Skip to main content

Combining Deep Learning and RGBD SLAM for Monocular Indoor Autonomous Flight

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence (MICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11289))

Included in the following conference series:

Abstract

We present a system that uses deep learning and visual SLAM for autonomous flight in indoor environments. In this spirit, we use a state-of-the-art CNN architecture to obtain depth estimates, on a frame-to-frame basis, of images obtained from the drone’s onboard camera, and use them in a visual SLAM system to obtain both camera pose estimates with a metric that is further passed to a PID controller, responsible for the autonomous flight. However, because depth estimation and visual SLAM system are computationally intensive tasks, the processing is carried out off-board on a ground control station that receives online imagery and inertial data transmitted by the drone via a WiFi channel during the flight mission. Further, the metric pose estimates are used by the PID controller that communicates back to the vehicle with the caveat that synchronisation issues may arise in between the frame reception and the pose estimation output, typically with the frame reception running at 30 Hz, and the pose estimation at 15 Hz. As a consequence, the controller may also exhibit a delay in the control loop, provoking a flight off-track the trajectory set by the way-points. To mitigate this, we implemented a stochastic filter that estimates velocity and acceleration of the vehicle to predict pose estimates in those frames where no pose estimate is available yet, and when available, to compensate for the communication delay. We have evaluated the use of this methodology for indoor autonomous flight with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1052–1067 (2007)

    Article  Google Scholar 

  2. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28, 854–874 (2011)

    Article  Google Scholar 

  3. Magree, D., Mooney, J.G., Johnson, E.N.: Monocular visual mapping for obstacle avoidance on UAVs. J. Intell. Robot. Syst. 74, 17–26 (2014)

    Article  Google Scholar 

  4. Rojas-Perez, L.O., Martinez-Carranza, J.: Metric monocular SLAM and colour segmentation for multiple obstacle avoidance in autonomous flight. In: IEEE 4th RED-UAS (2017)

    Google Scholar 

  5. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: NIPS, vol. 18, MIT Press (2005)

    Google Scholar 

  6. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248, IEEE (2016)

    Google Scholar 

  7. Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. arXiv preprint arXiv:1704.03489 (2017)

  8. Konam, S.: Vision-based navigation and deep-learning explanation for autonomy, in Masters thesis, Robotics Institute, Carnegie Mellon University (2017)

    Google Scholar 

  9. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31, 1147–1163 (2015)

    Article  Google Scholar 

  10. Bi, Y., et al.: An MAV localization and mapping system based on dual realsense cameras. In: International Micro Air Vehicles, Conferences Competitions, National University of Singapore, Singapore (2016). Technical Report

    Google Scholar 

  11. Li, J., et al.: Real-time simultaneous localization and mapping for UAV: a survey. In: International Micro Air Vehicle Conference and Competition (IMAV) (2010)

    Google Scholar 

  12. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: IROS (2015)

    Google Scholar 

  13. Teixeira, L., Alzugaray, I., Chli, M.: Autonomous aerial inspection using visual-inertial robust localization and mapping. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 191–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_13

    Chapter  Google Scholar 

  14. Lin, Y., et al.: Autonomous aerial navigation using monocular visual-inertial fusion. J. Field Robot. 35(1), 23–51 (2018)

    Article  Google Scholar 

  15. Xu, W., Choi, D., Wang, G.: Direct visual-inertial odometry with semi-dense mapping. Comput. Electr. Eng. (2018)

    Google Scholar 

  16. Mu, X., Chen, J., Zhou, Z., Leng, Z., Fan, L.: Accurate initial state estimation in a monocular visual-inertial SLAM system. Sensors 18, 506 (2018)

    Article  Google Scholar 

  17. Usenko, V., Engel, J., Stckler, J., Cremers, D.: Direct visual-inertial odometry with stereo cameras. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1885–1892 (2016)

    Google Scholar 

  18. Rebecq, H., Horstschaefer, T., Scaramuzza, D.: Real-time visualinertial odometry for event cameras using keyframe-based nonlinear optimization. In: British Machine Vision Conference (BMVC), vol. 3 (2017)

    Google Scholar 

  19. Vidal, A.R., Rebecq, H., Horstschaefer, T., Scaramuzza, D.: Hybrid, frame and event based visual inertial odometry for robust, autonomous navigation of quadrotors. arXiv preprint arXiv:1709.06310 (2017)

  20. Mancini, M., Costante, G., Valigi, P., Ciarfuglia, T.A., Delmerico, J., Scaramuzza, D.: Toward domain independence for learning-based monocular depth estimation. IEEE Robot. Autom. Lett. 2, 1778–1785 (2017)

    Article  Google Scholar 

  21. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Towards unified depth and semantic prediction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2809 (2015)

    Google Scholar 

  22. Chakrabarti, A., Shao, J., Shakhnarovich, G.: Depth from a single image by harmonizing overcomplete local network predictions. In: Advances in Neural Information Processing Systems, pp. 2658–2666 (2016)

    Google Scholar 

  23. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR, vol. 2, p. 7 (2017)

    Google Scholar 

  24. Chen, Z., Lam, O., Jacobson, A., Milford, M.: Convolutional neural network-based place recognition. arXiv preprint arXiv:1411.1509 (2014)

  25. Kendall, A., Grimes, M., Cipolla, R.: PoseNeT: a convolutional network for real-time 6-DOF camera relocalization. In: IEEE International Conference on Computer Vision, pp. 2938–2946, IEEE (2015)

    Google Scholar 

  26. Li, R., Liu, Q., Gui, J., Gu, D., Hu, H.: Indoor relocalization in challenging environments with dual-stream convolutional neural networks. IEEE Trans. Autom. Sci. Eng. 15(2), 651–662 (2017)

    Article  Google Scholar 

  27. Weerasekera, C.S., Garg, R., Reid, I.: Learning deeply supervised visual descriptors for dense monocular reconstruction. arXiv preprint arXiv:1711.05919 (2017)

  28. Mukasa, T., Xu, J., Stenger, B.: 3D scene mesh from CNN depth predictions and sparse monocular SLAM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 921–928 (2017)

    Google Scholar 

  29. Yang, S., Song, Y., Kaess, M., Scherer, S.: Pop-up SLAM: Semantic monocular plane SLAM for low-texture environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1222–1229. IEEE (2016)

    Google Scholar 

  30. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR, vol. 2, p. 7 (2017)

    Google Scholar 

  31. Gemeiner, P., Davison, A., Vincze, M.: Improving localization robustness in monocular SLAM using a high-speed camera. In: Robotics: Science and Systems (2008)

    Google Scholar 

Download references

Acknowledgment

This work has also been partially funded by a CONACYT-INEGI fund with project no. 268528 and the Royal Society through the Newton Advanced Fellowship with reference NA140454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martinez-Carranza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Carranza, J., Rojas-Perez, L.O., Cabrera-Ponce, A.A., Munguia-Silva, R. (2018). Combining Deep Learning and RGBD SLAM for Monocular Indoor Autonomous Flight. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Computational Intelligence. MICAI 2018. Lecture Notes in Computer Science(), vol 11289. Springer, Cham. https://doi.org/10.1007/978-3-030-04497-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04497-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04496-1

  • Online ISBN: 978-3-030-04497-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics