Skip to main content

An Adaptive Hybrid Evolutionary Approach for a Project Scheduling Problem that Maximizes the Effectiveness of Human Resources

  • Conference paper
  • First Online:
  • 583 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11288))

Abstract

In this paper, an adaptive hybrid evolutionary algorithm is proposed to solve a project scheduling problem. This problem considers a valuable optimization objective for project managers. This objective is maximizing the effectiveness of the sets of human resources assigned to the project activities. The adaptive hybrid evolutionary algorithm utilizes adaptive processes to develop the different stages of the evolutionary cycle (i.e., adaptive parent selection, survival selection, crossover, mutation and simulated annealing processes). These processes adapt their behavior according to the diversity of the algorithm’s population. The utilization of these processes is meant to enhance the evolutionary search. The performance of the adaptive hybrid evolutionary algorithm is evaluated on six instance sets with different complexity levels, and then is compared with those of the algorithms previously reported in the literature for the addressed problem. The obtained results indicate that the adaptive hybrid evolutionary algorithm significantly outperforms the algorithms previously reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heerkens, G.R.: Project Management. McGraw-Hill, New York City (2002)

    Google Scholar 

  2. Wysocki, R.K.: Effective Project Management, 3rd edn. Wiley, Hoboken (2003)

    Google Scholar 

  3. De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.: Workforce planning incorporating skills: state of the art. Eur. J. Oper. Res. 243(1), 1–16 (2015)

    Article  MathSciNet  Google Scholar 

  4. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel scheduling: a literature review. Eur. J. Oper. Res. 226(3), 367–385 (2013)

    Article  MathSciNet  Google Scholar 

  5. Yannibelli, V., Amandi, A.: A knowledge-based evolutionary assistant to software development project scheduling. Expert Syst. Appl. 38(7), 8403–8413 (2011)

    Article  Google Scholar 

  6. Blazewicz, J., Lenstra, J., Rinnooy, K.A.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5, 11–24 (1983)

    Article  MathSciNet  Google Scholar 

  7. Yannibelli, V., Amandi, A.: A memetic approach to project scheduling that maximizes the effectiveness of the human resources assigned to project activities. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 159–173. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28942-2_15

    Chapter  Google Scholar 

  8. Yannibelli, V., Amandi, A.: A diversity-adaptive hybrid evolutionary algorithm to solve a project scheduling problem. In: Corchado, E., Lozano, José A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 412–423. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10840-7_50

    Chapter  Google Scholar 

  9. Yannibelli, V., Amandi, A.: Hybrid evolutionary algorithm with adaptive crossover, mutation and simulated annealing processes to project scheduling. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 340–351. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24834-9_40

    Chapter  Google Scholar 

  10. Yannibelli, V., Amandi, A.: Scheduling projects by a hybrid evolutionary algorithm with self-adaptive processes. In: Sidorov, G., Galicia-Haro, Sofía N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 401–412. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27060-9_33

    Chapter  Google Scholar 

  11. Yannibelli, V., Amandi, A.: Project Scheduling: a memetic algorithm with diversity-adaptive components that optimizes the effectiveness of human resources. Polibits 52, 93–103 (2015)

    Article  Google Scholar 

  12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. NCS. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  13. Rodriguez, F.J., García-Martínez, C., Lozano, M.: Hybrid metaheuristics based on evolutionary algorithms and simulated annealing: taxonomy, comparison, and synergy test. IEEE Trans. Evol. Comput. 16(6), 787–800 (2012)

    Article  Google Scholar 

  14. Talbi, E. (ed.): Hybrid Metaheuristics. SCI, vol. 434. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  15. Cheng, J., Zhang, G., Caraffini, F., Neri, F.: Multicriteria adaptive differential evolution for global numerical optimization. Integr. Comput.-Aided Eng. 22(2), 103–117 (2015)

    Article  Google Scholar 

  16. Wang, R., Zhang, Y., Zhang, L.: An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integr. Comput.-Aided Eng. 23, 81–97 (2016)

    Article  Google Scholar 

  17. Zhu, Z., Xiao, J., Li, J.Q., Wang, F., Zhang, Q.: Global path planning of wheeled robots using multi-objective memetic algorithms. Integr. Comput.-Aided Eng. 22(4), 387–404 (2015)

    Article  Google Scholar 

  18. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)

    Article  Google Scholar 

  19. Li, H., Womer, N.K.: Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. Eur. J. Oper. Res. 246(1), 20–33 (2015)

    Article  MathSciNet  Google Scholar 

  20. Heimerl, C., Kolisch, R.: Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectrum 32(4), 343–368 (2010)

    Article  MathSciNet  Google Scholar 

  21. Li, H., Womer, K.: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J. Sched. 12, 281–298 (2009)

    Article  MathSciNet  Google Scholar 

  22. Drezet, L.E., Billaut, J.C.: A project scheduling problem with labour constraints and time-dependent activities requirements. Int. J. Prod. Econ. 112, 217–225 (2008)

    Article  Google Scholar 

  23. Bellenguez, O., Néron, E.: A branch-and-bound method for solving multi-skill project scheduling problem. RAIRO – Oper. Res. 41(2), 155–170 (2007)

    Article  MathSciNet  Google Scholar 

  24. Braekers, K., Hartl, R.F., Parragh, S.N., Tricoire, F.: A bi-objective home care scheduling problem: analyzing the trade-off between costs and client inconvenience. Eur. J. Oper. Res. 248(2), 428–443 (2016)

    Article  MathSciNet  Google Scholar 

  25. Aickelin, U., Burke, E., Li, J.: An evolutionary squeaky wheel optimization approach to personnel scheduling. IEEE Trans. Evol. Comput. 13(2), 433–443 (2009)

    Article  Google Scholar 

  26. Valls, V., Pérez, A., Quintanilla, S.: Skilled workforce scheduling in service centers. Eur. J. Oper. Res. 193(3), 791–804 (2009)

    Article  Google Scholar 

  27. Bellenguez, O., Néron, E.: Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 229–243. Springer, Heidelberg (2005). https://doi.org/10.1007/11593577_14

    Chapter  Google Scholar 

  28. Silva, T., De Souza, M., Saldanha, R., Burke, E.: Surgical scheduling with simultaneous employment of specialised human resources. Eur. J. Oper. Res. 245(3), 719–730 (2015)

    Article  MathSciNet  Google Scholar 

  29. Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, Ch., Denk, M.: Competence-driven project portfolio selection, scheduling and staff assignment. CEJOR 16(3), 281–306 (2008)

    Article  MathSciNet  Google Scholar 

  30. Hanne, T., Nickel, S.: A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects. Eur. J. Oper. Res. 167, 663–678 (2005)

    Article  MathSciNet  Google Scholar 

  31. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  32. Mahfoud, S.W.: Crowding and preselection revised. Parallel Problem Solving from Nature 2, 27–36 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Yannibelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yannibelli, V. (2018). An Adaptive Hybrid Evolutionary Approach for a Project Scheduling Problem that Maximizes the Effectiveness of Human Resources. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Soft Computing. MICAI 2018. Lecture Notes in Computer Science(), vol 11288. Springer, Cham. https://doi.org/10.1007/978-3-030-04491-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04491-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04490-9

  • Online ISBN: 978-3-030-04491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics