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Abstract. A k-bend right-angle-crossing drawing (or k-bend RAC draw-
ing, for short) of a graph is a polyline drawing where each edge has at
most k bends and the angles formed at the crossing points of the edges
are 90◦. Accordingly, a graph that admits a k-bend RAC drawing is re-
ferred to as k-bend right-angle-crossing graph (or k-bend RAC, for short).

In this paper, we continue the study of the maximum edge-density of 1-
bend RAC graphs. We show that an n-vertex 1-bend RAC graph cannot
have more than 5.5n−O(1) edges. We also demonstrate that there exist
infinitely many n-vertex 1-bend RAC graphs with exactly 5n − O(1)
edges. Our results improve both the previously known best upper bound
of 6.5n−O(1) edges and the corresponding lower bound of 4.5n−O(

√
n)

edges by Arikushi et al. (Comput. Geom. 45(4), 169–177 (2012)).

1 Introduction

A recent research direction in Graph Drawing, which is currently receiving a
great deal of attention [25,28,30], focuses on combinatorial and algorithmic as-
pects for families of graphs that can be drawn on the plane while avoiding specific
kinds of edge crossings; see, e.g., [21] for a survey. This direction is informally rec-
ognized under the term “beyond planarity”. An early work on beyond planarity
(and probably the one that initiated this direction in Graph Drawing) is due
to Didimo, Eades, and Liotta [20], who introduced and first studied the family
of graphs that admit polyline drawings, with few bends per edge, in which the
angles formed at the edge crossings are 90◦. Their primary motivation stemmed
from experiments indicating that the humans’ abilities to read and understand
drawings of graphs are not affected too much, when the edges cross at large
angles [26,27] and the number of bends per edge is limited [33,34]. Their work
naturally gave rise to a systematic study of several different variants of these
graphs; see, e.g., [6,7,8,11,19,22,17,18].

Formally, a k-bend right-angle-crossing drawing (or k-bend RAC drawing, for
short) of a graph is a polyline drawing where each edge has at most k bends
and the angles formed at the crossing points of the edges are 90◦. Accordingly,
a graph that admits a k-bend RAC drawing is referred to as k-bend right-angle-
crossing graph (or k-bend RAC, for short); a 0-bend RAC graph (drawing) is
also called a straight-line RAC graph (drawing).
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There exist several results for straight-line RAC graphs. Didimo et al. [20]
showed that a straight-line RAC graph with n vertices has at most 4n−10 edges,
which is a tight bound, i.e., there exist infinitely many straight-line RAC graphs
with n vertices and exactly 4n− 10 edges. These graphs are actually referred to
as optimal or maximally-dense straight-line RAC and are in fact 1-planar [22],
i.e., they admit drawings in which each edge is crossed at most once. In gen-
eral, however, deciding whether a graph is straight-line RAC is NP-hard [7], and
remains NP-hard even if the drawing must be upward [6] or 1-planar [11]. Bach-
maier et al. [9] and Brandenburg et al. [14] presented interesting relationships
between the class of straight-line RAC graphs and subclasses of 1-planar graphs.
Variants, in which the vertices are restricted on two parallel lines or on a circle,
have been studied by Di Giacomo et al. [17], and by Hong and Nagamochi [24].

An immediate observation emerging from this short literature overview is
that the focus has been primarily on the straight-line case; the results for RAC
drawings with bends are significantly fewer. Didimo et al. [20] observed that
1- and 2-bend RAC graphs have a sub-quadratic number of edges, while any
graph with n vertices admits a 3-bend RAC drawing in O(n4) area; the required
area was improved to O(n3) by Di Giacomo et al. [18]. Quadratic area for 1-
bend RAC drawings can be achieved for subclasses of 1-plane graphs [15]; for
general 1-plane graphs the known algorithm may yield 1-bend RAC drawings
with super-polynomial area [11]. The best-known upper bounds on the number
of edges of 1- and 2-bend RAC graphs are due to Arikushi et al. [8], who showed
that these graphs can have at most 6.5n − 13 and 74.2n edges, respectively.
Arikushi et al. [8] also presented 1- and 2-bend RAC graphs with n vertices, and
4.5n − O(

√
n) and 7.83n − O(

√
n) edges, respectively. Angelini et al. [6] have

shown that all graphs with maximum vertex degree 3 are 1-bend RAC, while
those with maximum vertex degree 6 are 2-bend RAC. It is worth noting that
the complexity of deciding whether a graph is 1- or 2-bend RAC is still open.

