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Realization and Connectivity of the Graphs of Origami Flat Foldings

David Eppstein∗

Abstract. We investigate the graphs formed from the vertices and creases of an origami
pattern that can be folded flat along all of its creases. As we show, this is possible for a tree
if and only if the internal vertices of the tree all have even degree greater than two. However,
we prove that (for unbounded sheets of paper, with a vertex at infinity representing a shared
endpoint of all creased rays) the graph of a folding pattern must be 2-vertex-connected and
4-edge-connected.

1 Introduction

This work concerns the following question: Which graphs can be drawn as the graphs of
origami flat folding patterns?

In origami and other forms of paper folding, a flat folding is a type of construction in
which an initially-flat piece of paper is folded so that the resulting folded shape lies flat in a
plane and has a desired shape or visible pattern. This style of folding may be used as the
initial base from which a three-dimensional origami figure is modeled, or it may be an end
on its own. Flat foldings have been extensively studied in research on the mathematics of
paper folding. The folding patterns that can fold flat with only a single vertex have been
completely characterized, for standard models of origami [12–15,17,21–23], for rigid origami
in which the paper must continuously move from its unfolded state to its folded state without
bending anywhere except at its given creases [1], and even for single-vertex folding patterns
whose paper does not form a single flat sheet [2]. However, the combinatorics of multi-vertex
flat folding patterns is much less well understood, and testing whether a multi-vertex pattern
folds flat is NP-hard [4].

From the point of view of graph drawing, origami folding patterns can be thought
of as planar graphs, drawn with straight line edges in the Euclidean plane, with each edge
representing a crease that must be folded. For instance, the familiar bird base, a starting
point for the classic three-dimensional origami crane, can be thought of as a graph drawing of
a planar graph with 13 vertices (Figure 1). This naturally raises the question (analogous to
similar questions for other types of geometric graphs such as Voronoi diagrams [20]): which
graphs can be drawn this way? The NP-completeness of recognizing multi-vertex flat folding
patterns does not extend to this question, because the completeness result is for folding
patterns that have already been embedded with a given geometry and its proof depends on
the specific geometry of the embedding. Here, instead, we ask whether an embedding exists.
We do not resolve this question, but we provide partial answers to it in several different
directions.
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Figure 1: Origami bird base (as illustrated by Fred the Oyster at https://commons.
wikimedia.org/wiki/File:Bird_base.svg) and the corresponding folding pattern, inter-
preted as a graph drawing. The black lines indicate the final creases of the bird base.
Temporary creases made while folding the base but later flattened out are not included. Blue
dashed lines indicate the boundary of the sheet of paper; these lines are not considered as
edges of the graph because they are not creased.

• We begin in Section 3 by investigating the trees that may be drawn as flat folding
patterns. For this problem, we make the simplifying assumption that the sheet of paper
to be folded is infinite, with internal vertices of the tree at points where multiple creases
come together, and with the leaves of the tree corresponding to creases along infinite
rays. Cutting the infinite paper of such a drawing along a square that surrounds all the
internal vertices would produce a finite representation of the same tree with its leaves
on the boundary of the square, like the representation of a non-tree graph in Figure 1.
Similar tree-drawing styles, with infinite rays for the leaves of the trees, have been
used in past work on drawings of trees as Voronoi diagrams [20], straight skeletons [3],1

or with optimized angular resolution [6]. For this model of origami folding and tree
realization, we provide a complete characterization: a tree may be drawn in this way if
and only if all of its internal vertices have even degree greater than two.

In Section 4 we describe another tree-like class of graphs, the dual orthotrees, that
can always be realized as the graphs of local flat foldings. However, we do not know
whether these graphs are always realizable as the graphs of global flat foldings.

• Next, in Section 5, we investigate the connectivity restrictions on the graphs that may
be drawn as flat folding patterns. This type of constraint has proven very fruitful in
past questions about the geometric realizations of planar graphs, providing complete
characterizations of the graphs of convex polyhedra (Steinitz’s theorem) [24], drawings
with rectangular faces (“rectangular duals”) [5, 11, 16, 18], orthogonal polyhedra [10],
and two-dimensional soap bubble clusters [9].

Trees are not highly connected, and may be drawn as flat folding diagrams, but it
turns out that that these diagrams remain highly connected through the boundary

1Straight skeletons have also been used to construct folding patterns [8]. However, this technique adds
extra folds to the skeleton, so the realizations of trees as straight skeletons do not yield realizations of the
same trees as flat folding patterns.
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of the drawing. To capture this boundary connectivity, we modify our mathematical
model of flat folding. We again assume an infinite sheet of paper, but we treat creases
along infinite rays as all having a single shared endpoint at infinity, which forms
another vertex of the graph. In this model, the tree foldings of the other model become
series-parallel graphs, in which all the leaves of the tree have been merged into a single
supervertex.

We prove that, for this model of graphs as folding patterns, the graphs that may be
realized are highly restricted, beyond even the graphs of polyhedra and beyond the
immediate restriction (from the one-vertex case) that all vertices have even degree.
In particular, they are necessarily 2-vertex-connected and 4-edge-connected. More
strongly, the vertex at infinity is not an articulation vertex, and any subset of vertices
that separates the graph and does not include the vertex at infinity must include at
least four other vertices. These connectivity restrictions hold even for a weaker model
of local flat foldability in which we seek a piecewise linear map from the folding pattern
to its folded state in the plane without regard to whether this folding can be embedded
without self-intersections into three-dimensional space. Our realizations of trees as flat
folding patterns show that the 2-vertex-connectivity and 4-edge-connectivity conditions
are both tight: no higher restriction on connectivity is possible.

• Section 6 investigates another model of the graphs of flat foldings, where we use a
bounded sheet of paper and restrict the vertex points to lie on the boundary of the
paper. We prove that, on circular paper, all outerplanar graphs are realizable. On
square paper, not even all trees can be folded; we find an exact characterization of the
foldable trees, different from the characterization in Section 3. In both cases, every
local flat folding pattern can be extended to a global flat folding, but this extension
property fails for some other shapes including the equilateral triangles.

2 Preliminaries

2.1 Mathematical Model of Folding

Departing from the usual square-paper model of origami in order to avoid complications from
its boundary conditions, we model the sheet of paper to be folded as the entire Euclidean
plane. We first define a local flat folding. This is a highly simplified model of how a piece of
paper might be folded that only takes into account local constraints (the paper can only be
folded, not stretched, sheared, or crumpled), does not prevent self-intersections, and does
not even represent the most basic information about how the folding might occur in three
dimensions, such as whether a given fold is a mountain fold or a valley fold.

Definition 1. We define a continuous function ϕ from the plane to itself to be a local flat
folding if every point p of the plane has one of the following three types:

• An unfolded point of a local flat folding is a point p such that ϕ is a local isometry:
there is a neighborhood of p that is mapped by ϕ in a distance-preserving way (necessarily
a combination of translation, rotation, or reflection of the plane).

http://jocg.org/


JoCG 10(1), 257–280, 2019 260

Journal of Computational Geometry jocg.org

• A crease point of a local flat folding is a point p that has a neighborhood N that can
be covered by two subsets, each containing p and each mapped by ϕ in a different
distance-preserving way. Necessarily, the boundary between these two subsets must be a
line containing p. To preserve continuity of the mapping, the two distinct isometric
mappings for the two subsets must be reflections of each other across the image of this
line. The points within N that belong to this fold line are also crease points, and the
other points within N are unfolded points.

• A vertex point of a local flat folding is a point p that has a neighborhood N that can be
covered by finitely many (and at least three) subsets, each containing p and each mapped
by ϕ in a distance-preserving way so that there are at least three distinct isometric
mappings among these subsets. Necessarily, each subset must be a wedge. The points
within N that belong to the rays between pairs of wedges are crease points, and the
points within N that do not belong to these rays are unfolded points.

Then, as stated above, a local flat folding is a continuous function φ such that all points of
the plane are unfolded points, crease points, and vertex points. We add one more restriction:
we consider only local flat foldings that have at least one vertex point. We do not require the
number of vertex points to be finite.

As a simple example, consider the function ϕ : (x, y) 7→ (f(x), f(y)) where f(x) =
|(xmod 2)− 1|. Here f is a continuous function that maps the intervals [2i, 2i+1] to [0, 1] in
reverse order, and that maps the intervals [2i+ 1, 2i+ 2] to [0, 1] linearly. ϕ corresponds to a
folding pattern in which we pleat the plane along the integer-coordinate vertical lines (that
is, we create a sequence of folds that alternates between mountain and valley folds, like an
accordion; see [19, p. 31]), and then we pleat it again along the integer-coordinate horizontal
lines, so that the whole plane is mapped to the unit square. Its folding pattern has vertex
points at points of the plane where both coordinates are integers, crease points at points
with one integer coordinate, and unfolded points everywhere else. That is, it is a drawing of
the infinite square grid graph.

In general, the graph of a local flat folding is almost a graph drawing, in that its
vertex points form a discrete set, connected in pairs by line segments consisting of crease
points. For the grid example, it is a graph drawing, of an infinite grid graph. However, for
other local flat foldings, some of the crease points may belong to semi-infinite rays rather
than forming bounded line segments. In order to define a graph from a crease pattern in a
way that also takes account of these rays, we add a special vertex ∞ that is not represented
by any geometric point, and we treat this special vertex as an endpoint of each ray of crease
points.

Definition 2. We define the graph of a local flat folding ϕ to be a graph G that has a vertex
for each vertex point of ϕ and (if ϕ includes any infinite rays of crease points) another special
vertex ∞. Two vertex points form adjacent vertices in G when the line segment between them
consists only of crease points. A vertex point p and the special vertex ∞ are adjacent when
there exists a ray with apex p consisting only (other than at its apex) of crease points. This
graph may have multiple adjacencies between ∞ and other vertices (for instance, it will do

http://jocg.org/


JoCG 10(1), 257–280, 2019 261

Journal of Computational Geometry jocg.org

so in any one-vertex flat folding pattern) but it can have at most one edge between any two
vertex points.

The folding pattern provides a topological planar embedding for the whole graph G,
and a geometric straight-line planar embedding for all vertices except ∞. As usual, we
call the maximal regions of the plane that are disjoint from the vertices and edges of the
embedding (that is, the non-folded regions of the crease pattern) the faces of the embedding.
These are polygonal regions, and may be unbounded. Because the action of ϕ on each face
of the graph is determined from its action on adjacent faces, the embedding of G completely
determines the mapping of ϕ, up to a congruence transformation of the whole plane.

For our realizations of trees, we will use a slightly different graph, that can be derived
from the graph of the folding. (It will not be interesting to study the graph connectivity of
this graph, because it will have many degree-one vertices.)

Definition 3. We define the truncated graph of a local flat folding to be the graph formed
in either of the following two equivalent ways:

• From the graph of the folding, subdivide each edge incident to ∞ (adding an additional
vertex interior to the edge) and then delete vertex ∞.

• Form a graph with a vertex for each vertex point of the folding and another vertex for
each ray of crease points of the folding. Connect two vertex points by an edge if the
line segment between them consists only of crease points. Add an edge for each ray of
crease points, connecting the vertex point at the apex of the ray to the additional vertex
for the same ray.

Truncated graphs of local flat foldings can also be interpreted as the type of graph
drawn in Figure 1 (a graph on a finite sheet of paper with vertices where the creases meet
the edge of the paper). They are the graphs defined in this way for folding patterns with the
additional property that the creases reaching the boundary form diverging rays, unlike the
pattern in Figure 1 which has creases that meet each other at the boundary. Therefore the
type of graph shown in the figure, of an arbitrary folding pattern on a bounded square of
paper, is somewhat more general than the truncated graphs. By showing that certain trees
can be realized as truncated graphs, we will also show that they can be realized as graphs in
the more general model of finite folding patterns.

It remains to define a mathematical model of foldings as global structures, accounting
for how paper can fold in three dimensions and for how some parts of the paper can block
other parts of paper from passing through them, disallowing self-intersections. It is possible
to model precisely the above-below relation of the faces of ϕ, and the nesting structure of
the folding at the creases of ϕ; see, for instance, [2] for a similar model of lower-dimensional
flat-folded structures. However, we will forgo the complexity of such a model in favor of the
following simpler topological approach.

Definition 4. A global flat folding is a local flat folding ϕ with the additional property that,
for every ε > 0, there exists a topological embedding ϕε : R2 → R3 (without self-intersections)
such that composing ϕε with the coordinatewise vertical projection from R3 to R2 produces a
mapping that, for every point p, is within distance ε of the mapping given by ϕ.
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Figure 2: A single-vertex flat folding and its pattern, demonstrating Maekawa’s theorem (the
number of folds is even) and Kawasaki’s theorem (the face-up orange total angle equals the
bottom-up white total angle). Image by the author for Wikipedia, 2011.

Intuitively, a global flat folding is a local flat-folding that, for every ε > 0, is ε-close
to a topological embedding of the plane into three-dimensional space.

2.2 Single-Vertex Restrictions

The geometry of single-vertex folding patterns, such as the one in Figure 2, is characterized
by Maekawa’s theorem and Kawasaki’s theorem [12–15,17,21–23]. These apply as well to
each vertex of a multi-vertex folding pattern.

Theorem 5 (Maekawa’s theorem for one-vertex folding patterns without mountain-valley
assignments). Each vertex point of a folding pattern must be incident to an even number of
creases.

This follows easily from the observation that, at each crease, the paper alternates
between having its top side up (a region within which ϕ is an orientation-preserving isometric
mapping) and having its bottom side up (a region within which ϕ is an orientation-reversing
isometric mapping).

Theorem 6 (Kawasaki’s theorem). At each vertex point of a folding pattern, the alternating
sum of wedge angles equals zero.

This again follows from the fact that, near the vertex in the flat-folded state of the
pattern, each point is covered by equal numbers of upward-facing and downward-facing regions,
so the total amount of upward-facing paper must equal the amount of downward-facing
paper.

Corollary 7. Each wedge of a vertex point of a flat folding has angle strictly less than π.
Therefore, each face of a flat folding pattern is a (possibly unbounded) convex polygon.
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Figure 3: A tree folding pattern that can be locally flat folded, but not globally flat folded.

Proof. If a wedge had angle greater than π, the other wedges in the alternating sum would
have total value less than π, making it impossible for them to cancel out the large-angled
wedge and make the alternating sum equal zero. For the same reason, if a wedge had angle
equal to π, then at least one other wedge in the alternating sum would have the same sign,
creating a total angle greater than π which would be impossible to cancel out. Thus, all
wedge angles must be less than π. Any polygon in which all interior angles are less than π
must be convex.

3 Realization of Trees

Let T be any plane tree. Then by Maekawa’s theorem, if T is to be realized as the truncated
graph of a local flat folding, its internal vertices must have even degree greater than two.
Our purpose in this section is to prove that this condition is necessary as well as sufficient.

We are interested here in global flat foldings, not just local flat foldings, and for this
reason some care must be taken. It is not sufficient merely to embed T as a graph in the
plane, with its leaf edges drawn as rays, and with each internal vertex meeting the angle sum
condition of Kawasaki’s theorem. Figure 3 depicts a counterexample. It obeys Kawasaki’s
theorem, and can be locally flat folded, but not globally flat folded. The four heavier diagonal
lines of the figure can be flat folded in only one way up to combinatorial equivalence. Their
folding is obtained by first folding along one diagonal line, and then along the other. The
four creases of this fold are then modified by subsidiary folds that are each individually
possible. But one of the four heavier creases must be nested tightly within another one. The
two subsidiary creases of these two nested creases are arranged in such a way that, no matter
which crease is nested within the other, the subsidiary crease of one will be blocked by the
paper from the other nested crease. (Try it!) For another example of a tree folding pattern
that can be locally flat-folded but cannot be globally flat-folded, see [13, Figure 4.5].
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Figure 4: The base case for realizing a one-internal-vertex tree (here with degree d = 6),
showing the wedge Wr for one of the rays r both in the folding pattern and in the folded
state.

To evade this problem, we seek a stronger type of realization, one in which each
crease is “protected” by a wedge surrounding it, within which we can add modifications (such
as the subsidiary wedges of Figure 3) without interfering with other parts of the folding.

Theorem 8. Let T be any finite tree with all internal vertices having even degree greater
than two. Then T can be realized as the truncated graph of a global flat folding.

Proof. We use induction on the number of internal nodes of T to prove a stronger statement:
that T can be realized in such a way that each ray r of T is associated with a wedge Wr,
satisfying the following properties:

• Ray r and wedge Wr have the same apex, and r is the median ray of its wedge.

• Each two rays have interior-disjoint wedges. Each edge of T that is not a ray is disjoint
from all of the wedges.

• There exists a three-dimensional folded state such that the two halves of each wedge
Wr are placed touching each other, with no other paper between them.

The third property above is phrased informally, so let us relate it to our earlier topolog-
ical definition of a global flat folding. Recall that, in order to formalize the notion of a
“three-dimensional folded state” we really have a parameterized family of three-dimensional
embeddings. That is, we have both a folding map ϕ : R2 → R2 and, for each ε > 0, a
topological embedding ϕε : R2 → R3 whose vertical projection to R2 is ε-close to ϕ. We
formalize the “no other paper between them” constraint, again up to ε-closeness: for each
point p ∈ R2 at a distance of ε or more from the boundary of ϕ(Wr), the preimage of p
(according to the vertical projection) in ϕε(R2) should have two points from the two sides of
Wr consecutive with each other in the vertical ordering of the points.
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v

Wr

r

Figure 5: Adding a vertex v to the folding of T ′ to create a folding for T . We choose the
angles of the new rays incident to v so that they and the two boundary rays of the outer
wedge Wr are equally spaced. The wedge surrounding each new ray has opening angle equal
to the spacing of the rays. The crease pattern of the figure corresponds to a tree with two
degree-four internal nodes.

The base case of the induction is a tree T with one internal node v of even degree d
greater than four. In this case, we let θ = π/(d + 1). We draw T as a set of d rays, all
meeting at a common point. We make two of the angles between consecutive rays of T
equal to 3θ, and all remaining angles equal to 2θ. For instance, when d = 7, we get θ = π/7
and six rays separated by angles of 3π/7, 3π/7, 2π/7, 2π/7, 2π/7, 2π/7. We fold this in three
dimensions by placing the two wider wedges on the top and bottom of the folded pattern,
and pleating the remaining wedges between them. For this fold, we make each wedge Wr for
a ray r of the folding pattern be the wedge centered on that ray with opening angle 2θ. This
opening angle is sufficient to make all the wedges interior-disjoint, and it is straightforward
to verify that the 3d realization of this fold places no paper between the two halves of any
wedge. This case is depicted in Figure 4.

Otherwise, if T has more than one internal vertex, let v be any internal vertex that
has only a single non-leaf neighbor. (For instance, v may be found by choosing any vertex u
arbitrarily and letting v be an internal vertex that is maximally far from u.) Let T ′ be the
tree formed from T by removing the leaf neighbors of v, so that v itself becomes a leaf. Then
by the induction hypothesis, T ′ can be realized by a global flat folding, with a ray r that is
associated with its leaf v and that is surrounded by a wedge Wr, whose two halves touch
each other without being blocked by other paper in the folding. Let θ denote the opening
angle of wedge Wr. Suppose also that, in T , v has degree d, and therefore it also has d− 1
leaf children.

Then we modify the folding that represents T ′ to form a folding representing T , as
follows. We place v at an arbitrarily chosen point along r (for instance, at the point a unit
distance away from the apex of ray r). Then, we form d− 1 creases, along d− 1 rays with v
as apex, to represent the d− 1 leaf children of r. We choose the angles of these rays so that
they are separated from each other and from the two boundary rays of Wr by an angle of
θ/d. Finally, we assign each of these rays its own wedge, with v as its apex and with opening
angle θ/d. (See Figure 5.)
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Figure 6: The wheel replacement operation

The 3d folding of the crease pattern for T ′ can also be modified in the same way to
form a 3d folding for the crease pattern for T . At v, the rays and segments representing
incident edges of T form d wedges, two of which have opening angle greater than π and
the rest of which have opening angle θ/d. As before, we fold this part of the paper so that
the two large wedges are outermost and the other wedges are pleated between them. The
angles of the creased rays are chosen so that, after this pleat, the creases that are folded to
become the closest to the boundary rays of Wr (such as the middle ray of the figure) become
parallel to these boundary rays. Because of this, the folded state stays within the region of
R3 previously occupied by the paper for wedge Wr, and the empty space between the two
sides of that wedge, so it does not interfere with any other part of the global flat folding.
Each of the wedges of opening angle θ/d surrounding the new rays of the folding has its two
sides mapped directly above and below each other in the pleating, maintaining the invariant
of the induction.

We remark that, because the pleating pattern used for this realization does not
ever tightly nest one crease inside another, it is possible to find a 3d realization that
projects exactly to the two-dimensional local flat folding, rather than approaching it through
ε-approximations.

4 Dual Orthotrees

We define an operation on plane graphs (such as the graphs of flat foldings), that we call
wheel replacement. A wheel is a planar graph consisting of a cycle and one additional vertex,
adjacent to all the cycle vertices. In a wheel replacement operation, we replace one vertex v
of a given plane graph, of degree d, by a wheel whose cycle has d vertices. We replace each
edge of the given graph that is incident to v by an edge incident to one of the cycle vertices
of the wheel, in such a way that each cycle vertex has one neighbor outside the wheel and
such that the cyclic ordering of these neighbors around the wheel is the same as the cyclic
ordering of edges in the original graph incident to v. This operation is illustrated in Figure 6.

Lemma 9. If G is the graph of a local flat folding ϕ, then the graph Gv obtained by performing
a wheel replacement on any vertex v 6=∞ of G is also the graph of a local flat folding.

Proof. In the local flat folding, the image of a sufficiently small neighborhood of v lies within
a wedge of opening angle less than π. Choose a line that crosses this wedge near v, and
reflect across this line the points of the neighborhood of v that lie on the same side of this
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Figure 7: The Dalí cross (exploded view) and the dual graph of its surface quadrangulation
(with one vertex ∞ of the dual graph, representing the uppermost square face of the cross,
not shown).

line as v. The result of this reflection is another flat folding in which the creases caused by
the new reflection form a cycle around v, realizing the wheel replacement operation.

The same realization of a wheel replacement operation can also be visualized as
folding over the corner in the sheet of paper formed at v. However, this folding operation
cannot always be performed in three-dimensional global flat foldings. The reason is that
there might be a crease, disjoint from v in the folding pattern but passing through v in the
folded state, that blocks v from being folded over. An alternative 3d realization of the same
folding pattern is the sink folding, in which the corner is dented inwards (see [19, p. 33]), but
again, other nearby parts of the paper may block this fold from being realized.

.

