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Abstract. Due to data compression or low resolution, nearby vertices
and edges of a graph drawing may be bundled to a common node or arc.
We model such a “compromised” drawing by a piecewise linear map ϕ :
G→ R2. We wish to perturb ϕ by an arbitrarily small ε > 0 into a proper
drawing (in which the vertices are distinct points, any two edges intersect
in finitely many points, and no three edges have a common interior point)
that minimizes the number of crossings. An ε-perturbation, for every
ε > 0, is given by a piecewise linear map ψε : G→ R2 with ‖ϕ−ψε‖ < ε,
where ‖.‖ is the uniform norm (i.e., sup norm).
We present a polynomial-time solution for this optimization problem
when G is a cycle and the map ϕ has no spurs (i.e., no two adjacent
edges are mapped to overlapping arcs). We also show that the problem
becomes NP-complete (i) when G is an arbitrary graph and ϕ has no
spurs, and (ii) when ϕ may have spurs and G is a cycle or a union of
disjoint paths.

Keywords: map approximation · c-planarity · crossing number

1 Introduction

A graph G = (V,E) is a 1-dimensional simplicial complex. A continuous piece-
wise linear map ϕ : G → R2 maps the vertices in V into points in the plane,
and the edges in E to piecewise linear arcs between the corresponding vertices.
However, several vertices may be mapped to the same point, and two edges may
be mapped to overlapping arcs. This scenario arises in applications in cartogra-
phy, clustering, and visualization, due to data compression, graph semantics, or
low resolution. Previous research focused on determining whether such a map
ϕ can be “perturbed” into an embedding. Specifically, a continuous piecewise
linear map ϕ : G → M is a weak embedding if, for every ε > 0, there is an
embedding ψε : G → M with ‖ϕ − ψε‖ < ε, where ‖.‖ is the uniform norm
(i.e., sup norm). Recently, Fulek and Kynčl [11] gave a polynomial-time algo-
rithm for recognizing weak embeddings, and the running time was subsequently
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2 R. Fulek and Cs.D. Tóth

improved to O(n log n) for simplicial maps by Akitaya et al. [2]. Note, however,
that only planar graphs admit embeddings and weak embeddings. In this pa-
per, we extend the concept of ε-perturbations to nonplanar graphs, and seek a
perturbation with the minimum number of crossings.

A continuous map ϕ : G→M of a graph G to a 2-manifold M is a drawing if
(i) the vertices in V are mapped to distinct points in M , (ii) each edge is mapped
to a Jordan arc between two vertices without passing through any other vertex,
and (iii) any two edges intersect in finitely many points. A crossing between
two edges, e1, e2 ∈ E, is defined as an intersection point between the relative
interiors of the arcs ϕ(e1) and ϕ(e2). For a piecewise linear map ϕ : G → R2,
let cr(ϕ) be the minimum nonnegative integer k such that for every ε > 0, there
exists a drawing ψε : G→ R2 with ‖ϕ− ψε‖ < ε and k crossings, see Fig. 1 for
an illustration.

ϕ(v1)

ϕ(v2) = ϕ(v8)

ϕ(v3) = ϕ(v5) = ϕ(v7) = ϕ(v9)

ϕ(v4) = ϕ(v10)

ϕ(v6)

ϕ(v11)

ϕ : P10 = v1 . . . v11 → R2
ψε : P10 = v1 . . . v11 → R2

‖ϕ− ψε‖ ≤ ε

Fig. 1: An example for a map ϕ : G→ R2, where G = P10, i.e., a path of length
10, with cr(ϕ) = 1 (left); and a perturbation ψε witnessing that cr(ϕ) ≤ 1 (right).

It is clear that ϕ is a weak embedding if and only if cr(ϕ) = 0. Note also
that if e1, e2 ∈ E and the arcs ϕ(e1) and ϕ(e2) cross transversely at some point
p ∈ R2, then ψε(e1) and ψε(e2) also cross in the ε-neighborhood of p for any
sufficiently small ε > 0. An ε-perturbation may, however, remove tangencies and
partial overlaps between edges.

The problem of determining cr(ϕ) for a given map ϕ : G → R2 is NP-
complete: In the special case that ϕ(G) is a single point, cr(ϕ) equals the crossing
number of G, and it is NP-complete to find the crossing number of a given
graph [12] (even if G is a planar graph plus one edge [5]).

In this paper, we focus on the special case that G is a cycle. A series of recent
papers [1,6,8] show that weak embeddings can be recognized in O(n log n) time.
Chang et al. [6] identified two features of a map ϕ : G→ R2 that are difficult to
handle: A spur is a vertex whose incident edges are mapped to the same arc or
overlapping arcs, and a fork is a vertex mapped to the relative interior of the
image of some nonincident edge (a vertex may be both a fork and a spur). We
prove the following results.

Theorem 1. Given a cycle G = (V,E) and a piecewise linear map ϕ : G→ R2,
where G has n vertices and the image ϕ(G) is a plane graph with m vertices,
then cr(ϕ) can be computed



Crossing Minimization in Perturbed Drawings 3

1. in O((m+ n) log(m+ n)) time if ϕ has neither spurs nor forks,
2. in O((mn) log(mn)) time if ϕ has no spurs.

As noted above, the problem of determining cr(ϕ) is NP-complete when G
is an arbitrary graph (even if ϕ is a constant map). We show that the problem
remains NP-complete if G is a cycle and we drop the condition that ϕ has no
spurs.

Theorem 2. Given k ∈ N and a piecewise linear map ϕ : G → R2, it is NP-
complete to decide whether cr(ϕ) ≤ k if ϕ : G→ R2 may have spurs and

1. G is a cycle, or
2. G is a union of disjoint paths.

Related previous work. Finding efficient algorithms for the recognition of
weak embeddings ϕ : G → M , where G is an arbitrary graph, was posed as
an open problem in [1,6,8]. The first polynomial-time solution for the general
version follows from a recent variant [11] of the Hanani-Tutte theorem [13,18],
which was conjectured by M. Skopenkov [17] in 2003 and in a slightly weaker form
already by Repovš and A. Skopenkov [16] in 1998. Weak embeddings of graphs
also generalize various graph visualization models such as strip planarity [3]
and level planarity [15]; and can be seen as a special case [4] of the notoriously
difficult cluster-planarity (for short, c-planarity) [9,10], whose tractability
remains elusive today.

Organization. We start in Sec. 2 with preliminary observations that show that
determining cr(ϕ) is a purely combinatorial problem, which can be formulated
without metric inequalities. We describe and analyse a recognition algorithm,
proving Theorem 1 in Sec. 3. We prove NP-hardness by a reduction from 3SAT
in Sec. 4, and conclude in Sec. 5. Omitted proofs are available in the Appendix.

2 Preliminaries

We rely on techniques introduced in [1,6,7,11], and complement them with
additional tools to keep track of edge crossings. A piecewise linear function
ϕ : G → R2 is a composition ϕ = γ ◦ λ, where λ : G → H is a continu-
ous map from G to a graph H (i.e., a 1-dimensional simplicial complex) and
γ : H → R2 is a drawing of H. We may further assume, by subdividing the
edges of G if necessary, that the map λ : G→ H is simplicial, that is, it maps
vertices to vertices and edges to edges; and γ : H → R2 is a straight-line drawing
of H, where each edge in E(H) is mapped to a line segment. To distinguish the
graphs G and H in our terminology, G has vertices V (G) and edges E(G),
and H has clusters V (H) and pipes E(H).

A perturbation ψε of ϕ lies in the ε-neighborhood of ϕ(G). We define suitable
neighborhoods for the graph H, and the image γ(H) = ϕ(G). For the graph H
and its drawing γ : H → R2, we define the neighborhood N ⊂ R2 as the
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union of regions Nu and Nuv for every u ∈ V (H) and uv ∈ E(G), respectively,
as follows. Let ε0 > 0 be a sufficiently small constant specified below. For every
u ∈ V (H), let Nu be the closed disk of radius ε0 centered at γ(u). For every edge
uv ∈ E(H), let Nuv be the set of points at distance at most ε20 from γ(uv) that
lie in the interior of neither Nu nor Nv. Let ε0 > 0 be so small that for every
triple {u, v, w} ⊂ V (H), the disk Nu is disjoint from both Nv and Nvw, and the
regions Nuv and Nuw are disjoint from each other. (Note, however, that regions
Nuv and Nu′v′ may intersect if the line segments γ(uv) and γ(u′v′) cross.)

Such ε0 > 0 exists due to piecewise linearity of ϕ and by compactness.
(Indeed, consider the intersection Bu,v and Bu,w of the boundary of Nu with
that of Nuv and Nuw, respectively. Taking ε0 sufficiently small, we assume that
Nu∩γ(uv) and Nu∩γ(uw) are line segments meeting in u at some angle α ≤ π.
We require ε0 <

1
πα since we need ε20 <

1
π ε0α for Bu,v and Bu,w to be disjoint,

and hence Nuv and Nuw.) By definition, an ε-perturbation of ϕ = γ ◦ λ lies in
the neighborhood N for all ε ∈ (0, ε20).

For the graph H and its drawing γ : H → R2, we also define the thickening
H, H ⊂ H, as a 2-dimensional manifold with boundary as follows. For every
u ∈ V (H), create a topological disk Du, and for every edge uv ∈ E(H), create
a rectangle Ruv. For every Du and Ruv, fix an arbitrary orientation of ∂Du and
∂Ruv, respectively. Partition the boundary of ∂Du into deg(u) arcs, and label
them by Au,v, for all uv ∈ E(H), in the cyclic order around ∂Du determined
by the rotation of u in the the drawing γ(G). The manifold H is obtained by
identifying two opposite sides of every rectangle Ruv with Au,v and Av,u via
an orientation preserving homeomorphism. Note that there is a natural map
Γ : H → N such that Γ |H = γ; Γ is a homeomorphism between Du and Nu for
every u ∈ V (H); and Γ maps Ruv to Nuv for every uv ∈ E(H).

We reformulate a problem instance ϕ : G→ R2 as two functions λ : G→ H
and γ : H → R2, where G and H are abstract graphs, λ is a simplicial map and
γ is a straight-line drawing of H. A perturbation of the map ϕ = γ ◦ λ is a
drawing ψ = Γ ◦Λ, where Λ : G→ H is a drawing of G on H with the following
properties:

(P1) for every vertex a ∈ V (G), Λ(a) ∈ Dλ(a),
(P2) for every edge ab ∈ E(G), Λ(ab) ⊂ Dλ(a) ∪ Rλ(a)λ(b) ∪ Dλ(b) such that it

crosses the boundary of the disks Dλ(a) and Dλ(b) precisely once, and
(P3) all crossing between arcs Λ(e), e ∈ E(G), lie in the disks Du, u ∈ V (H);

and Γ : H → R2 maps the disk Du injectively into Nu for all u ∈ V (H), and
rectangle Ruv into Nuv for all uv ∈ E(H) (however the rectangles Ruv and Ru′v′

may be mapped to crossing neighborhoods Nuv and Nu′v′ for two independent
edges uv, u′v′ ∈ E(H)).

Combinatorial Representation. Properties (P1)–(P3) allow for a combina-
torial representation of the drawing Λ : G → H: For every pipe uv ∈ E(H),
let πuv be a total order of the edges in λ−1[uv] ⊆ E(G) in Rλ(a)λ(b); and let
πΛ = {πuv : uv ∈ E(H)} the collection of these total orders. In fact, we can
assume that Λ(G) consists of straight-line segments in every rectangle Ruv, and
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every disk Du. The number of crossings in each disk Du is determined by the
cyclic order of the segment endpoints along ∂Du. Thus the number of crossings
in all disk Du, u ∈ V (H) is determined by πΛ.

Two Types of Crossings. The reformulation of the problem allows us to
distinguish two types of crossings in a piecewise-linear map ϕ : G → R2: edge-
crossings in the neighborhoods Nu, u ∈ V (H), and crossings between edges
mapped to two pipes that cross each other.

The number of crossings between the edges of G inside a disk Nu, u ∈ V (H),
is the same as the number of crossings in Du, since Γ is injective on Du. We
denote the total number of such crossings by

cr1(λ) = min
Λ

 ∑
u∈V (H)

CRΛ(u)

 ,

where CRΛ(u) is the number of crossings of the drawing Λ(G) in the disk Du.
Let the weight of a pipe e ∈ E(H) be the number of edges of G mapped to e,

that is, w(e) := |λ−1[e]|. If the arcs γ(e1) and γ(e2) cross in the plane, for some
e1, e2 ∈ E(H), then every edge in λ−1[e1] crosses all edges in λ−1[e2]. The total
number of crossings between the edges of G attributed to the crossings between
pipes is

cr2(γ, λ) =
∑

{e1,e2}∈C

w(e1)w(e2),

where C is the multiset of pipe pairs {e1, e2} such that γ(e1) and γ(e2) cross. It
is now clear that

cr(γ ◦ λ) = cr1(λ) + cr2(γ, λ). (1)

The operations in Section 3 successively modify an instance ϕ = γ ◦ λ until
H becomes a cycle. In this case, it is easy to determine cr2(γ, λ), which is a
consequence of the following folklore lemma.

Lemma 1. [14, Lemma 1.12] If G = Cn and H = Ck and λ : G → H is
a simplicial map without spurs, where the cycle G winds around the cycle H
precisely n/k times, then cr1(λ) = n

k − 1.

3 Cycles without Spurs

Let G = Cn be a cycle with n vertices, and H an arbitrary abstract graph,
λ : G→ H a simplicial map that does not map any two consecutive edges of G
to the same edge in H, and γ : H → R2 a straight-line drawing. In this section,
we prove that cr(γ ◦ λ) is invariant under the so-called ClusterExpansion and
PipeExpansion operations. (Similar operations for weak embeddings have been
introduced in [1,6,7,11].) We show that a sequence of O(n) operations produces
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an instance in which H is a cycle, where we can easily determine both cr1(λ)
and cr2(γ, λ), hence cr(γ ◦ λ).

Du
Dλ′(xa)

Dλ′(xc)

xa
b

xc

a

c

Fig. 2: ClusterExpansion(u).

ClusterExpansion(u). See Figure 2 for an illustration. (1) Let Du be a
sufficiently small disk centered at γ(u) that intersects only the images
of pipes incident to u. (2) Subdivide every pipe uv ∈ E(H) incident to
u with a new cluster yv, let γ(yv) := ∂Du ∩ γ(uv). (3) Subdivide every
edge ab ∈ E(G) such that λ(b) = u with a new vertex xa such that
λ(xa) = yλ(a). (4) For every vertex b ∈ λ−1[u], and any two neighbors
xa and xc, insert an edge xaxc in G, insert a pipe λ(xa)λ(xc) in H if
it is not already present, and draw this pipe in the plane as a straight-
line segment between γ(λ(xa)) and γ(λ(xc)). (5) Delete cluster u from
H, and delete all vertices in λ−1[u] from G. (6) Return the resulting
instance by λ′ : G′ → H ′ and γ′ : H ′ → R2.

Lemma 2. If G is a cycle, λ : G → H has no spur, and u ∈ V (H), then
ClusterExpansion(u) produces an instance where G′ is a cycle, λ′ : G′ → H ′ has
no spur, and cr(γ ◦ λ) = cr(γ′ ◦ λ′).

We remark that cr(γ◦λ) is invariant under the ClusterExpansion(u) operation
even in the presence of spurs, however the proof is somewhat simpler in the
absence spurs, and Lemma 2 also establishes that ClusterExpansion(u) does not
create new spurs.

Pipe Expansion. A cluster u ∈ V (H) is a base of an incident pipe uv if every
vertex in λ−1[u] is incident to an edge in λ−1[uv]. A pipe uv ∈ E(H) is safe if
both u and v are bases of uv. The following operation is defined on safe pipes.
See Figure 2 for an illustration. (We note that our algorithm would be correct
even if PipeExpansion(uv) were defined on all pipes, unlike the result in [2], since
λ does not contain spurs. We restrict this operation to safe pipe to simplify the
runtime analysis.)
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Du Dv
a

b
c d

xa

xd
Ruv

Dλ′(xa)

Dλ′(xd)

Fig. 3: PipeExpansion(uv) for a safe pipe uv.

PipeExpansion(uv). (1) Let Duv be a sufficiently narrow ellipse with foci
at γ(u) and γ(v) that intersects only the images of pipes incident to u
and v. (2) Subdivide every pipe e ∈ E(H) incident to u or v with a new
cluster ye, let γ(ye) := ∂Duv ∩γ(e). (3) Subdivide every edge ab ∈ E(G)
such that λ(a) /∈ {u, v} and λ(b) ∈ {u, v} with a new vertex xa such that
λ(x) = yλ(ab). (4) For every edge bc ∈ λ−1[uv], and the two neighbors
xa and xd of b and c, respectively, insert an edge xaxd in G, insert a
pipe λ(xa)λ(xd) in H if it is not already present, and draw this pipe in
the plane as a straight-line segment between γ(λ(xa)) and γ(λ(xd)). (5)
Delete clusters u and v from H, and delete all vertices in λ−1[uv] from
G. (6) Return the resulting instance by λ′ : G′ → H ′ and γ′ : H ′ → R2.

Lemma 3. If G is a cycle, λ : G → H has no spur, and uv ∈ E(H) is a safe
pipe, then PipeExpansion(uv) produces an instance where G′ is a cycle, λ′ : G′ →
H ′ has no spur, and cr(γ ◦ λ) = cr(γ′ ◦ λ′).

We remark that Lemma 3 holds even for uv that is not safe, provided that
λ : G→ H has no spur.

Main Algorithm. Given an instance λ : G → H and γ : H → R2, we apply
the two operations defined above as follows.

Algorithm 1. Input: (G,H, λ, γ)
U0 ←− V (H)
for every u ∈ U0 do

ClusterExpansion(u)

while there is a safe pipe uv ∈ E(H) such that degH(u) ≥ 3 or
degH(v) ≥ 3 do

PipeExpansion(uv)

uv ←− an arbitrary edge in E(H).
return cr2(γ, λ) + |λ−1[uv]| − 1.

Lemma 4. Algorithm 1 terminates.

Proof. By Lemmas 2 and 3, λ : G→ H has no spurs in any step of the algorithm.
It is enough to show that the while loop of Algorithm 1 terminates. We define
the potential function Φ(G,H) = |E(G)| − |E(H)|, and show that Φ(G,H) ≥ 0
and it decreases in every invocation of PipeExpansion(uv). Since G is a cycle
and λ has no spur, every edge in λ−1[uv] is adjacent to one edge in some other
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pipe incident to u and one edge in some other pipe incident to v. Each of these
edges contributes to one edge in E(G′) inside the ellipse Duv. Since uv is safe,
G′ has no other new edges. Consequently, |E(G′)| = |E(G)|. Since degH(u) ≥ 3
or degH(v) ≥ 3, PipeExpansion(uv) replaces the clusters u and v with at least
3 clusters, each of which is incident to at least one pipe in the ellipse Duv.
Consequently, |E(H ′)| > |E(H)|, and so Φ(G,H) > Φ(G′, H ′), as claimed. �

Lemma 5. At the end of the while loop of Algorithm 1, H is a cycle.

