} are pairwise distinct. Moreover, $\left\{a_{1}, \ldots, a_{\ell}\right\}$ is an antichain in P since the only possible relations among these elements are of the
form $a_{1}<a_{\ell}$ or $a_{i}<a_{i-1}$, which would contradict that $a_{1} \prec c_{\ell}$ and $a_{i} \prec c_{i-1}$ are cover relations. Finally, we pick for every $i=1, \ldots, \ell$ an element b_{i} with $a_{i}<b_{i}<c_{i}$, which exists as $a_{i}<c_{i}$ is a non-cover relation. Together with the above relations between a_{1}, \ldots, a_{ℓ} and c_{1}, \ldots, c_{ℓ} we conclude that b_{1}, \ldots, b_{ℓ} are pairwise distinct and these 3ℓ elements induce a copy of P_{ℓ} in P with all diagonal covers in that copy being covers of P.

Thus, if P has no embedded P_{k}, then the graph G we constructed has no directed cycles, and we can pick L to be any topological ordering of G. As $G_{P} \subseteq$ G, L is a linear extension of P. For any two nesting covers $x_{2}<_{L} x_{1}<_{L} y_{1}<_{L} y_{2}$ we have $x_{1} \| x_{2}$ or $y_{1} \| y_{2}$ or both, since $x_{2} \prec y_{2}$ is a cover. However, if $x_{2}<x_{1}$ in P, then there would be a gray edge from y_{2} to y_{1} in G, contradicting $y_{1}<_{L} y_{2}$ and L being a topological ordering of G. We conclude that $x_{1} \| x_{2}$ and the left endpoints of any rainbow form an antichain, proving $\mathrm{qn}(P) \leqslant$ width (P).

Let us remark that several classes of posets have no embedded subdivided crowns, e.g., graded posets, interval orders (since these are $2+2$-free, see [6]), or (quasi-)series-parallel orders (since these are N-free, see [7]). Here, $2+2$ and N are the four-element posets defined by $a<b, c<d$ and $a<b, c<d, c<b$, respectively. Also note that while subdivided crowns are planar posets, no planar poset with 0 and 1 has an embedded k-crown. Indeed, already looking at the subposet induced by the k-crown and the 0 and the 1 , it is easy to see that there must be a crossing in any diagram. Thus, we obtain:

Corollary 2. For any interval order, series-parallel order, and planar poset with 0 and 1, P we have $\mathrm{qn}(P) \leqslant$ width (P).

3 Planar Posets of Bounded Width

Heath and Pemmaraju [9] show that the largest queue-number among planar posets of width w lies between $\lceil\sqrt{w}\rceil$ and $4 w-1$. Here we improve the lower bound to w and the upper bound to $3 w-2$.

Proposition 2. For each w there exists a planar poset Q_{w} with 0 and 1 of width w and queue-number w.

Proof. We shall define Q_{w} recursively, starting with Q_{1} being any chain. For $w \geqslant 2, Q_{w}$ consists of a lower copy P and a disjoint upper copy P^{\prime} of Q_{w-1}, three additional elements a, b, c, and the following cover relations in between:
$-a \prec x$, where x is the 0 of P
$-y \prec x^{\prime}$, where y is the 1 of P and x^{\prime} is the 0 of P^{\prime}
$-y^{\prime} \prec c$, where y^{\prime} is the 1 of P^{\prime}
$-a \prec b \prec c$
It is easily seen that all cover relations of P and P^{\prime} remain cover relations in Q_{w}, and that Q_{w} is planar, has width w, a is the 0 of Q_{w}, and c is the 1 of Q_{w}. See Figure 5 for an illustration.

Fig. 5. Recursively constructing planar posets Q_{w} of width w and queue-number w. Left: Q_{1} is a two-element chain. Middle: Q_{w} is defined from two copies P, P^{\prime} of Q_{w-1}. Right: The general situation for a linear extension of Q_{w}.

To prove that $\mathrm{qn}\left(Q_{w}\right)=w$ we argue by induction on w, with the case $w=1$ being immediate. Let L be any linear extension of Q_{w}. Then a is the first element in L and c is the last. Since $y \prec x^{\prime}$, all elements in P come before all elements of P^{\prime}. Now if in L the element b comes after all elements of P, then P is nested under cover $a \prec b$, and if b comes before all elements of P^{\prime}, then P^{\prime} is nested under cover $b \prec c$. We obtain w nesting covers by induction on P in the former case, and by induction on P^{\prime} in the latter case. This concludes the proof.

Next we prove Theorem 1, namely that the maximum queue-number of planar posets of width w lies between w and $3 w-2$.

Proof (Theorem 1). By Proposition 2 some planar posets of width w have queuenumber w. So it remains to consider an arbitrary planar poset P of width w and show that P has queue-number at most $3 w-2$. To this end, we shall add some relations to P, obtaining another planar poset Q of width w that has a 0 and 1 , with the property that $\mathrm{qn}(P) \leqslant \mathrm{qn}(Q)+2 w-2$. Note that this will conclude the proof, as by Corollary 2 we have $\mathrm{qn}(Q) \leqslant w$.

Given a planar poset P of width w, there are at most w minima and at most w maxima. Hence there are at most $2 w-2$ extrema that are not on the outer face. For each such extremum x-say x is a minimum- consider the unique face f with an obtuse angle at x. We introduce a new relation $y<x$, where y is a smallest element at face f, see Figure 6. Note that this way we introduce at most $2 w-2$ new relations, and that these can be drawn y-monotone and crossing-free by carefully choosing the other element in each new relation. Furthermore, every inner face has a unique source and unique sink.

Now consider a cover relation $a \prec_{P} b$ that is not a cover relation in the new poset Q. For the corresponding edge e from a to b in Q there is one face f with unique source a and unique $\operatorname{sink} b$. Now either way the other edge in f incident to a or to b must be one of the $2 w-2$ newly inserted edges, see again Figure 6 . This way we assign $a \prec b$ to one of $2 w-2$ queues, one for each newly inserted edge. Every such queue contains either at most one edge or two incident edges, i.e., a nesting is impossible, no matter what linear ordering is chosen later.

We create at most $2 w-2$ queues to deal with the cover relations of P that are not cover relations of Q and spend another w queues for Q dealing with the remaining cover relations of P. Thus, $\mathrm{qn}(P) \leqslant \mathrm{qn}(Q)+2 w-2 \leqslant 3 w-2$.

Fig. 6. Inserting new relations (dashed) into a face of a plane diagram. Note that relation $a<b$ is a cover relation in P but not in Q.

4 Planar Posets of Bounded Height

Recall Conjecture 3, which states that every planar poset of height h has queuenumber at most h. In the following, we give a counterexample to this conjecture:

Proof (Theorem 3). Consider the graph G that is constructed as follows: Start with $K_{2,10}$ with bipartition classes $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, \ldots, b_{10}\right\}$. For every $i=$ $1, \ldots, 9$ add four new vertices $c_{i, 1}, \ldots, c_{i, 4}$, each connected to b_{i} and b_{i+1}. The resulting graph G has 46 vertices, is planar and bipartite with bipartition classes $X=\left\{b_{1}, \ldots, b_{10}\right\}$ and $Y=\left\{a_{1}, a_{2}\right\} \cup\left\{c_{i, j} \mid 1 \leqslant i \leqslant 9,1 \leqslant j \leqslant 4\right\}$. See Figure 7 .

Fig. 7. A planar poset P of height 2 and queue-number at least 4. Left: The cover graph G_{P} of P. Right: A part of a planar diagram of P.

Let P be the poset arising from G by introducing the relation $x<y$ for every edge $x y$ in G with $x \in X$ and $y \in Y$. Clearly, P has height 2 and hence the cover relations of P are exactly the edges of G. Moreover, by a result of Moore 11] (see also [2]) P is planar because G is planar, also see the right of Figure 7

We shall argue that $\mathrm{qn}(P) \geqslant 4$. To this end, let L be any linear extension of P. Without loss of generality we have $a_{1}<_{L} a_{2}$. Note that since in P one bipartition
class of G is entirely below the other, any 4 -cycle in G gives a 2-rainbow. Let $b_{i_{1}}, b_{i_{2}}$ be the first two elements of X in $L, b_{j_{1}}, b_{j_{2}}$ be the last two such elements. As $|X|=10$ there exists $1 \leqslant i \leqslant 9$ such that $\{i, i+1\} \cap\left\{i_{1}, i_{2}, j_{1}, j_{2}\right\}=\emptyset$, i.e., we have $b_{i_{1}}, b_{i_{2}}<_{L} b_{i}, b_{i+1}<_{L} b_{j_{1}}, b_{j_{2}}<_{L} a_{1}<_{L} a_{2}$, where we use that a_{1} and a_{2} are above all elements of X in P.