The graphs that can be constructed from repeated wheel replacement, starting from a
multigraph with two vertices and four non-loop edges, include the dual graphs of the surface
quadrangulations of orthotrees [7], polycubes formed by gluing cubes together in R3 so that
the gluing pattern of the cubes forms a tree. For instance, the Dalí cross, an unfolded net of
a four-dimensional hypercube made famous by Salvador Dalí’s painting Crucifixion (Corpus
Hypercubus), is an orthotree, and the dual graph of its surface quadrangulation is shown in
Figure 7. For this reason we call the graphs formed by repeated wheel replacement starting
from the two-vertex four-edge multigraph the dual orthotrees.

Theorem 10. Every dual orthotree is realizable as the graph of a local flat folding.

Proof. By Lemma 9 we can realize every wheel replacement except possibly the ones at the
vertex ∞. The same folding construction of the lemma can also be performed at ∞ only
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when the image of the flat folding mapping, ϕ(R2), lies within a wedge of opening angle less
than π (as it does for some but not all local flat foldings), rather than covering the entire
plane. This property of the flat folding, that the image of ϕ lies within a wedge, is true
for the initial fold with one vertex point, and it remains true after each wheel replacement
operation at a finite vertex. Therefore, we can perform wheel replacements at all vertices
including ∞, and by repeated wheel replacements construct any dual orthotree.

It is possible to realize a wheel replacement operation in a folding pattern by more
complicated folds that do not come from a single reflection across a line. There appear to be
enough degrees of freedom in the possible realizations of a wheel replacement to allow the
realization of any dual orthotree, using an inductive construction in which at each step we
ensure that all vertex points form corners that are unobstructed by other creases. However,
we have not found a mathematical description of these realizations for which we can prove
that the inductive steps of this construction are always possible. We leave the question of
whether every dual orthotree is the graph of a global flat folding as open for future research.

5 Connectivity

Although we have seen that truncated graphs of flat foldings may be trees (graphs that are
not very highly connected), we now show that the full graph, including the special vertex ∞,
is (when finite) always well connected. We assume throughout this section that the full graph
has at least one finite vertex; otherwise, as a one-vertex graph, the full graph is trivially
k-vertex-connected and k-edge-connected for all k.

Lemma 11. Let G be the graph of a local flat folding. Then the special vertex ∞ is not an
articulation vertex of G.

Proof. If it were, some two components of G −∞ would necessarily be separated by an
infinite face of the folding pattern. However, because all faces are convex each connected
component of the boundary of an infinite face forms a convex polygonal chain, ending in two
rays that span an angle (within the face) of less than π with each other. It is not possible
for two such chains to bound a single face without crossing each other, so the boundary of
the face can have only one connected component.

Lemma 12. Let u and v be two vertex points of a local flat folding ϕ that belong to the same
face of ϕ and let d denote Euclidean distance. Then d(u, v) = d(ϕ(u), ϕ(v)).

Proof. Because the faces of ϕ are strictly convex, the line segment between u and v must
either consist entirely of crease points (on an edge of the graph of the folding) or unfolded
points (if u and v are not consecutive on their shared face). In either case this line segment
is mapped to an equal-length line segment by ϕ.

Lemma 13. Let G be the finite graph of a local flat folding. Then removing up to three of the
vertex points of the folding from G cannot cause the remaining graph to become disconnected.
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Proof. Suppose for a contradiction that S is a set of at most three vertex points whose
removal disconnects G. Since G is a plane graph, there must exist a simple closed curve C in
the plane that passes through S and is otherwise disjoint from the vertices and edges of G,
with at least one vertex inside the curve and at least one vertex outside the curve. (For
folding patterns that include a ray of crease points, we count ∞ as being outside all such
curves.) But as we show in the case analysis below, this is not possible:

• If |S| = 1, any curve C through the single vertex of S that is otherwise disjoint from G
must remain within a single convex face of G, and cannot enclose anything.

• If S consists of two non-adjacent vertices, they can only have one face of G in common.
Any curve C through these two vertices that is otherwise disjoint from G must remain
within that face, and cannot enclose anything.

• If S consists of two adjacent vertices, then a curve C through the two vertices u and
v of S that is otherwise disjoint from G can either stay within one of the two faces
incident to edge uv (not enclosing anything) or have one arc in one of these two faces
and one arc in the other of the two faces, enclosing edge uv but not enclosing any
vertices.

• If S consists of three collinear vertex points, then curve C must visit each of these
three points in turn. But the outermost of these two vertex points cannot belong to
any convex face of the folding pattern (because this face would also contain the middle
point), and cannot be connected by an arc of C.

• If S consists of three non-collinear vertex points u, v, and w, then C can only enclose
any vertex points that might lie interior to triangle uvw. However, triangle uvw is
mapped by the local flat folding map ϕ to a congruent triangle, by Lemma 12 and by
the fact that there is only one Euclidean triangle (up to congruence) for any triple of
distances between its vertices. In order to avoid stretching, every line segment formed
by intersecting a line with triangle uvw must be mapped by ϕ to the corresponding line
segment of the image triangle. In particular, there can be no creases within triangle
uvw, because whenever a line segment properly crosses a crease of a local flat folding,
it is not mapped to a congruent line segment. Therefore, every point inside triangle
uvw must be an unfolded point, and C cannot contain a vertex point.

Because there is no way to construct curve C, the hypothesized set S cannot exist.

The assumption that G is finite is used in the existence of C. If G could be infinite,
our tree realization construction could be used to construct a realization of an infinite tree in
which ∞ is a degree-one leaf. This does not have the connectivity described by the lemma,
but this is not a contradiction because it does not meet the assumptions of the lemma.

Theorem 14. If G is the finite graph of a local flat folding ϕ, then G is 2-vertex-connected
and 4-edge-connected.
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Proof. G can have no articulation vertex, because neither ∞ nor any vertex point of ϕ can
be an articulation vertex (Lemma 11 and Lemma 13 respectively).