Proof. It is enough to show that if H is not a cycle in the while loop of Al-
gorithm 1, then there is a safe pipe uv ∈ E(H) such that degH(u) ≥ 3 or
degH(v) ≥ 3. Observe that every cluster created by ClusterExpansion(u) (resp.,
PipeExpansion(uv)) is a base for the unique incident pipe in the exterior of disk
Du (resp., ellipse Duv). Let s : V (H) → E(H) be a function that maps every
cluster to that incident pipe. Note also that the input does not have spurs, and
no spurs are created in the algorithm by Lemmas 2 and 3. In the absence of
spurs, if u ∈ V (H) and degH(u) = 2, then u is a base for both incident pipes.

Assume that in some step of the while loop, H is not a cycle. Let v1 ∈ V (H)
be an arbitrary cluster such that degH(v1) ≥ 3. Construct a maximal simple
path (v1, v2, . . . , v`) incrementally such that s(vi) = vivi+1 for i = 1, 2, . . . `. If
the path encounters a cluster vi where s(vi) = s(vi−1), then the pipe vi−1vi is
safe. Similarly, if degH(vi+1) = 2, then vivi+1 is safe. Otherwise, the path ends
with a repeated cluster: s(v`) = v`vi, for some 1 ≤ i < ` − 1, and so we obtain
a cycle (vi, vi+1, . . . , v`) of at least 3 vertices. Let vj , i ≤ j ≤ `, be the cluster
created in the most recent ClusterExpansion(u) or PipeExpansion(uv) operation.
Then s(vj) is a pipe in the exterior of a disk Du or an ellipse Duv. Hence, the
pipe vj−1vj is in the interior of Du or Duv, moreover vj and vj−1 were created
by the same operation. However, this implies s(vj−1) 6= vj−1vj , contradicting
the assumption that (vi, vi+1, . . . , v`) is a cycle. We conclude that the path finds
a safe pipe before any cluster repeats. �

Lemma 6. Algorithm 1 returns cr(γ ◦ λ).

Proof. By (1), cr(γ ◦ λ) = cr1(λ) + cr2(γ, λ). Here cr2(γ, λ) can be computed
by a line sweep of the drawing γ(H). By Lemmas 1 and 5, at the end of the
algorithm, cr1(λ) = |λ−1[uv]|−1 for an arbitrary edge uv ∈ E(H). By Lemmas 2
and 3, cr(γ ◦ λ) is invariant in the operations, so the algorithm reports cr(γ ◦ λ)
for the input instance. �

Running Time. The efficient implementation of our algorithm relies on the fol-
lowing data structures. For every cluster u ∈ V (H) we maintain the set of vertices
of V (G) in λ−1[u]. For every pipe uv ∈ E(H), we maintain λ−1[uv] ⊂ E(G),
the weight w(uv) = |λ−1[uv]|, and the sum of weights of all pipes that cross uv,
that we denote by W (uv). Then we have cr2(γ, λ) = 1

2

∑
uv∈E(H) w(uv)W (uv).

We also maintain the current value of cr2(γ, λ). We further maintain indicator
variables that support checking the conditions of the while loop in Algorithm 1:
(i) whether the cluster is a base for the pipe, (ii) whether a cluster has degree
2, and (iii) whether a pipe is safe.
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Lemma 7. With the above data structures, Algorithm 1 runs in O((M+R) logM)
time, where M = |E(H)|+ |E(G)| and R = cr(γ ◦ λ) < M2.

4 NP-Completeness in the Presence of Spurs

In this section, we prove Theorem 2. In a problem instance, we are given a sim-
plicial map λ : G → H, a straight-line drawing γ : H → R2, and a nonnegative
integer K, and ask whether cr(γ ◦ λ) ≤ K.

Lemma 8. The above problem is in NP.

Proof. A feasible drawing Γ ◦Λ : G→ R2 with cr(Γ ◦Λ) ≤ K can be witnessed
by a combinatorial representation of Λ. Specifically, we can determine cr2(γ, λ)
by computing the weight of each pipe uv ∈ E(H) in O(|E(G)| + |E(H)|) time,
and finding all edge-crossings in the drawing γ(H) in O(|E(H)| log |E(H)|) time.
Given a combinatorial representation of a drawing Λ : G → H, we can deter-
mine the number of crossings at all nodes u ∈ V (H) in O(

∑
u∈V (H) |λ−1[u]|) =

O(|E(G)|) time. �

We prove NP-hardness by a reduction from 3SAT. Let Φ be a boolean formula
in 3CNF with a set X = {x1, . . . , xn} of variables and a set C = {c1, . . . , cm} of
clauses. We construct graphs G and H, a simplicial map λ : G→ H, a straight-
line drawing γ : H → R2, and an integer K ∈ N such that cr(γ ◦ λ) ≤ K if and
only if Φ is satisfiable.

First Construction: Disjoint Union of Paths. Refer to Fig. 4.

ux
3 ux

5m+5ux
5m+4

ux
4 ux

5

Fig. 4: Two embeddings of Gx. Top: P
x
1 is above P x3 . Bottom: P x1 is below P x3 .

Construction of H and γ : H → R2. For every variable x ∈ X , create a path
Hx = (ux3 , u

x
4 , . . . , u

x
5m+5).

For i = 1, . . . ,m, the i-th clause ci ∈ C is associated to at most three (negated
or non-negated) variables, say, x, y, z ∈ X . Identify the clusters ux5i+` = uy5i+` =
uz5i+` for ` = 0, 1, 2, 3 and we denote the resulting clusters also by u5i+` and
associate them with clause ci. Add two new clusters vi an wi, and two new pipes
viu

x
5i+1 and wiu

x
5i+2. This completes the description of H.

For every i = 1, . . . ,m, we map clusters u5i, . . . , u5i+3 to integer points
5i, . . . , 5i+ 3 on the x-axis. The two additional clusters, vi and wi, are mapped
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to points γ(vi) = (5i + 1, 1) and γ(wi) = (5i + 2,−1), above and below the
x-axis. The remaining clusters and pipes of Hx, x ∈ X , are mapped to inte-
ger points in the horizonal line y = j + 1. Specifically, γ(u

xj

i ) = (i, j + 1), for
3 ≤ i ≤ 5m+ 5, except for clusters u

xj

i that have been merged and incorporated
in clause gadgets.