Now consider the elements $C=\left\{c_{i, 1}, \ldots, c_{i, 4}\right\}$ that are above b_{i} and b_{i+1} in P. As $|C| \geqslant 4$, there are two elements c_{1}, c_{2} of C that are both below a_{1}, a_{2} in L, or both between a_{1} and a_{2} in L, or both above a_{1}, a_{2} in L. Consider the 2-rainbow R in the 4 -cycle $\left[c_{1}, b_{i}, c_{2}, b_{i+1}\right]$. In the first case R is nested below the 4 -cycle $\left[a_{1}, b_{i_{1}}, a_{2}, b_{i_{2}}\right.$], in the second case the cover $b_{j_{1}} \prec a_{1}$ is nested below R and R is nested below the cover $b_{i_{1}} \prec a_{2}$, and in the third case 4 -cycle $\left[a_{1}, b_{j_{1}}, a_{2}, b_{j_{2}}\right]$ is nested below R. As each case results in a 4 -rainbow, we have $\mathrm{qn}(P) \geqslant 4$.

Even though Conjecture 3 has to be refuted in its strongest meaning, it might hold that planar posets of height h have queue-number $O(h)$, or at least bounded by some function $f(h)$ in terms of h, or at least that planar posets of height 2 have bounded queue-number. As it turns out, all these statements are equivalent, and in turn equivalent to Conjecture 1 .

Theorem 6. The following statements are equivalent:
(i) Planar graphs have queue-number O (1) (Conjecture 1).
(ii) Planar posets of height h have queue-number $O(h)$.
(iii) Planar posets of height h have queue-number at most $f(h)$ for a function f.
(iv) Planar posets of height 2 have queue-number $O(1)$.
(v) Planar bipartite graphs have queue-number $O(1)$.

Proof. (i) \Rightarrow (ii) Pemmaraju proves in his thesis [13] (see also [4]) that if G is a graph, π is a vertex ordering of G with no $(k+1)$-rainbow, V_{1}, \ldots, V_{m} are color classes of any proper m-coloring of G, and π^{\prime} is the vertex ordering with $V_{1}<_{\pi^{\prime}} \cdots<_{\pi^{\prime}} V_{m}$, where within each V_{i} the ordering of π is inherited, then π^{\prime} has no $(2(m-1) k+1)$-rainbow. So if P is any poset of height h, its cover graph G_{P} has $q n\left(G_{P}\right) \leqslant c$ by (i) for some global constant $c>0$. Splitting P into h antichains A_{1}, \ldots, A_{h} by iteratively removing all minimal elements induces a proper h-coloring of G_{P} with color classes A_{1}, \ldots, A_{h}. As every vertex ordering π^{\prime} of G with $A_{1}<_{\pi^{\prime}} \cdots<_{\pi^{\prime}} A_{h}$ is a linear extension of P, it follows by Pemmaraju's result that $\mathrm{qn}(P) \leqslant 2(h-1) \mathrm{qn}\left(G_{P}\right) \leqslant 2 c h$, i.e., $\mathrm{qn}(P) \in O(h)$.
(ii) $\Rightarrow($ iii \Rightarrow (iv) These implications are immediate.
$($ (iv $) \Rightarrow(\mathrm{v})$ Moore proves in his thesis [11] (see also [2]) that if G is a planar and bipartite graph with bipartition classes A and B, and P_{G} is the poset on element set $A \cup B=V(G)$ where $x<y$ if and only if $x \in A, y \in B, x y \in$ $E(G)$, then P_{G} is a planar poset of height 2 . As G is the cover graph of P_{G}, we have $\mathrm{qn}(G) \leqslant \mathrm{qn}\left(P_{G}\right) \leqslant c$ for some constant $c>0$ by (iv), i.e., $\mathrm{qn}(G) \in O(1)$.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$ This is a result of Dujmović and Wood [5].
Finally, we show that Conjecture 3 holds for planar posets with 0 and 1.

Proof (Theorem 4). Let P be a planar poset with 0 and 1 . Then P has dimension at most two [1], i.e., it can be written as the intersection of two linear extensions of P. A particular consequence of this is, that there is a well-defined dual poset P^{\star} in which two distinct elements x, y are comparable in P if and only if they are incomparable in P^{\star}. Poset P^{\star} reflects a "left of"-relation for each incomparable pair $x \| y$ in P in the following sense: Any maximal chain C in P corresponds to a 0-1-path Q in G_{P}, which splits the elements of $P \backslash C$ into those left of Q and those right of Q. Now $x<_{P^{*}} y$ if and only if x is left of the path for every maximal chain containing y (equivalently y is right of the path for every maximal chain containing x). Due to planarity, if $a \prec b$ is a cover in P and C is a maximal chain containing neither a nor b, then a and b are on the same side of the path Q corresponding to C. In particular, if for $x, y \in C$ we have $a<_{P^{\star}} x$ and $b \| y$, then b and y are comparable in P^{\star}, but if $y<_{P^{\star}} b$ we would get a crossing of C and $a \prec b$. Also see the left of Figure 8 , We summarize:
(夫) If $a \prec b, a<_{P^{\star}} x$ for some $x \in C$ and $b \| y$ for some $y \in C$, then $b<_{P^{\star}} y$.

Fig. 8. Left: Illustration of (\star) If $a<_{P^{\star}} x, b \| y, x<y$, and $a \prec b$ is a cover, then $b<_{P^{\star}} y$ due to planarity. Right: If $a_{3}<_{L} a_{2}<_{L} a_{1}<_{L} b_{1}<_{L} b_{2}<_{L} b_{3}$ is a 3-rainbow with $a_{2}, a_{3}<a_{1}$, then $a_{3}<a_{2}$.

Now let L be the leftmost linear extension of P, i.e., the unique linear extension L with the property that for any $x \| y$ in P we have $x<_{L} y$ if and only if $x<y$ in P^{\star}. Assume that $a_{2}<_{L} a_{1}<_{L} b_{1}<_{L} b_{2}$ is a pair of nesting covers $a_{1} \prec b_{1}$ below $a_{2} \prec b_{2}$. Then $a_{1} \| a_{2}$ (hence $a_{2}<_{P^{*}} a_{1}$) or $b_{1} \| b_{2}$ (hence $b_{1}<_{P^{*}} b_{2}$) or both. Observe that the latter case is impossible, as for any maximal chain C containing $a_{1} \prec b_{1}$ we would have $a_{2}<_{P^{\star}} a_{1}$ with $a_{1} \in C$ and $b_{1}<_{P^{\star}} b_{2}$ with $b_{1} \in C$, contradicting (*) So the nesting of $a_{1} \prec b_{1}$ below $a_{2} \prec b_{2}$ is either of type A with $a_{2}<a_{1}$, or of type B with $b_{1}<b_{2}$. See Figure 9 .

Now consider the case that cover $a_{2} \prec b_{2}$ is nested below another cover $a_{3} \prec b_{3}$, see the right of Figure 8, Then also $a_{1} \prec b_{1}$ is nested below $a_{3} \prec b_{3}$ and we claim that if both, the nesting of $a_{1} \prec b_{1}$ below $a_{2} \prec b_{2}$ as well as the nesting of $a_{1} \prec b_{1}$ below $a_{3} \prec b_{3}$, are of type A (respectively type B), then also the nesting of $a_{2} \prec b_{2}$ below $a_{3} \prec b_{3}$ is of type A (respectively type B). Indeed, assuming type B, we would get $a_{3}<_{P^{\star}} a_{2}$ and $b_{1}<_{p^{\star}} b_{3}$, which together with any maximal chain C containing $a_{2}<a_{1}<b_{1}$ contradicts ($($)

Fig. 9. A nesting of $a_{1} \prec b_{1}$ below $a_{2} \prec b_{2}$ of type A (left) and type B (right).