Our contribution: In this work, we present improved lower and upper bounds on
the maximum edge-density of 1-bend RAC graphs. Note that this type of prob-
lems is commonly referred to as Turán type, and has been widely studied also
in the framework of beyond planarity; see, e.g., [1,2,3,4,5,12,16,23,29,31,32,35].
More precisely, in Section 3, we show that an n-vertex 1-bend RAC graph cannot
have more than 5.5n−O(1) edges, while in Section 4 we demonstrate that there
exist infinitely many 1-bend RAC graphs with n vertices and exactly 5n−O(1)
edges. These two results together further narrow the gap between the best-known
lower and upper bounds on the maximum edge-density of 1-bend RAC graphs
(from 2n to n/2). Our approach for proving the upper bound in Section 3 builds
upon the charging technique by Arikushi et al. [8], which we overview in Sec-
tion 2. We discuss open problems in Section 5.

2 Overview of the Charging Technique

In this section, we introduce the necessary notation and we describe the most
important aspects of the charging technique by Arikushi et al. [8] for bounding
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the maximum number of edges of a 1-bend RAC graph. Consider an n-vertex
1-bend RAC graph G = (V,E), together with a corresponding 1-bend RAC
drawing Γ with the minimum number of crossings. The edges ofG are partitioned
into two sets E0 and E1, based on whether they are crossing-free in Γ (set E0)
or they have at least a crossing (set E1). Let G0 and G1 be the subgraphs of G
induced by E0 and E1, respectively.

Since G0 is plane, |E0| ≤ 3n − 6 holds. To estimate |E1|, Arikushi et al.
consider the graph G′1 that is obtained from the drawing of G1, by replacing
each crossing point with a dummy vertex; we call G′1 the planarization of the
drawing of G1. Let V ′1 , E′1, and F ′1 be the set of vertices, edges, and faces of G′1,
respectively. Let deg(v) be the degree of a vertex v of G′1 and s(f) be the size of a
face f of G′1, that is, the number of edges incident to f . In the charging scheme,
every vertex v of G′1 is initially assigned a charge ch(v) equal to deg(v) − 4,
while every face f of G′1 is initially assigned a charge ch(f) equal to s(f) − 4.
By Euler’s formula, the sum of charges over all vertices and faces of G′1 is:∑

v∈V ′
1

(deg(v)− 4) +
∑
f∈F ′

1

(s(f)− 4) = 2|E′1| − 4|V ′1 |+ 2|E′1| − 4|F ′1| = −8

In two subsequent discharging phases, they redistribute the charges in G′1 so
that (i) the total charge remains the same, and (ii) all faces have non-negative
charges. In the first discharging phase, for every edge e with one bend, half a unit
of charge is passed from each of its two endvertices to the face that is incident to
the convex bend of e. Arikushi et al. show that each face of size less than 4 has
at least one convex bend, so it receives at least one unit of charge. Hence, after
this phase, the only faces that have negative charges are the so-called lenses,
which have size 2 and only one convex bend (each lens has charge −1). On the
other hand, the charge of every vertex v ∈ V ′1 is at least ch′(v) = 1

2 deg(v)− 4.
In the second discharging phase, Arikushi et al. exploit the crossing mini-

mality of Γ to guarantee the existence of an injective mapping from the lenses
to the convex bends incident to faces of G′1 with size at least 4. Since each such
bend yields one additional unit of charge to its incident face, and since this face
has already a non-negative charge due to its size, it is possible to move this
unit from the face to the mapped lens without introducing faces with negative
charge. Hence, after the second phase, the charge ch′′(f) of each face f ∈ F ′1 is
non-negative (and at least as large as its initial charge, i.e., ch′′(f) ≥ ch(f)).
Since ch′′(v) = ch(v), |E1| ≤ 4n− 8 can be proved as follows:

|E1|−4n =
∑
v∈V ′

1

(
1

2
deg(v)− 4

)
≤
∑
v∈V ′

1

ch′′(v) ≤
∑
v∈V ′

1

ch′′(v)+
∑
f∈F ′

1

ch′′(f) = −8

(1)
So far, graph G has |E0|+ |E1| ≤ 7n− 14 edges. Arikushi et al. improve this

bound in a conclusive analysis based on the observation that a triangular face
of G0 cannot contain edges of E1. Hence, if G0 contains exactly 3n − 6 edges,
then it is a triangulation, and thus E1 = ∅. More in general, they considered how
many edges E1 may contain when G0 is a graph obtained from a triangulation
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by removing k edges. Let V0, E0, and F0 be the sets of vertices, edges, and faces
of G0, respectively, and let d(f) be the degree of a face f ∈ F0, i.e., the number
of its distinct vertices. Then, by Eq. 1 we have:

|E1| ≤
∑

f∈F0;d(f)>3

(4d(f)− 8) (2)

Arikushi et al. proved that the right-hand side of Eq. 2 is at most 8k. In fact,
the removal of any crossing-free edge e leads to one of the following cases.

C.1 if e was a bridge of a face, this yields a face with the same degree, which
leaves the right-hand side of Eq. 2 unchanged;

C.2 if e was adjacent to two triangles, this yields a new face f of degree d(f) = 4,
which can contain at most 4d(f) − 8 = 8 edges of E1, which increases the
right-hand side of Eq. 2 by 8;

C.3 if e was adjacent to a triangle and to a face of degree d(f) (containing at
most 4d(f)−8 edges of E1), this yields a new face of degree at most d(f)+1,
which can contain at most 4(d(f) + 1) − 8 = 4d(f) − 4 edges of E1, which
increases the right-hand side of Eq. 2 by at most 4; finally,

C.4 if e was adjacent to two faces f1 and f2 such that d(f1), d(f2) > 3 (containing
at most 4(d(f1) + d(f2))− 16 edges of E1), this yields a new face of degree
at most d(f1) +d(f2)− 2, which contains at most 4(d(f1) +d(f2)− 2)− 8 =
4(d(f1) + d(f2))− 16 edges of E1, leaving the right-hand side of Eq. 2 as is.

Hence, the removal of k uncrossed edges increases the right-hand side of Eq. 2
by at most 8k. With this observation, Arikushi et al. derived two different upper
bounds on the number of edges of G, namely:

|E| ≤ (3n− 6− k) + 4n− 8 = 7n− 14− k (3)

|E| ≤ (3n− 6− k) + 8k (4)

The minimum of the two bounds is maximized when k = n/2− 1, which yields
|E| ≤ 6.5n−13. Arikushi et al. noticed that the bound of 8k is an overestimation,
and that possible refinements would lead to improvements of the overall bound.

3 An Improved Upper Bound

In this section, we describe how to improve the analysis of the charging scheme
described in Section 2 to obtain a better upper bound. W.l.o.g., we assume that
G is connected and that n ≥ 5. Let f be a face of G0. As in the previous section,
we denote by d(f) the degree of f , that is, the number of distinct vertices of f .
Since f is not necessarily simple or connected, the boundary of f is a disjoint
set of (not necessarily simple) cycles, which are called facial walks; see Fig. 1a.
We denote by `(f) the length of face f , that is, the number of edges (counted
with multiplicities) in all facial walks of f .

Since a vertex v may occur more than once in a facial walk of f , we denote
by mf (v) the number of its occurrences in f minus one (that is, the number of
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Fig. 1. (a) Illustration of a non-simple, non-connected face f of G0 (colored in
black). The edges of G1 are colored gray. Face f consists of two facial walks (w1 =
〈v1, v2, v1, v3, v4, v5, v6, v7, v8〉 and w2 = 〈v9, v10〉) and an isolated vertex (v11). Observe
that d(f) = 11 (as f contains 11 distinct vertices), `(f) = 11 (as the sum of the lengths
of w1 and w2 is 11), mf (v1) = 1 (as v1 appears twice in w1), i(f) = 1 (as v11 is an
isolated vertex of f), and b(f) = 3 (as w1 consists of two biconnected components,
while w2 is biconnected). Face f is good, since each of its edges is good. Note that
removing edge (v4, v7) would make edges (v5, v6) and (v9, v10) not good. (b) The faces
of F ′1(f) that are surrounding the three biconnected components of f are tiled in gray.

extra occurrences beyond its first). The sum of such extra occurrences over all
the vertices of face f is denoted by m(f), that is, m(f) =

∑
v∈f mf (v). Further,

we denote by b(f) the number of biconnected components of all facial walks of
f . Finally, we assume that an isolated vertex of f (if any) is not a biconnected
component of f , and we denote by i(f) the number of isolated vertices of f . It
is not difficult to see that `(f) = d(f) +m(f)− i(f).

Let G′ be the planarization of the drawing Γ of G. As opposed to G0, whose
faces are not necessarily connected, the faces of G′ are in fact connected, since G
is connected. Let f be a face of G0 and let e be any edge incident to f . We say
that edge e is good for f if and only if there is no other edge e′ incident to f such
that e and e′ are both incident to a face g of G′ that lies inside f . Accordingly,
face f is called good if and only if either all its edges are good for f or if f is a
triangle; see Fig. 1a. Note that, if each face of G0 is good, then every face of the
planarization G′ is either a triangle of crossing-free edges or contains at most one
crossing-free edge, and vice versa. In the next two lemmas, we assume that the
faces of G0 are good; we show later how to guarantee this property. For this, we
may need to introduce parallel edges (but no self-loops) in G0, which however
are non-homotopic (each region they define contains at least a vertex). Further,
we may need to introduce planar edges with more than one bend; this does not
affect the discharging scheme of Arikushi et al. which only considers G1.

Lemma 1. Let Γ be a drawing of G such that all faces of G0 are good. Then,
each face f of G0 contains at most 2d(f)−2m(f)+2i(f)+4b(f)−8 edges of G1.

Proof. Consider the subgraph G(f) of G which is induced by the interior of f
and let Γ (f) be the drawing of G(f) derived from Γ . We denote by G1(f) =
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(V1(f), E1(f)) the subgraph of G(f) induced by the set of crossing edges in Γ (f),
and by G′1(f) the planarization of G1(f).

Let B(f) be the set of biconnected components of f and F ′1(f) the set of faces
of the drawing of G′1(f) that is derived from Γ (f). Since every edge of f is good,
every biconnected component c ∈ B(f) with length `(c) will be surrounded by a
face f ′c ∈ F ′1(f) inG′1 that is of length `(f ′c) ≥ 2`(c); see Fig. 1b. Hence, before the
discharging phases in the charging scheme of Arikushi et al. (applied on G′1(f)),
the charge of face f ′c is at least 2`(c)−4. Since after the second discharging phase,
the charge of each face is at least as much as its initial charge, it follows that
the charge of face f ′c is still at least 2`(c)− 4 even after the discharging phases.
Since isolated vertices of f are not surrounded by a face of F ′1(f), summing up
the charges of all biconnected components of f , we get that∑
c∈B(f)

ch′′(f ′c) ≥
∑

c∈B(f)

(2`(c)−4) = 2`(f)−4b(f) = 2(d(f)+m(f)−i(f))−4b(f)

Since, after the second discharging phase, each face has a non-negative charge
and the sum of the charges of faces surrounding biconnected components of f is
a lower bound for the sum of the charges of all faces in F ′1(f), we get that∑

f ′∈F ′
1(f)

ch′′(f ′)−
∑

c∈B(f)

ch′′(f ′c) ≥ 0

Hence, by refining Eq. 1 we obtain that the number of crossing edges in G(f)
can be upper-bounded as follows

|E1(f)| − 4d(f) =
∑
v∈f

(
1

2
deg(v)− 4

)
≤
∑
v∈f

ch′′(v)

≤
∑
v∈f

ch′′(v) +
∑

f ′∈F ′
1(f)

ch′′(f ′)− 2(d(f)−m(f) + i(f)) + 4b(f)

= −8− 2(d(f) +m(f)− i(f)) + 4b(f)

This concludes our proof. ut

In the following lemma, we improve Arikushi et al.’s upper bound on the
number of edges of G1 that G may contain, when the plane subgraph G0 is ob-
tained from a plane triangulation T by removing k edges, under the assumption
that T may contain non-homotopic parallel edges (but no self-loops), and that
each face f ∈ F0 of G0 is good. Let t(f) be the minimum number of edges that
must be removed from T to obtain f . Similar to Arikushi et al., we preliminarily
observe that a face f of G0 with t(f) = 0 cannot contain edges of G1 in G. If
t(f) = 1, the only two possible configurations for face f are illustrated in Figs. 2a
and 2b. In both cases, face f can contain at most two crossing edges. If t(f) = 2,
the only three possible configurations for face f are illustrated in Figs. 2c–2e.
Then, face f can contain at most five crossing edges. Let F 1

0 and F 2
0 be the set of

faces of G0 that can be obtained from triangulation T by removing 1 and 2 edges,

6



(a) 4, 0, 0, 1 (b) 3, 1, 0, 2 (c) 5, 0, 0, 1 (d) 4, 1, 0, 2 (e) 3, 0, 1, 1

(f) 6, 0, 0, 1 (g) 5, 1, 0, 2 (h) 4, 0, 1, 1 (i) 4, 2, 0, 3 (j) 4, 2, 0, 3 (k) 4, 2, 0, 3

Fig. 2. All bounded faces that can be obtained from T by removing (a)–(b) 1 edge,
(c)–(e) 2 edges, (f)–(k) 3 edges. The caption of each subfigure indicates the values of
(d(f),m(f), i(f), b(f)).

respectively, that is, F 1
0 = {f ∈ F0; t(f) = 1} and F 2

0 = {f ∈ F0; t(f) = 2}. By
Lemma 1 and the previous observations, we have

|E1| ≤ 2|F 1
0 |+ 5|F 2

0 |+
∑

f∈F0;t(f)>2

(2d(f)− 2m(f) + 2i(f) + 4b(f)− 8) (5)

In the following lemma, we prove that a slight overestimation of the right-
hand side of Eq. 5 is upper-bounded by 8

3k, which clearly implies that |E1| ≤ 8
3k.

Lemma 2. If G0 is obtained from triangulation T by removing k edges, then:

8

3
|F 1

0 |+
16

3
|F 2

0 |+
∑

f∈F0;t(f)>2

(2d(f)− 2m(f) + 2i(f) + 4b(f)− 8) ≤ 8

3
k (6)

Proof. Our proof is by induction on k and is similar to the corresponding one
of Arikushi et al. (Lemma 5 in [8]). In contrast to their proof, we assume that
G0 is obtained from triangulation T by removing edges in a certain order. In
particular, we want to avoid the case in which the removal of an edge e results
in merging two faces f1 and f2 such that t(f1), t(f2) ≥ 1 (refer to Case C.4 in
Section 2). We guarantee this property as follows. Consider the subgraph D of
the dual of T induced by the edges that are dual to those that we have to remove
to obtain G0. We remove the edges in the order in which their dual edges appear
in a BFS traversal of each connected component of D. In this way, every inter-
level edge in the BFS traversal corresponds to removing an edge that is incident
to a triangular face (not visited yet), while each intra-level edge corresponds to
removing a bridge from a face that has been created by previously removed edges.
In both cases, we avoid merging two faces f1 and f2 such that t(f1), t(f2) ≥ 1.

Denote by τ(G0) the left-hand side of Eq. 6. In the base of the induction,
k = 0 holds. In this case, graph G0 coincides with triangulation T and thus
τ(G0) = 0. In the induction hypothesis, we assume that the lemma holds for
k ≥ 0, and we prove that it also holds for k′ = k + 1.
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(a) C.1a (b) C.1b (c) C.1c (d) C.2a

v′

(e) C.2b

v′

(f) C.2b

Fig. 3. Illustrations of Cases C.1 and C.2. Edge (u, v) is gray-colored.

Let G′0 be a plane graph obtained from T by removing k′ edges, and let G0

be the plane graph obtained from T by removing the same k′ edges, except for
the last one, which we call (u, v). For G0, by induction, it holds that τ(G0) ≤ 8

3k.
We consider the following cases:

C.1 Edge (u, v) is a bridge of a face f in G0 such that t(f) ≥ 3. Let f ′ be the face
of G′0 that is obtained by the removal of (u, v). Note that t(f ′) ≥ 4. Since
(u, v) is a biconnected component of f , it holds that b(f ′) = b(f)− 1. Since
(u, v) is a bridge, it also holds that d(f ′) = d(f). To establish the values
of m(f ′) and i(f ′), we observe that u, or v, or both may become isolated
vertices of G′0 after the removal of (u, v). We study these cases separately.
a) Both u and v become isolated vertices in G′0; see Fig. 3a. Then m(f ′) =

m(f) and i(f ′) = i(f) + 2. Since 2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8 =
2d(f)− 2m(f) + 2(i(f) + 2) + 4(b(f)− 1)− 8 = 2d(f)− 2m(f) + 2i(f) +
4b(f)− 8, it follows that τ(G′0) = τ(G0) ≤ 8

3k <
8
3k
′.

