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Abstract

We study the power and limitations of posted prices in multi-unit markets, where agents ar-

rive sequentially in an arbitrary order. We prove upper and lower bounds on the largest fraction

of the optimal social welfare that can be guaranteed with posted prices, under a range of as-

sumptions about the designer’s information and agents’ valuations. Our results provide insights

about the relative power of uniform and non-uniform prices, the relative difficulty of different

valuation classes, and the implications of different informational assumptions. Among other re-

sults, we prove constant-factor guarantees for agents with (symmetric) subadditive valuations,

even in an incomplete-information setting and with uniform prices.

1 Introduction

We consider the problem of allocating identical items to agents to maximize the social welfare. More

formally, there are m identical items, each agent i ∈ [n] has a valuation function vi : [m] → R≥0
describing her value for a given number of items, and the goal is to compute nonnegative and

integral quantities q1, . . . , qn, with
∑n

i=1 qi ≤ m, to maximize the total value
∑n

i=1 vi(qi) to the

agents.

This problem underlies the design of multi-unit auctions, which have played a starring role

in the fields of classical and algorithmic mechanism design, and in both theory and practice. As

with any welfare-maximization problem, the problem can be solved in principle using the VCG

mechanism. There has been extensive work on the design and analysis of more practical multi-unit

auctions. There are indirect implementations of the VCG mechanism, most famously Ausubel’s

ascending clinching auction for downward-sloping (a.k.a. submodular) valuations [1]. Work in algo-

rithmic mechanism design has identified mechanisms that retain the dominant-strategy incentive-

compatibility of the VCG mechanism while running in time polynomial in n and logm (rather than

polynomial in n and m), at the cost of a bounded loss in the social welfare. Indeed, Nisan [25]
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argues that the field of algorithmic mechanism design can be fruitfully viewed through the lens of

multi-unit auctions.

The multi-unit auction formats used in practice typically sacrifice dominant-strategy incentive-

compatibility in exchange for simplicity and equitability; a canonical example is the uniform-price

auctions suggested by Milton Friedman (see [19]) and used (for example) by the U.S. Treasury to

sell government securities. Uniform-price auctions do not always maximize the social welfare (e.g.,

because of demand reduction), but they do admit good “price-of-anarchy” guarantees [24], meaning

that every equilibrium results in social welfare close to the maximum possible.

A key drawback of all of the mechanisms above is that they require all agents to participate

simultaneously, in order to coordinate their allocations and respect the supply constraint. For

example, in a uniform-price auction, all of the agents’ bids are used to compute a market-clearing

price-per-unit, which then determines the allocations of all of the agents. It is evident from our

daily experience that, in many different markets, buyers arrive and depart asynchronously over time,

making purchasing decisions as a function of their preferences and the current prices of the goods

for sale.1 The goal of this paper is to develop theory that explains the efficacy of such posted prices

in markets where agents arrive sequentially rather than simultaneously, and that gives guidance on

how to set prices to achieve an approximately welfare-maximizing outcome.

1.1 The Model

We consider a setting where a designer must post prices in advance, before the arrival of any agents.

We assume that the supply m is known. The designer is given full or incomplete information about

agents’ valuations, and must then set a price for each item.2 Agents then arrive in an arbitrary

(worst-case) order, with each agent taking a utility-maximizing bundle (breaking ties arbitrarily),

given the set of items that remain. These prices are static, in that they remain fixed throughout

the entire process.

Example 1.1. Suppose m = 3 and there are two agents, each with the valuation v(1) = 5, v(2) = 9,

and v(3) = 11, and suppose a designer prices every item at 4. The first agent will choose either 1

or 2 items (breaking the tie arbitrarily). If the first agent chooses 2 items, the second agent will take

the only item remaining; if the first agent chooses 1 item, then the second agent will take either 1

or 2 items.

In general, we allow different items to receive different prices (as will be the case in the VCG

mechanism for this problem, for example.) With identical items, however, it is natural to focus

on uniform prices, where every item is given the same price. Generally speaking, we are most

interested in positive results for uniform prices, and negative results for non-uniform prices.