Finally, let $a_{k}<_{L} \cdots<_{L} a_{1}<_{L} b_{1}<_{L} \cdots<_{L} b_{k}$ be any k-rainbow and let $I=\left\{i \in[k] \mid a_{i}<a_{1}\right\}$, i.e., for each $i \in I$ the nesting of $a_{1} \prec b_{1}$ below $a_{i} \prec b_{i}$ is of type A. Then we have just shown that the nesting of $a_{j} \prec b_{j}$ below $a_{i} \prec b_{i}$ is of type A whenever $i, j \in I$ and of type B whenever $i, j \notin I$. Hence, the set $\left\{a_{i} \mid i \in I\right\} \cup\left\{a_{1}, b_{1}\right\} \cup\left\{b_{i} \mid i \notin I\right\}$ is a chain in P of size $k+1$, and thus $k \leqslant h-1$. It follows that P has queue-number at most $h-1$, as desired.

The proof of the following can be found in the appendix.
Proposition 3. For each h there exists a planar poset Q_{h} of height h and queuenumber $h-1$.

5 Conclusions

We studied the queue-number of (planar) posets of bounded height and width. Two main problems remain open: bounding the queue-number by the width and bounding it by a function of the height in the planar case, where the latter is equivalent to the central conjecture in the area of queue-numbers of graphs. For the first problem the biggest class known to satisfy it are posets without the embedded the subdivided k-crowns for $k \geqslant 2$ as defined in Section 2. Note, that proving it for $k \geqslant 3$ would imply that Conjecture 2 holds for all 2-dimensional posets, which seems to be a natural next step.

Let us close the paper by recalling another interesting conjecture from 9, which we would like to see progress in:

Conjecture 4 (Heath and Pemmaraju [9]).
Every planar poset on n elements has queue-number at most $\lceil\sqrt{n}\rceil$.

References

1. K. A. Baker, P. C. Fishburn, and F. S. Roberts. Partial orders of dimension 2. Networks, 2(1):11-28, 1972.
2. G. Di Battista, W.-P. Liu, and I. Rival. Bipartite graphs, upward drawings, and planarity. Information Processing Letters, 36(6):317-322, 1990.
3. R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math. (2), 51:161-166, 1950.
4. V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. Discrete Mathematics \mathcal{E} Theoretical Computer Science, 6(2):497-522, 2004.
5. V. Dujmović and D. R. Wood. Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Mathematics \& Theoretical Computer Science, 7(1):155-202, 2005.
6. P. C. Fishburn. Intransitive indifference with unequal indifference intervals. J. Math. Psychol., 7:144-149, 1970.
7. M. Habib and R. Jegou. N-free posets as generalizations of series-parallel posets. Discrete Appl. Math., 12:279-291, 1985.
8. L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Comparing queues and stacks as machines for laying out graphs. SIAM Journal on Discrete Mathematics, 5(3):398412, 1992.
9. L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of posets. SIAM Journal on Discrete Mathematics, 10(4):599-625, 1997.
10. L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM Journal on Computing, 21(5):927-958, 1992.
11. J. I. Moore. Graphs and partially ordered sets. PhD thesis, University of South Carolina, 1975.
12. J. Nešetřil, P. Ossona de Mendez, and D. R. Wood. Characterisations and examples of graph classes with bounded expansion. European J. Combin., 33(3):350-373, 2012.
13. S. V. Pemmaraju. Exploring the powers of stacks and queues via graph layouts. PhD thesis, Virginia Polytechnic Institute \& State University, Blacksburg, Virginia, 1992.

6 Appendix

Proof (Proposition 3). We shall recursively define a planar poset Q_{h} of height h and queue-number $h-1$, together with a certain set of marked subposets in Q_{h}. Each marked subposet consists of three elements x, y, z forming a V subposet in Q_{h}, i.e., $y<x, z$ but $x \| z$, with both relations $y<x$ and $y<z$ being cover relations of Q_{h}, and y being a minimal element of Q_{h}. We call such a marked subposet in Q_{h} a V-poset. Finally, we ensure that the V-posets are pairwise incomparable, namely that any two elements in distinct V-posets are incomparable in Q_{h}.

For $h=2$ let Q_{2} be the three-element poset as shown in left of Figure 10 , which also forms the only V-poset of Q_{2}. Clearly Q_{2} has height 2 and queuenumber 1. For $h \geqslant 3$ assume that we already constructed Q_{h-1} with a number of V-posets in it. Then Q_{h} is obtained from Q_{h-1} by replacing each V-poset by the eight-element poset shown in the right of Figure 10, which introduces (for each V-poset) five new elements. Moreover, two new V-posets are identified in Q_{h} as illustrated in Figure 10 .