b) Exactly one of u and v, say v, becomes an isolated vertex in G′0; see
Fig. 3b. Then m(f ′) = m(f) − 1 and i(f ′) = i(f) + 1. Since 2d(f ′) −
2m(f ′) + 2i(f ′) + 4b(f ′) − 8 = 2d(f) − 2(m(f) − 1) + 2(i(f) + 1) +
4(b(f) − 1) − 8 = 2d(f) − 2m(f) + 2i(f) + 4b(f) − 8, it follows that
τ(G′0) = τ(G0) ≤ 8

3k <
8
3k
′.

c) Neither u nor v becomes an isolated vertex in G′0; see Fig. 3c. Then
m(f ′) = m(f) − 2 and i(f ′) = i(f). Since 2d(f ′) − 2m(f ′) + 2i(f ′) +
4b(f ′) − 8 = 2d(f) − 2(m(f) − 2) + 2i(f) + 4(b(f) − 1) − 8 = 2d(f) −
2m(f) + 2i(f) + 4b(f)− 8, it follows that τ(G′0) = τ(G0) ≤ 8

3k <
8
3k
′.

C.2 The removal of (u, v) merges a triangular face ∆ (that is, t(∆) = 0) with an
adjacent face f of G0 with t(f) ≥ 3 into a face f ′ of G′0. Note that t(f ′) ≥ 4.
We consider two cases:
a) Faces ∆ and f share only edge (u, v); see Fig. 3d. Then d(f ′) = d(f)+1,

m(f ′) = m(f), b(f ′) = b(f), i(f ′) = i(f). Since 2d(f ′)−2m(f ′)+2i(f ′)+
4b(f ′)− 8 = 2(d(f) + 1)− 2m(f) + 2i(f) + 4b(f)− 8 = 2d(f)− 2m(f) +
2i(f) + 4b(f)− 8 + 2, it follows that τ(G′0) = τ(G0) + 2 ≤ 8

3k+ 2 < 8
3k
′.

b) Faces ∆ and f share at least two edges; see Figs. 3e and 3f. By removing
(u, v), the number of occurrences of the third vertex v′ of ∆ increases by
one and the number of biconnected components increases by one. Then
d(f ′) = d(f), m(f ′) = m(f) + 1, b(f ′) = b(f) + 1, i(f ′) = i(f). Since
2d(f ′) − 2m(f ′) + 2i(f ′) + 4b(f ′) − 8 = 2d(f) − 2(m(f) + 1) + 2i(f) +
4(b(f) + 1)− 8 = 2d(f)− 2m(f) + 2i(f) + 4b(f)− 8 + 2, it follows that
τ(G′0) = τ(G0) + 2 ≤ 8

3k + 2 < 8
3k
′.
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C.3 The removal of (u, v) yields a face f ′ of G′0 with t(f ′) ∈ {1, 2, 3}. Note that
in the previous cases t(f ′) ≥ 4. So, if we rule out this case, then the proof
follows. We consider two cases, which correspond to Cases C.1 and C.2 for
smaller faces, respectively.
a) Face f ′ is obtained by removing a bridge from a face f . Hence, t(f) =

t(f ′) − 1 and f ′ is disconnected. Observe that if t(f ′) = 1, then face
f ′ is not disconnected as can be seen from Figs. 2a and 2b. Therefore,
t(f ′) ≥ 2 holds in this subcase.

b) Face f ′ is obtained by merging a face f with a triangular face ∆. Hence,
t(f) = t(f ′)− 1 holds. Since ∆ is triangular, we observe that it does not
contribute to τ(G0).

In both cases, the face f that is eliminated in order to create face f ′ is such
that t(f) = t(f ′) − 1. We observe that τ(G′0) is equal to τ(G0), plus the
contribution of f ′ to τ(G′0), minus the contribution of f to τ(G0). More
precisely: If t(f ′) = 1, then τ(G′0) = τ(G0) + 8

3 − 0 ≤ 8
3k + 8

3 = 8
3k
′; see

Figs. 2a-2b. If t(f ′) = 2, then τ(G′0) = τ(G0) + 16
3 −

8
3 ≤

8
3k + 8

3 = 8
3k
′;

see Figs. 2c-2e. Otherwise, t(f ′) = 3; see Figs. 2f-2k. This implies that
τ(G′0) ≤ τ(G0) + (2d(f ′)− 2m(f ′) + 2i(f ′) + 4b(f ′)− 8)− 16

3 . It is easy to
verify that 2d(f ′) − 2m(f ′) + 2i(f ′) + 4b(f ′) − 8 ≤ 8 holds for each of the
cases shown in Figs. 2f-2k. Hence, τ(G′0) ≤ τ(G0) + 8

3 ≤
8
3k + 8

3 = 8
3k
′.