Observation 1 For every x ∈ X , γ(Hx) is an x-monotone polygonal path in
the plane. This ensures, in particular, that if ci ∈ C contains variables x, y, and
z, then the pipes of Hx, Hy, and Hz that enter u5i and exit u5i+3 appear in
reverse ccw order in the rotation of u5i and u5i+3, respectively.

Construction of G and λ : G→ H. For each clause ci ∈ C, create a path Gi of
4 vertices mapped to (vi, u5i+1, u5i+2, wi). For each variable x ∈ X , create a path
Gx as follows. First create a path of 15m+5 vertices as a concatenation of three
paths: P x1 , P x2 , and P x3 , which are mapped to (ux3 , . . . , u

x
5m+4), (ux5m+4, . . . , u

x
4),

and (ux4 , . . . , u
x
5m+5), respectively. We shall modify P x1 and P x3 within each clus-

ter. Regardless of these local modifications, in every embedding of Gx, the path
P x2 lies between P x1 and P x3 . The truth value of variable x is encoded by the
above-below relationship between P x1 and P x3 (Fig. 4(a-b)).

Each pair (x, ci) ∈ X ×C, where a literal x or x appears in ci, corresponds to
the subpath (u5i, . . . , u5i+3) of Hx. Suppose that a subpath A ⊂ P x1 and B ⊂ P x3
are mapped to this subpath. To simplify notation, we assume that A and B are
directed from u5i to u5i+3.

Refer to Fig. 5. If c0 contains the non-negated x, then replace A on P 1
x with a

subpath mapped to A′ = (u5i, u5i+1, u5i+2, u5i+3, u5i+2, u5i+1, u5i+2, u5i+3) and
B with a subpath mapped toB′ = (u5i, u5i+1, u5i+2, u5i+1, u5i, u5i+1, u5i+2, u5i+3).
If c0 contains the negated x then replace A with B′, and B with A′. This com-
pletes the definition of G.

The drawing γ : H → R2 and λ : G → H determine cr2(γ, λ). Let K =
cr2(γ, λ) + 13m. Note that G and H have O(mn) vertices and edges, and the
drawing γ maps the clusters in V (H) to integer points in an O(m)×O(n) grid.
Equivalence. First, we show that the satisfiability of Φ implies that cr(γ, λ) ≤
K. Assume that Φ is satisfiable, and let τ : X → {true, false} be a satisfying
truth assignment. Fix ε ∈ (0, ε0). For every x ∈ X , denote by Nx the union
of disks Nu and Nuv for all clusters v ∈ V (Hx) and pipes uv ∈ E(Hx); and
similarly let Ni be the union of such regions for the path (u5i, . . . , u5i+3) in H.
For every x ∈ X , incrementally, embed the path Gx in Nx as follows: each edge
is an x-monotone Jordan arc; if τ(x) = true, then P x1 lies above P x3 ; otherwise
P x3 lies above P x1 . If a clause ci contains variables x, y, z ∈ X , we also ensure
that the embeddings of Gz, Gy, and Gy are pairwise disjoint within Ni. This is
possible by Observation 1. Finally, for i = 1, . . . ,m, embed the path Gi as fol-
lows. Assume that ci contains the variables x, y, z ∈ X , where x corresponds to a
true literal in ci. Then Γ (Gi) starts from γ(vi) along the vertical line x = 5i+ 1
until it crosses the arc Γ (P x2 ), then follows Γ (P x2 ) to the vertical line x = 5i+ 2,
and continues to γ(wi) along that line. Note that Γ (P x2 ) crosses only 3 edges
in Γ (Gx), and 5 edges in Γ (Gy) and Γ (Gz). So there are 13 crossings in Ni for
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Fig. 5: A clause gadget for ci = (x ∨ y ∨ z), where τ(x) = τ(z) = false and
τ(y) = true. The neighborhood of the four middle “vertically prolonged” clusters
and pipes between them forms Ni.

i = 1, . . . ,m; and the total number of crossings is cr2(γ, λ) + 13m, as required.

Second, we show that cr(γ, λ) ≤ K implies that Φ is satisfiable by construct-
ing a satisfying assignment. Consider functions Λ : G → H and Γ : H → R2

such that Γ ◦ Λ : G → R2 is a drawing in which cr(Γ ◦ Λ) ≤ K. Note that
cr2(γ, λ) crossings are unavoidable due to edge-crossings in the drawing γ(H).
Hence, by the definition of K, there are at most 13m crossings in the neighbor-
hoods of clusters. We show that (1) there must be precisely 13 crossings in each
neighborhood Ni, (2) Γ ◦ Λ(Gx) is an embedding for every x ∈ X , and (3) the
embeddings of Gx, for all x ∈ X , jointly encode a satisfying truth assignment
for Φ. (1) and (2) is established by the following lemma.

Lemma 9. Let i ∈ {1, . . . ,m} and let x, y, z ∈ X be the three variables in ci. In
Γ ◦Λ, there are at least 13 crossings in neighborhood Ni, and equality is possible
only if none of the drawings Γ ◦ Λ(Gx), x ∈ X , has self-crossings in Ni, and at
least one of Gx, Gy and Gz is crossed exactly 3 times by Gi.

By Lemma 9, cr1(λ) ≤ 13m implies that Γ ◦ Λ defines an embedding of Gx,
for all x ∈ X , in each region Ni, i = 1, . . . ,m. Consequently, Γ ◦ Λ defines an
embedding of Gx in R2 for all x ∈ X . In every embedding Γ ◦Λ(Gx), for x ∈ X ,
either P x1 lies above P x2 , or vice versa. We can now define a truth assignment
τ : X → {true, false} such that for every x ∈ X , τ(x) = true if and only if P x1
lies above P x2 in Γ ◦ Λ(Gx).

Lemma 10. Assume that Γ ◦ Λ(Gx) is an embedding for every x ∈ X , which
determines the truth assignment τ : X → {true, false} described above. For every
i = 1, . . . ,m, if variable x appears in clause ci, and Gi crosses Gx at most 3
times in Ni, then x appears as a true literal in ci.
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Proof. Consider the highest and lowest path Ph and Pl among P x1 , P
x
2 or P x3 ,

respectively, in Ni ∩ Γ ◦ Λ(Gx), none of which can be P x2 since Γ ◦ Λ(Gx) is an
embedding. By the construction of λ, either there exists exactly one pipe-degree
2 component of Ph in λ−1[u5i+1] and exactly one pipe-degree 2 component of Pl
in λ−1[u5i+2], or vice versa.