It is easy to check that Q_{h} is planar and has height h, since Q_{h-1} has height $h-1$ and the V-posets in Q_{h-1} are pairwise incomparable. Moreover, every V-poset in Q_{h} contains a minimal element of Q_{h} and all V-posets in Q_{h} are pairwise incomparable. Finally, observe that, as long as $h \geqslant 3$, for every V-poset V in Q_{h} there is a unique smallest element $w=w(V)$ that is larger than all elements in V, see the right of Figure 10 .

Fig. 10. Constructing planar posets of height h and queue-number $h-1$. Left: Q_{2} is a three-element poset and its only V-poset. Right: Q_{h} is recursively defined from Q_{h-1} by replacing each V-poset by an eight-element poset and identifying two new V-posets.

In order to show that $\mathrm{qn}\left(Q_{h}\right) \geqslant h-1$, we shall show by induction on h that for every linear extension L of Q_{h} there exists a $(h-1)$-rainbow in Q_{h} with respect to L whose innermost cover is contained in a V-poset V of Q_{h}, and, if $h \geqslant 3$, whose second innermost cover has the element $w(V)$ as its upper end. This clearly holds for $h=2$. For $h \geqslant 3$, consider any linear extension L of Q_{h}. This induces a linear extension L^{\prime} of Q_{h-1} as follows: The set X of elements in Q_{h} not contained in any V-poset is also a subset of the elements in Q_{h-1}. The remaining elements of Q_{h-1} are the minimal elements of the V-posets in Q_{h-1}. For each minimal element y of Q_{h-1} consider the two corresponding V-posets in Q_{h} with its two corresponding minimal elements y_{1}, y_{2}. Let $\hat{y} \in\left\{y_{1}, y_{2}\right\}$ be the element that comes first in L, i.e., $\hat{y}=y_{1}$ if and only if $y_{1}<_{L} y_{2}$. Then we define L^{\prime} to be the ordering of Q_{h-1} induced by the ordering of $X \cup\left\{\hat{y} \mid y \in Q_{h-1}-X\right\}$ in L. Note that L^{\prime} is a linear extension of Q_{h-1}, even though $X \cup\left\{\hat{y} \mid y \in Q_{h-1}-X\right\}$ does not necessarily induce a copy of Q_{h-1} in Q_{h}.

By induction on Q_{h-1} there exists a ($h-2$)-rainbow R with respect to L^{\prime} whose innermost cover is contained in a V-poset V and, provided that $h-1 \geqslant 3$, its second innermost cover has $w=w(V)$ as its upper end. Consider the elements x, y, z of V with y being the minimal element, and the two corresponding V posets V_{1}, V_{2} with minimal elements y_{1}, y_{2} of Q_{h}, where $y_{1} x$ and $y_{2} z$ are covers; see Figure 10. By definition of \hat{y} and L^{\prime}, all elements of $\{x, y\} \cup V_{1} \cup V_{2}$ lie between \hat{y} (included) and w (excluded, if $h-1 \geqslant 3$) with respect to L.

Assume without loss of generality that $x<_{L} z$. If $y_{2}<_{L} y_{1}\left(\hat{y}=y_{2}\right)$, then the V-poset with y_{1} is nested completely under the cover $y_{2} z$ and replacing in R the innermost cover by the cover $y_{2} z$ and any cover with y_{1} gives a $(h-1)$-rainbow with the desired properties. If $y_{1}<_{L} y_{2}\left(\hat{y}=y_{1}\right)$, then the V -poset with y_{2} is nested completely under the cover $y_{1} x$ and replacing in R the innermost cover by the cover $y_{1} x$ and any cover with y_{w} gives a $(h-1)$-rainbow with the desired properties, which concludes the proof.

[^0]: * Kolja Knauer was supported by ANR projects GATO: ANR-16-CE40-0009-01 and DISTANCIA: ANR-17-CE40-0015
 ** Piotr Micek was partially supported by the National Science Center of Poland under grant no. 2015/18/E/ST6/00299.