This concludes the proof. ut

By following a counting similar to Arikushi et al. we obtain a bound on the
maximum number of edges of a 1-bend RAC graph with n vertices, when all
the faces of G0 are good. Since planar graphs have at most 3n − 6 edges even
in the presence of non-homotopic parallel edges, the bound is obtained when
7n− 14− k = 3n− 6− k + 8

3k, that is, k = 3
2 (n− 2). This directly implies that

in this case |E| ≤ 5.5n− 11.
In the following, we prove that it is not a loss of generality to assume that

all faces of G0 are good, as otherwise we can augment our graph by adding
only crossing-free edges to G (not necessarily drawn with one bend but rather
as curves), in such a way that every face of G0 becomes good. Recall that we
denote by G′ the planarization of drawing Γ of G.

Assume that there exists a face of G0 that is not good. Hence, there exist
at least two edges belonging to G0 which are incident to the same face f ′ in
G′. If f ′ consists exclusively of edges of G0, then we triangulate f ′. Otherwise,
we traverse the facial walk of f ′ starting from any dummy vertex of f ′ and we
connect by a crossing-free edge the first occurring vertex that is incident to an
edge of G0 with the last occurring vertex that is also incident to an edge of G0.
This implies that one of the two faces into which f ′ is split contains only one
crossing-free edge, namely the newly added edge. Note that, in both cases, it
is always possible to add the described edges, since we do not require them to
be drawn with one bend. Since in both cases, we split a face into smaller faces,
this process eventually terminates. At the end, each face is either a triangle of
crossing-free edges or contains at most one crossing-free edge. Hence, it is indeed
not a loss of generality to assume that all faces of G0 are good.
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We remark that the aforementioned procedure may result in parallel edges
or self-loops, which are however non-homotopic by construction. In particular, a
self-loop may appear, when the first and the last occurring vertices in the facial
walk are identified and form a cut-vertex of G. Note that while Lemma 2 allows
non-homotopic parallel edges, it does not allow self-loops. Hence, for self-loops
we need to use a different approach. Consider self-loop s. As already mentioned,
s is incident to a cut-vertex of G and encloses a part of Γ , which we assume
not to contain any other self-loop. Let H1 and H2 be the subgraphs of G that
are induced by the vertices of G that are in the interior and the exterior of s,
respectively. Denote by n1 and n2 the number of vertices of H1 and H2, respec-
tively, and by m1 and m2 their corresponding number of edges. Observe that
n = n1+n2−1. Note that edge s is accounted neither in H1 nor in H2. By induc-
tion, we may assume that m1 ≤ 5.5n1 − 11 and m2 ≤ 5.5n2 − 11. Hence, graph
G (including s) contains at most 5.5(n1 +n2)− 22 + 1 = 5.5n− 15.5 ≤ 5.5n− 11
edges. This implies that the upper bound holds even in the presence of self-loops.

We are now ready to state the main theorem of this section.

Theorem 1. Every n-vertex 1-bend RAC graph has at most 5.5n− 11 edges.

4 An Improved Lower Bound

In this section, we present an improved lower bound for the number of edges of
1-bend RAC graphs. Our construction is partially inspired by the corresponding
lower bound constructions of 2-planar graphs [13] and fan-planar graphs [29]
with maximum density.

Theorem 2. There exists infinitely many n-vertex 1-bend RAC graphs with ex-
actly 5n− 10 edges.

Proof. A central ingredient in our lower bound construction is the dodecahedral
graph; see Fig. 4a. This graph admits a straight-line planar drawing in which
the outer face is a regular pentagon, and the inner faces can be partitioned into
three sets, based on their shape. Namely, the innermost face (shaded in gray
in Fig. 4a) is again a regular pentagon, vertically mirrored with respect to the
outer one; also, all the faces adjacent to the innermost face have the same shape,
which we will describe more precisely later, and the same holds for all the faces
adjacent to the outer face. In particular, the drawing of each face is symmetric
with respect to the line that is perpendicular to one of its sides (whose length is
denoted by a in Fig. 4b) and passes through its opposite vertex (denoted by A
in Fig. 4b). Adopting the notation scheme of Fig. 4b, in the following we provide
values for the angles and side length ratios to fully describe the shapes of the
faces adjacent to the innermost face and to the outer face; for an illustration,
refer to Fig. 4a.