By the construction of λ, Gi crosses each of P x1 , P x2 , and P x3 at least once
in Ni. By the hypothesis of the lemma, it crosses each exactly once. Then Ph
has only one pipe-degree 2 component in λ−1[u5i+1], and Pl has only one pipe-
degree 2 component in λ−1[u5i+2]. By the construction of λ, if x appears as a
non-negated literal in ci this means that Ph = P x1 lies above P x2 and therefore
τ(x) = true. Similarly, if x appears as a negated literal in ci this means that
P x3 = Ph lies above P x2 and therefore τ(x) = false. Consequently, x appears as a
true literal in ci and that concludes the proof. �

Since cr1(λ) ≤ 13m, for every i = 1, . . . ,m, there are exactly 13 crossings in
Ni by Lemma 9. Moreover, by Lemma 9 the drawing Γ ◦Λ(Gx) is an embedding
for every x ∈ X , and in every ci for one its variables x the drawing of Gx is
crossed by Gi exactly 3 times. By Lemma 10, the assignment τ makes at least
one literal in each clause ci of Φ true. We conclude that Φ is satisfiable, as
required. This completes the proof of NP-hardness.

Second Construction: Cycle. In our first construction, G is a disjoint union
of paths, and for every path endpoint a ∈ V (G), a is the only vertex mapped
to the cluster λ(a) ∈ V (H). This property allows us to expand the construc-
tion as follows. We augment G into a cycle G by adding a perfect matching
MG connecting the path endpoints, and we augment H with the corresponding
matching between the clusters MH = {λ(a)λ(b) : ab ∈ MG}, and for every new
pipe uv ∈ MH draw a polygonal arc γ(uv) between γ(u) and γ(v) that does
not pass through the image of any other cluster (but may cross images of other
pipes). The augmentation does not change cr1(λ), and we can easily compute
the increase in cr2(γ, λ) due to new crossings. Consequently, finding cr(γ ◦ λ)
remains NP-hard.

5 Conclusions

Motivated by recent efficient algorithms that can decide whether a piecewise
linear map ϕ : G → R2 can be perturbed into an embedding, we investigate
the problem of computing the minimum number of crossings in a perturbation.
We have described an efficient algorithm when G is a cycle and ϕ has no spurs
(Theorem 1); and the problem becomes NP-hard if G is an arbitrary graph,
or if G is a cycle but ϕ may have spurs (Theorem 2). However, perhaps one
can minimize the number of crossings efficiently under milder assumptions. We
formulate one promising scenario as follows: Is there a polynomial-time algorithm
that finds cr(γ ◦ λ) when λ−1[u] is a planar graph (resp., an edgeless graph) for
every cluster u ∈ V (H) and λ has no spurs?
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17. Skopenkov, M.: On approximability by embeddings of cycles in the plane. Topology
Appl. 134(1), 1–22 (2003). https://doi.org/10.1016/S0166-8641(03)00069-5

18. Tutte, W.T.: Toward a theory of crossing numbers. J. Combin. Theory 8, 45–53
(1970). https://doi.org/10.1016/S0021-9800(70)80007-2

A Omitted Proofs

Lemma 2. If G is a cycle, λ : G → H has no spur, and u ∈ V (H), then
ClusterExpansion(u) produces an instance where G′ is a cycle, λ′ : G′ → H ′ has
no spur, and cr(γ ◦ λ) = cr(γ′ ◦ λ′).

Proof. If G is a cycle, then every vertex b ∈ λ−1[u] has precisely two neighbors,
say a and c. Step 3 subdivides these edges with new vertices xa and xc, Step 4
inserts an edge xaxc, and Step 6 deletes b. Consequently, the path (a, b, c) is re-
placed by a path (a, xa, xc, c). Since all such paths are edge-disjoint, the resulting
graph G′ is a cycle.

Since λ : G → H has no spur, for every vertex b ∈ λ−1[u], the neighbors a
and c are in distinct clusters, that is λ(a) 6= λ(c). Consequently, yλ(a) 6= yλ(c)
and so λ′(xa) 6= λ′(xc). Therefore the operation does not create spurs.

Let Λ : G→ H be a drawing that attains cr1(λ). We may assume that every
connected component of Λ(G) ∩Du and Λ(G) ∩Ruv is a straight-line segment.

Let (a, b, c) and (d, e, f) be two different paths inG such that λ(b) = λ(e) = u.
There are two types of crossings of Λ in Du between paths (a, b, c) and (d, e, f)
as above. In the first type, λ(a) and λ(c) interleave in the rotation at u with λ(d)
and λ(f). In the second type, we have λ(a) = λ(d), λ(a) = λ(f), λ(c) = λ(d), or
λ(c) = λ(f).

Let CR×Λ (u) denote the number of crossings of the first type. Let CR<
Λ (u)

denote the number of crossings of the second type. In the following we construct

Λ′ : G′ → H′ witnessing cr(γ′ ◦λ′) ≤ cr(γ ◦λ) such that
(∑

u∈V (H′) CRΛ′(u)
)

=

cr1(λ)− CR×Λ(u) and cr2(γ′, λ′) = cr2(λ) + CR×Λ (u). Note that the second con-
dition does not depend on Λ′ and follows by the construction of γ′.

Let h denote the natural homeomorphism between H\ int(Du) and the con-
nected component of H′ \

⋃
uv∈E(G) int(Dyv ) containing Dv’s for v 6= u. Thus,

h takes Dv’s of H to Dv’s of H′, and similarly Rvw’s of H to Rvw’s of H′.
We put Λ′(vw) = h(Λ(vw)), if λ(v), λ(w) 6= u. We define Λ′ on every path
(a, xa, xc, c), that replaced in G′ path (a, b, c) in G such that λ(b) = u, as fol-
lows. Let pab = ∂(H\int(Du))∩Λ(ab) and pbc = ∂(H\int(Du))∩Λ(bc). We define
Λ′(a, xa) as the concatenation of the polygonal line from h(Λ(a)) to h(pab) con-
tained in Λ(ab) and a very short crossing free line segment contained in Dλ′(xa).
In the same manner we construct Λ′(xc, c). Let (a′, xa′ , xc′ , c

′) denote another
such path, i.e., (a′, xa′ , xc′ , c

′) replaced (a′, b′, c′) in G such that λ(b′) = u.
We construct Λ′(xa, xc) as a polygonal line with at most two bends at ∂Dλ(xa)

and ∂Dλ(xc) so that Λ′(xa, xc) and Λ′(xa′ , xc′) cross if and only if pab and pbc in-
terleave with pa′b′ and pb′c′ along ∂Du, and {λ′(xa), λ′(xc)}∩{λ′(xa′), λ′(xc′)} 6=
∅. In the case when Λ′(xa, xc) and Λ′(xa′ , xc′) cross, we also require that they

https://doi.org/10.1016/S0166-8641(03)00069-5
https://doi.org/10.1016/S0021-9800(70)80007-2
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cross exactly once. Let paac and pcac denote the intersection of Λ′(xa, xc) with
∂Dλ(xa) and ∂Dλ(xc), respectively. It is enough to specify Λ′ by presenting con-
straints on the order of the intersection points of the edges xaxc with ∂Dλ(xa)

and ∂Dλ(xc) enforcing the previously mentioned property, and realize these con-
straints by the corresponding cyclic orders of these points.

Let us fix a total order < on the vertices of V (H ′) \V (H). If either λ′(xa) =
λ′(xa′) and λ′(xc) = λ′(xc′) and λ′(xa) < λ′(xc); or λ′(xa) = λ′(xa′) and
λ′(xc) 6= λ′(xc′), we construct Λ′(xa, xc) so that h(pab) and paac interleave with
h(pa′b′) and pa

′

a′c′ along ∂Dλ(xa) if and only if pab and pbc interleave with pa′b′

and pb′c′ along ∂Du. We make the points pcac and pbc not to interleave with pc
′

a′c′

and pb′c′ . Clearly, the given constraints yield the desired properties.
These constraints are realized by an inductive construction using the total

order < on the vertices of H ′. First, let u′ be the first vertex in this order.
The order of h(pab)’s and paac’s along the boundary of Du′ is obtained from the
order of pab’s and pbc’s along Du via the bijection h(pab) ↔ pab and paac ↔ pbc.
Throughout the induction we maintain the invariant that for every u′ ∈ V (H ′)\
V (H) the cyclic order of considered h(pab)’s along ∂Du′ is the same as the cyclic
order of the corresponding pab’s along ∂Du via the above bijection, which clearly
holds after the base step. In the inductive step we consider u′ ∈ V (H ′) \ V (H)
and we need to specify the orders for the pcac’s such that λ(xc) > λ(xa) = u′.
This we do analogously as in the base step, and due to the invariant the inductive
step goes through. This concludes the proof for cr(γ′ ◦ λ′) ≤ cr(γ ◦ λ).

To establish the other direction, we start with a drawing Λ′ : G′ → H′
witnessing cr(γ′ ◦ λ′) apply the inverse of h to construct Λ in H\Du. Finally, it
is enough to observe that the order of intersection points pab along ∂Du specifies

λ for which
(∑

u∈V (H) CRΛ(u)
)
≤ cr1(λ′)− CR×Λ (u) and cr2(γ′, λ′) = cr2(λ) +

CR×Λ(u), and that concludes the proof. �

Lemma 3. If G is a cycle, λ : G→ H has no spur, and uv ∈ E(H) is a safe pipe,
then PipeExpansion(uv) produces an instance where G′ is a cycle, λ′ : G′ → H ′

has no spur, and cr(γ ◦ λ) = cr(γ′ ◦ λ′).

Proof. The proof is the almost the same as the proof of Lemma 2 with Du∪Ruv∪
Dv playing the role of Du. Instead of paths (a, b, c) such that λ(b) = λ(e) = u
we consider paths (a, b, c, d) such that λ(b) = u and λ(c) = v.

If G is a cycle, then the both vertices of every bc ∈ λ−1[uv] have precisely
one other neighbor, say a for b and d for c. Step 3 subdivides these edges with
new vertices xa and xd, Step 4 inserts an edge xaxd, and Step 6 deletes b and
c. Consequently, the path (a, b, c, d) is replaced by a path (a, xa, xd, d). Since
all such paths are edge-disjoint, the resulting graph G′ is a cycle. Clearly, the
operation of PipeExpansion does not create spurs, since λ has no spur.

Let Λ : G→ H be a drawing that attains cr1(λ). We may assume that every
connected component of Λ(G)∩Du, Λ(G)∩Dv and Λ(G)∩Ruv is a straight-line
segment.

There are two types of crossings of Λ(G) ∩ (Du ∪Dv ∪ Ruv). Let (a, b, c, d)
and (e, f, g, h) be paths in G such that λ(b) = λ(f) = u and λ(c) = λ(g) = v.
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In the first type, λ(a) and λ(d) interleave in the rotation at uv with λ(e) and
λ(h). In the second type, we have λ(a) = λ(e), λ(a) = λ(h), λ(d) = λ(e), or
λ(d) = λ(h).

Let CR×Λ (uv) be the number of crossings of the first type. Let CR<
Λ (uv)

denote the number of crossings of the second type. Analogously as in the proof of
Lemma 2 with Du ∪Ruv ∪Dv playing the role of Du, we construct Λ′ : G′ → H′

witnessing cr(γ′ ◦ λ′) ≤ cr(γ ◦ λ) such that
(∑

u∈V (H′) CRΛ′(u)
)

= cr1(λ) −
CR×Λ(uv) and cr2(γ′, λ′) = cr2(λ) + CR×Λ (uv). Note that the second condition
does not depend on Λ′ and follows by the construction of γ′.

To establish the other direction, we can start with a drawing Λ′ : G′ → H′
witnessing cr(γ′ ◦λ′) apply the inverse of analog of h from the proof of Lemma 2
to construct Λ in H \ (Du ∪ Ruv ∪ Dv). Finally, it is enough to observe that
the order of intersection points pab along ∂(Du ∪ Ruv ∪Dv) yields λ for which(∑

u∈V (H) CRΛ(u)
)
≤ cr1(λ′) − CR×Λ (uv) and cr2(γ′, λ′) = cr2(λ) + CR×Λ (uv).

Here, we can again treat (Du ∪Ruv ∪Dv) as Du in the proof of Lemma 2, and
that concludes the proof. �

Lemma 7. With the above data structures, Algorithm 1 runs in O((M +
R) logM) time, where M = |E(H)|+ |E(G)| and R = cr(γ ◦ λ) < M2.

Proof. At preprocessing, we can compute λ−1[u], λ−1[uv], and w(uv) by a simple
traversal of G in O(|E(G)|) time. Since every crossing in the drawing γ(H)
corresponds to at least one crossing in any perturbation, γ(H) has at most
R crossings. Hence the complexity of the arrangement of all edges in γ(H) is
O(M + R). A standard line sweep algorithm can find all crossings of γ(H) in
O((M+R) log(M+R)) = O((M+R) logM) time. The same algorithm can also
compute W (uv) for all uv ∈ E(H), and cr2(γ, λ).