Assume for a contradiction that G could have three edges e1, e2, and e3 whose
removal disconnects G. Choose a vertex point vi as one of the two endpoints of each of these
edges (as each edge in G has at least one vertex point as its endpoint). The separation of G
caused by the removal of the edges ei cannot separate any subset of the three vertices vi
from the rest of G, because G has minimum degree four and, in a graph of this degree, any
set of up to three vertices is connected to the rest of the graph by at least four incident
edges. Therefore, there must be at least one vertex of G on each side of the separation that
is not one of the three chosen vertices vi. However, this implies that these three vertices also
separate G, contradicting Lemma 13. This contradiction implies that our assumption is false,
and therefore that G is 4-edge-connected.

We remark that our realizations of 4-regular trees show that both 2-vertex-connectivity
and 4-edge-connectivity are tight: some graphs that can be realized as global flat foldings
are neither 3-vertex-connected nor 5-edge-connected.

6 Bounded Shapes with Boundary Vertex Points

In the earlier parts of this paper we have made the simplifying assumption that the sheet of
paper we are folding covers the entire plane. Here, we remove that assumption, and instead
study what happens when we use bounded sheets of paper, such as the squares traditionally
used for origami. However, we make a different simplifying assumption: that the vertex
points of the folding lie on the boundary of the paper.

6.1 Additional Definitions

We define an outer local flat folding, for a given convex region K of the plane, to be a mapping
ϕ : K 7→ R2 with the same properties as a local flat folding of the infinite plane: every point
of K must be an unfolded point, crease point, or vertex point. However, we additionally
require that every vertex point be on the boundary of K. Thus, the creases of the folding
are chords or R: line segments that connect two boundary points of K, and otherwise pass
through the interior of K. We define an outer global flat folding, as in the case of unbounded
sheets of paper, as a local flat folding that can be ε-approximated by the vertical projections
of three-dimensional topological embeddings of K. We define the graph of an outer local or
global flat folding to have as its vertices the folded points on the boundary of K (regardless
of whether these points are vertex points or crease points) and to have as its edges the pairs
of these points that are connected by creases of the folding.

Any non-crossing pattern of finitely many creases on K will describe a valid outer
local flat folding. This folding can be constructed by adding one crease at a time, for each
new crease composing the mapping function ϕ with the mapping that reflects the plane
across the new crease. We will prove that, when K is a disk or a square, every outer local flat
folding is also an outer global flat folding. However, the example in Figure 8 shows that this
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Figure 8: A folding pattern for an outer local flat folding of an equilateral triangle that
cannot be realized as a global flat folding.

result does not generalize to other convex shapes such as an equilateral triangle. The folding
pattern in the diagram represents a local flat folding that cannot be realized as a global
flat folding. The figure has three-way rotational symmetry, with three big triangular flaps
surrounding a central equilateral triangle, which is slightly twisted from the outer triangle.
Each of the three flaps has a crease separating its sharp corner from the central triangle,
with a “shoulder” where the crease meets the side of the triangle near a vertex of the central
triangle. If the figure could fold flat globally, two of the three flaps would be on the same
side of the central triangle. But when this happens, the two flaps get in each other’s way, so
that they can’t both be folded flat. If the more clockwise of the two flaps were folded closer
to the central triangle, its shoulder would lie across the crease of the other flap, blocking it
from folding. And if the counterclockwise flap were folded closer to the central triangle, its
sharp tip would (after folding the crease separating the tip from the central triangle) again
lie across the crease of the other flap, blocking it from folding. So no global flat folding is
possible.

6.2 Safe Creases

The following two lemmas will be very helpful for us in proving that certain outer local flat
foldings on certain shapes can also be realized as outer global flat foldings.

Lemma 15. Let u and v be boundary folding points of an outer local flat folding ϕ on a
given region K, such that ϕ includes a crease on line segment uv. Suppose also that one
of the two regions into which uv partitions K, region C, has the property that along the
boundary curve of C from u to v, the distances from u are monotonically increasing and the
distances from v are monotonically decreasing. Transform ϕ by a congruence of the plane (if
necessary) so that it is the identity mapping on segment uv. Then ϕ(C) lies within the union
of C and its reflection across uv.

Proof. Let p be any point in C, and let q be the point on the boundary of C such that pp′

is perpendicular to uv. Let L be the lune formed by intersecting two disks, centered at u
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Figure 9: Illustration for Lemma 15

and v, with q on their boundary (Figure 9). Then ϕ maps u and v to themselves, and cannot
increase the distance of any other point from u or from v. Therefore it must map each of the
two disks defining L into itself, and (because L is the set of points in both disks) must map
L to itself. But L contains p and is entirely contained in the union of C and its reflection, so
the image of p must lie within this union.

Lemma 16. Let u and v be boundary folding points of an outer local flat folding ϕ on a
given region K, such that ϕ includes a crease on line segment uv, splitting off a subregion C
of K that meets the conditions of Lemma 15. Suppose in addition that the reflection across
uv of the boundary of C does not cross any crease of ϕ. Let ϕ1 be the outer local flat folding
defined by crease uv and all of the creases within the region C, and let ϕ2 be the outer local
flat folding defined by the remaining creases. Then if both ϕ1 and ϕ2 are outer global flat
foldings, then so is ϕ.

Proof. Intuitively, we fold ϕ1 first, and then treat its folded state as part of the flat sheet
of paper while folding ϕ2. In terms of the ε-approximate embeddings that we use to define
global flat foldings, what this means is that we construct an embedding of K into R3 that
represents ϕ1, compose it with a transformation that flattens the vertical (z) dimension to
an arbitrarily small value (so that the image of the embedding is arbitrarily close to the
plane again), and then compose this flattened embedding for ϕ1 with the embedding for ϕ2.
That is, we apply the mapping of ϕ(2) to the x and y coordinates of the flattened image
under ϕ1, and then add the z-coordinate of the image under ϕ1 to the result.

We call a crease uv that meets the conditions of Lemma 16 a safe crease.