(i) The five faces adjacent to the innermost face are realized such that the side
of length a is incident to the inner face. Angles α and β are 88◦ and 100◦,
respectively. In addition, side-length b is 1.5 times the side-length a.
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γ1 γ1
γ2 γ2
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β2 β2

α1 α1

(c)

Fig. 4. Illustrations for the lower bound construction: (a) the dodecahedral graph,
(b) angles and edge lengths, and (c) crossing configuration.

(ii) The five faces adjacent to the outer face are realized such that the side of
length a is incident to the outer face. Angles α and γ are 160◦ and 54◦,
respectively. In addition, side-length b is 8.5 times side-length c.

Consider two copies D1 and D2 of this drawing of the dodecahedral graph.
Since both the innermost face of D1 and the outer face of D2 are drawn as regular
pentagons, after scaling the drawing D2 uniformly and mirroring it vertically,
we can construct a drawing of a larger graph by identifying the innermost face
of D1 with the outer face of D2. This process can be clearly repeated arbitrarily
many times. The result is a graph family such that every member of this family
admits a straight-line planar drawing, in which each face has one of the shapes
described above.

For our lower bound construction, we add five chords in the interior of each
face of every member of the above family. Hence, the five vertices that are inci-
dent to each face induce a complete graph K5. In the following, we describe how
to draw such chords in the interior of each of the aforementioned faces, based on
their shape, so that the resulting drawing is 1-bend RAC. For an illustration of
the configuration of the crossing edges in each of these faces refer to Fig. 4c; we
will formally define angles α1, β1, β2, γ1, γ2 shortly. Observe that all edges and
the formed angles are symmetric with respect to the line through vertex A that
is perpendicular to C1C2. Also, for every three vertices u, w, and v that are con-
secutive along the boundary of the face, the chord (u, v) will cross both chords
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(a) (b)

Fig. 5. Chords inside (a) the innermost face, and (b) the outer face.

incident to w, making a bend between these two crossings. In the following, we
provide values for the angles α1, β1, β2, γ1, γ2 to fully describe the configurations
of the crossing edges.

(i) For the innermost face, α1 = β1 = β2 = γ1 = γ2 = 45◦ holds; refer to
Fig. 5a.

(ii) For the outer face, α1 = β1 = β2 = γ1 = γ2 = 45◦ holds; refer to Fig. 5b.
(iii) For the five faces neighboring the innermost face, α1 = 40◦, β1 = 30◦,

β2 = 50◦, γ1 = 45◦ and γ2 = 60◦ holds; refer to Fig. 6 in Appendix A.
(iv) For the five faces neighboring the outer face, α1 = 47.5◦, β1 = 85◦, β2 =

42.5◦, γ1 = 45◦ and γ2 = 5◦ holds; refer to Fig. 7 in Appendix A.

It follows that each graph in the family admits a 1-bend RAC drawing. LetGn

be such a graph with n vertices. Next, we discuss the exact number of edges of
graph Gn. Since the crossing-free edges of Gn form a planar graph, whose faces
are all of length 5, it follows by Euler’s formula that this graph has 5

3 (n−2) edges
and 2

3 (n− 2) faces. Since each of these faces contains five chords, the number of
edges of Gn is 5

3 (n− 2) + 5 · 23 (n− 2) = 5n− 10, and the statement follows. ut

5 Conclusions

In this paper, we improved the previously best lower and upper bounds on the
number of edges of 1-bend RAC graphs. The gap between our lower and up-
per bound is approximately n/2. A future challenge will be to further narrow
this gap. We conjecture that an n-vertex 1-bend RAC graph cannot have more
than 5n − 10 edges (as it is the case for several other classes of beyond planar
graphs; see e.g. [10,29,32]). Significantly more difficult seems to be the problem
of improving the current best lower and upper bounds on the number of edges of
2-bend RAC graphs, where the gap is significantly wider (approx., 67n). Closely
connected are also complexity related questions; in particular, the characteriza-
tion and recognition of 1- and 2-bend RAC graphs are still open.
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Frati, F., Ma, K. (eds.) Graph Drawing and Network Visualization. LNCS, vol.
10692, pp. 531–545. Springer (2017)

11. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC
drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017)

12. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of non-simple 3-
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A Additional Figures for the Lower Bound Construction
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Fig. 6. Chords inside faces neighboring the innermost face.
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Fig. 7. Chords inside faces neighboring the outer face.
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