Algorithm 1 starts with a for-loop over all u ∈ U0. We can update λ−1[u],
λ−1[uv], and w(uv) in O(degH(u)+ |λ−1(u)|) time per ClusterExpansion(u). This
sums to O(|E(H)|+ |E(G)|) time for all u ∈ U0. All new crossings in γ(H) occur
between the pipes created in the interior of the disks Du, for all u ∈ U0. These
crossings can be found in O((M +R) logM) total time.

Note also that ClusterExpansion(u), for all u ∈ U0 doubles the number of
edges in G. However, |E(G)| is invariant under PipeExpansion operations. In fact,
PipeExpansion(uv) partitions the set λ−1[uv] ⊂ E(G) into two or more subsets,
which are mapped to pipes in the ellipse Duv, and the λ−1(e) for every other pipe
e ∈ E(H) remains unchanged. We maintain λ−1[u], λ−1[v], λ−1[uv], and w(uv) in
the while loop of Algorithm 1 using a heavy-path decomposition. Suppose Pipe-
Expansion(uv) replaces uv with pipes u1v1, . . . , ukvk, which correspond to pairs of
clusters in the neighborhood of u and v, respectively. The naive implementation
would take O(w(uv)) time, but we can reduce it to O(w(uv) − maxi w(uivi)):
Put S = λ−1[uv] and compute the sets λ−1[uivi] incrementally in parallel by
deleting edges from S; when all but maximal set has been computed, then all
remaining elements of S can be added to this maximal set in O(1) time. The
time O(w(uv)−maxi w(uivi)) can then be charged to the edges that move from
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λ−1[uv] to a set λ−1[uivi] with w(uivi) ≤ w(uv)/2. Over all operations of the
while loop of Algorithm 1, edges that are initially mapped to a pipe of weight w
receive a charge of at most O(

∑∞
i=0 2ibw/2ic) = O(w logw). Summation over all

edges of E(H) yields O(
∑
uv∈E(H) w(uv) logw(uv)) ≤ O(|E(G)| log |E(G)|) =

O(M logM).
Also, PipeExpansion(uv) replaces uv with pipes u1v1, . . . , ukvk, then every

pipe that crossed uv will cross u1v1, . . . , ukvk. So W (uivi), i = 1, . . . , k, can be
computed by adding the number of new crossings to W (uv). All new crossings
created by PipeExpansion(uv) are between new pipes in the ellipse Duv. Since
pipe crossings are never removed, the total number of such pipe crossings is at
most R, and they can be computed in O((M+R) logM) time over all operations
of the while loop of Algorithm 1.

At the end of the algorithm, both cr1(λ) = w(uv) − 1 for an arbitrary pipe
uv ∈ E(H), and cr2(γ, λ) = 1

2

∑
uv∈E(H) w(uv)W (uv) can be calculated inO(M)

time. �

Lemma 9. Let i ∈ {1, . . . ,m} and let x, y, z ∈ X be the three variables in ci. In
Γ ◦Λ, there are at least 13 crossings in neighborhood Ni, and equality is possible
only if none of the drawings Γ ◦ Λ(Gx), x ∈ X , has self-crossings in Ni, and at
least one of Gx, Gy and Gz is crossed exactly 3 times by Gi.

Proof. Let i ∈ {1, . . . ,m}, and assume that ci contains the variables x, y, z ∈ X
such that the ccw neighbors of u5i in γ(H) are (vi, u

x
5i−1, u

y
5i−1, u

z
5i−1, u5i+1).

Each of the graphs Gx, Gy, and Gy have 3 vertex disjoint connected subgraphs
in λ−1[Hi]. Due to the rotation of cluster u5i+1 and u5i+2, the path Gi has to
cross each of them, which yields at least 3 crossings in Ni with each graph Gx, Gy
and Gz. Furthermore, Gx, Gy, and Gy each have 5 vertex disjoint connected
subgraphs (each of which is formed by a single vertex) in λ−1[u5i+1] (resp.,
λ−1[u5i+2]) with pipe-degree 2, and one with pipe-degree 1. For each Gx, Gy, and
Gy there exist altogether exactly 7 edges incident to these subgraphs (vertices)
in λ−1[u5i+1u5i+2]. Note that Gi has only one edge in λ−1[u5i+1u5i+2], which
we denote by ei.

Without loss of generality we assume that all the edge crossings of Gi with
Gx, Gy and Gz in the drawing Γ ◦ Λ occur along ei, and outside of Nu5i+1u5i+2

.
By the latter, the drawing Γ ◦ Λ defines a total “top to bottom” order of the
7 · 3 + 1 = 22 edges in λ−1[u5i+1u5i+2]. Let Ix, Iy, and Iz be the minimum
intervals in this order spanned by the edges of λ−1[u5i+1u5i+2] in Gx, Gy, and
Gz, respectively. If the edge ei is above (resp., below) all the 7 edges of Gx in
λ−1[u5i+1u5i+2], then it creates at least 5 crossings with the edges incident to
the pipe-degree 2 components in Nu5i+1

(resp., Nu5i+2
). Analogous statements

hold for Gy and Gz, as well. That is, if ei is not in Ix (resp., Iy and Iz), then Gi
crosses Gx (resp., Gy and Gz) at least 5 times in Ni.

We distinguish several cases based on the relative positions of the intervals
Ix, Iy, and Iz. If Ix, Iy, and Iz are pairwise disjoint, then ei lies in at most one of
these intervals, and Gi crosses Gx, Gy, and Gz altogether at least 3 + 5 + 5 = 13
times. If ei lies in exactly two of these intervals, say Ix and Iy, then there are
at least 2 crossings between Gx and Gy in Ni, and Gi crosses Gx, Gy, and Gz
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at least 3 + 3 + 5 = 11 times. Finally, if ei lies in all three intervals, then there
must be at least 6 crossings crossings between Gx, Gy, and Gz in Ni, and Gi
crosses Gx, Gy, and Gz altogether at least 3 + 3 + 3 = 9 times. In all cases, the
number of crossings among Gi, Gx, Gy, and Gz in Ni is at least 13, as required.
Equality is possibly only if none of Gx, Gy, and Gz has self-crossings, and at
least one of Gx, Gy, and Gz is crossed by Gi exactly 3 times. �
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