6.3 Disks

In this subsection we consider the case that the sheet of paper to be folded has the shape of
a circular disk. In this case, we can always use safe creases to find global foldings of outer
local flat foldings.
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Lemma 17. Let K be a disk, let ϕ be a local outer flat folding of K, and let R be a region
of K bounded by three or more creases of ϕ. Then at least one of the bounding creases of R
is a safe crease.

Proof. Let uv be the crease bounding R that subtends the smallest angle θ as viewed from
the center point of the disk. Then θ < π so uv meets the conditions of Figure 9. The disk
boundary meets line segment uv at angles of θ/2. Any other crease bounding R must subtend
an angle from the disk center (on the side containing uv) of at least 2θ, and therefore it
must form an angle at the disk boundary of at least θ. Therefore, the reflection of the disk
boundary across uv cannot cross the other disk, and uv is a safe crease.

Lemma 18. Every local outer flat folding of a disk is a global outer flat folding.

Proof. We use induction on the number of creases of the folding. If any region of the
disk bounded by creases of the folding is bounded by three or more creases, we can apply
Lemma 17 to prove that a safe crease exists, apply the induction hypothesis to the two
subsets of creases on either side of the safe crease, and conclude from Lemma 16 that the
same crease pattern can be realized as a global flat folding. As a base case, if every region
of the disk is bounded by only one or two creases, we can pleat the remaining creases to
construct a realization as a global flat folding.

This gives us a complete characterization of the graphs of outer flat foldings of disks:

Theorem 19. A graph G can be represented as the graph of a global outer flat folding of a
disk if and only if G is outerplanar.

Proof. Place the vertices of G on the boundary of a given disk, in the cyclic order given
by their ordering along the outer face of G (skipping repeated copies of the same vertex).
Draw G using straight-line edges, and interpret the resulting drawing as the crease pattern
of a local flat folding. By Lemma 18 it is also the crease pattern of a global flat folding.

6.4 Squares

In contrast to disks, when K is a square, there may be regions bounded by three or more
creases that have no safe crease (Figure 10). Nevertheless, we use similar concepts to safe
creases to prove that outer local flat foldings of a square may be made global.

Lemma 20. Let ϕ be an outer local flat folding of a square K. Then ϕ may be realized as
an outer global flat folding.

Proof. Orient K aligned with the coordinate axes of the Cartesian plane. We may classify
the creases of ϕ into six types, according to which pair of distinct sides of K they connect.
However, a crease from the top side to the bottom would cross a crease from the left side to
the right, so only one of these two types of crease can be present. Without loss of generality
(by rotating K if necessary) we may assume that there are no top-to-bottom creases.
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Figure 10: A local flat folding of a square in which the region bounded by three creases
has no safe crease. The bottom crease does not meet the conditions of Lemma 15, and the
reflection of the square’s boundary across either top crease crosses the other top crease.

If ϕ has creases only in one of the two top corners of K (that is, connecting the top
side of K to only one of the left or right sides of K), and similarly it has creases only in one
of the bottom two corners of K) then the folds of ϕ would form a linear sequence that we
could safely pleat. And if ϕ has creases in both corners on top (or symmetrically on the
bottom) but one of the two of these creases that are farthest from their corners is safe, then
we could begin our folding by pleating the creases in the safe corner, eliminating the creases
there and reducing to the case where only one of the two top corners has creases. However,
as Figure 10 shows, it may be the case that neither of the two two corners has a safe crease.

In this case, let uv and u′v′ be the two creases on the top left and top right, respectively,
that are farthest from their corners, with u on the left side of K, v and v′ on the top side
of K, and u′ on the right side of K. Assume without loss of generality that u′ has at least as
large a y-coordinate as u (otherwise flip K from left to right to achieve this, without affecting
its global foldability). Then it is possible for the fold at u′v′ to interfere with the fold at uv
(if the reflected image of the top right corner of the square across u′v′ crosses uv), or for it
to interfere with folds below line uu′ (again, if the reflected image of the top right corner of
the square crosses this line) but only one of these two types of interference can happen. For,
the fold at u′v′ can interfere with the fold at uv only if v′ is closer to the top right corner
of K than u′, so that the reflected image of the corner has positive slope at v′ (Figure 11,
left). But the fold at u′v′ can interfere with folds below uu′ only if u′ is closer to the top
right corner of K than v′, so that the reflected image of the corner has positive slope at u′

(Figure 11, right). Only one of these two things can happen. Because of this, we call crease
u′v′ semi-safe.

In the same way, if there are creases in both of the bottom two corners, we can
identify one of the two creases farthest from their corner as being semi-safe. If we remove
from the folding pattern of ϕ these semi-safe creases and all of the other creases in the same
corner, then the remaining creases (in the other two corners, and from one side of the square
to the other) form a linear sequence that can be pleated. Before we make this pleat of the
remaining creases, however, we will pleat the creases in each semi-safe corner of K. There
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Figure 11: The two cases for identifying u′v′ in the upper right corner of square K as a
semi-safe crease. The reflected image of the upper right corner across crease u′v′ can interfere
with crease uv in the upper left corner (left image), or with creases below line uu′′ (bottom)
but not both.

are two choices for how to perform the pleat in each semi-safe corner (starting first with a
mountain fold, or with a valley fold) and we make these choices according to the following
case analysis:

• If there are no semi-safe corners, then all the creases of ϕ can be pleated.

• If there is a single semi-safe corner, then we pleat the creases in that corner starting
with whichever of a mountain fold or valley fold is opposite to the closest crease in the
remaining folds that it interferes with (choosing arbitrarily if it doesn’t interfere with
any folds). In this way, the folded semi-safe corner is placed between two sheets of the
3d pleat of the remaining creases such that the crease where these two sheets meet is
one that it does not interfere with.

• If there are two semi-safe corners that are separated from each other by at least one
crease of the remaining creases of ϕ, we handle each one independently in the same
way that we handled the case where there is only one semi-safe corner. We do the same
if the top semi-safe corner interferes with the crease in the other top corner, and the
bottom semi-safe corner interferes with the crease in the other bottom corner, because
then these two semi-safe corners cannot interfere with each other.

• If there is no crease separating the two semi-safe corners, the top semi-safe corner
interferes with some creases that are not in the top corners, but the bottom semi-safe
corner interferes only with creases in the other bottom corner, then we fold the bottom
semi-safe corner first, with the opposite starting fold to the other bottom corner. This
initial fold cannot interfere with any folds in the top corners, and its starting fold
orientation is chosen in such a way that it also cannot interfere with any folds in the
other bottom corner. Once we have made this fold, we can fold the top semi-safe corner,
again using the opposite starting fold to the other bottom corner. This folding of the
top semi-safe corner cannot interfere with the bottom semi-safe corner (because we
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have already folded it) nor with the other bottom corner (because it starts with a fold
of the opposite orientation). Finally we pleat the remaining folds. The case when the
top semi-safe corner interferes with creases in the top corner and the bottom semi-safe
corner interferes with creases in the top corners is symmetric.

• In the remaining case, there is no crease separating the two semi-safe corners, the
bottom semi-safe corner interferes with creases in the top corners, and the top semi-safe
corner interferes with creases in the bottom corners. (In particular the two semi-
safe corners could interfere with each other, so they must be given opposite starting
orientations). In this case it follows from the lack of a fold separating the corners that,
in the pleat of the remaining folds outside of the semi-safe corners, the nearest fold in
the non-semi-safe top and bottom corners (if they exist) have opposite orientations. We
give the top semi-safe fold the same orientation (mountain or valley) as the neighboring
fold in the other top corner, and the bottom semi-safe fold the same orientation as the
neighboring fold in the other bottom corner. In this way, the two semi-safe folds can
neither interfere with each other (as they have opposite starting fold orientations) nor
with any other of the remaining folds.

The graphs that can be graphs of outer flat foldings of the square are not as easy to
characterize as for the disk. To simplify their description, we limit our attention to trees.
We define the spine of a tree of three or more vertices to be the subtree formed by removing
all degree-one vertices; for instance, the caterpillars are the trees whose spine is a path.

Lemma 21. Let T be a tree that is the graph of an outer local flat folding of a convex k-gon.
Then the spine of T has at most k leaves.

Proof. Perturb the folding points on the boundary of the folding, if necessary, so that no
folding point on the boundary of the k-gon lies at one of its corners. For each leaf vertex v of
the spine, choose a degree-one neighbor w of v in T ; w must exist or else v would either have
been removed from the spine or would have a child in the spine. Then crease vw separates
at least one vertex of the k-gon from the spine of T . No other leaf vertex v′ of the spine
can have a child crease v′w′ that separates the same vertex of the k-gon from the spine,
because v′ is on the spine side of vw so v′w′ does not separate the vertex of the k-gon from v.
Therefore, the number of leaf edges of the spine is at least the number of vertices of the
k-gon, which is k.

Lemma 22. Let K be a k-gon and let T be a tree whose spine has at most k leaves. Then
T is the graph of a local outer flat folding for K.

Proof. Draw the spine of T on K so that its leaves are at the vertices of K and its other
edges are interior to K. Each face of this drawing is bounded by at least one side of K;
choose one of these sides as the label for its face. Choose one of the leaves of T as its root,
and two-color T by distance from the root, black at even distances and white at odd distances
(Figure 12, left). Shift each vertex of the drawing onto the boundary of K, shifting the black
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root

Figure 12: Folding the spine of a tree T onto a polygon with as many sides as the spine has
leaves (Lemma 22).

vertices onto the side of K given by the label of their leftmost incident face and the white
vertices onto the side given by the label of their rightmost incident face, and preserving
the order of the vertices mapped to the same side of K within each region. (Figure 12; the
red arrows on the left show the shifting direction and the right side of the figure shows the
result.)

Then in the resulting drawing of the spine, each spine vertex has a visible segment
of polygon boundary that it is not on: for a black vertex this is the side of K given by the
label of its rightmost incident face (the one it didn’t shift onto) and for a white vertex this is
the side of K given by the label of its leftmost incident face. All of the leaf vertices of T can
be drawn by connecting spine vertices to folding points on these visible segments of polygon
boundary.

This completes our characterization of trees that can be the graphs of outer foldings
on a square:

Theorem 23. A tree T is the graph of an outer global flat folding on a square if and only if
the spine of T has at most four leaves.

Proof. The impossibility of realizing trees with more spine leaves is Lemma 21. If T does
have four or fewer spine leaves, we can find a realization as an outer local flat folding by
Lemma 22 and convert it to an outer global flat folding by Lemma 20.

7 Conclusions

We have shown that trees can be realized as the (truncated) graphs of flat folding patterns,
and that despite this the (non-truncated) graphs of flat folding patterns must be highly
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connected. However we have not succeeded in completely characterizing the graphs of flat
folding patterns. We leave the following questions as open for future research:

• Which plane graphs (with specified vertex ∞) are the graphs of global flat foldings?

• What is the computational complexity of recognizing and realizing these graphs?

• Is there any graph-theoretic difference between the graphs of global flat foldings and
the graphs of local flat foldings? In particular does the folding-assignment version of
Maekawa’s theorem, that each vertex must have two more mountain folds than valley
folds or vice versa, impose any nontrivial constraints on the graphs of flat foldings?

• Can the dual orthotrees always be realized as the graphs of global flat foldings?

• What (if anything) changes when we consider folding patterns on a square sheet of
paper (or other bounded shape) rather than on an infinite sheet?

• Previously we studied algorithms for realizing trees as convex subdivisions of the plane
while optimizing the angular resolution of the resulting tree drawing [6]. Can we use
similar ideas to optimize the angular resolution of a folding pattern realization of a
tree?
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