1For examples involving identical items, think about general-admission concert tickets, pizzas at Una Pizza Napo-

letana (which shuts down for the night when the dough runs out), or shares in an IPO (other than Google [28]).
2No non-trivial guarantees are possible without at least partial knowledge about agents’ valuations.
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The overarching goal of this paper is characterize the largest fraction of the optimal social wel-

fare that can be guaranteed with posted prices, under a range of assumptions about the designer’s

information and agents’ valuations. This goal is inherently quantitative, but our results also pro-

vide qualitative insights, for example about the relative power of uniform and non-uniform prices,

the relative difficulty of different valuation classes, and the implications of different informational

assumptions.

1.2 Our Results

Uniform prices Non-uniform prices

Submodular 1
2 (4.7, 4.8, 4.9) 2

3 (4.2, 4.3) [2 items]

≥ 5
7 −

1
m (4.4), ≤ 0.802 (4.5) [m items]

XOS ≥ 1
2 (8.2) ≤ 1− 1

e (5.1)

Subadditive 1
3 (6.1, 6.7) ≤ 1

2 (6.6) [even with 2 buyers]
2
3 (6.5, 6.9) [2 identical buyers] ≤ 3

4 (6.8) [even with 2 identical buyers]

General valuations 1
m (7.1) 1

m (7.2)

(a) Full information

Uniform prices Non-uniform prices

XOS 1
2 (8.2) ≤ 1− 1

e (5.1)

Subadditive ≥ 1
4 (8.4) ≤ 1

2 (6.6) [even with 2 buyers]

≤ 3
4 (6.8) [even with 2 identical buyers]

(b) Incomplete information

Table 1: Summary of results. All results are new to this paper. Numbers in parentheses refer to

the corresponding theorem or proposition number.

The majority of our results are summarized in Table 1; we highlight a subset of these next. First,

consider the case of a Bayesian setting with XOS agent valuations (see Section 2 for definitions).

That is, each agent’s valuation is drawn independently from a known (possibly agent-specific)

distribution over XOS valuations. Feldman et al. [18] show that, even with non-identical items,

posted prices can always obtain expected welfare at least 1/2 times the maximum possible. This

factor of 1/2 is tight, even for the special case of a single item and i.i.d. agents. The posted prices

used by Feldman et al. [18] are non-uniform, even when the result is specialized to the case of

identical items (the price of an item is based on its expected marginal contribution to an optimal

allocation, which can vary across items). We prove in Theorem 8.2 that with identical items, and

agents with independent (not necessarily identical) XOS valuations, uniform prices suffice to achieve

the best-possible guarantee of half the optimal expected welfare. Moreover, this result extends to

any class of valuations that is c-close to XOS valuations, with an additional loss of a factor of c
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(Theorem 8.3).

While the 1/2-approximation above is tight for an incomplete-information setting, this problem

is already interesting in the full-information case where the buyers’ valuations are known (with the

order of arrival still worst-case). Can we improve over the approximation factor of 1/2 under this

stronger informational assumption?

We prove that uniform prices cannot achieve an approximation factor better than 1/2, even for

the more restrictive class of submodular valuations, and even with two agents (Proposition 4.8)

or identical agents (Proposition 4.9). In contrast, with non-uniform prices (still for submodular

valuations), we prove that an approximation of 2/3 is possible (Theorem 4.2). This is tight for the

case of two items (Proposition 4.3), but in large markets (with m → ∞) we show how to obtain

an approximation guarantee of 5/7 (Theorem 4.4). In addition, if the order of arrival is known

beforehand, we can extract the full optimal welfare (Theorem 4.6).

We next consider the family of subadditive valuations, which strictly generalize XOS valua-

tions and are regarded as the most challenging class of valuations that forbid complements. For

example, with non-identical items, it is not known whether or not posted prices can guarantee a

constant fraction of the optimal social welfare. For identical items, we prove that this is indeed

possible. In the incomplete-information setting (and identical items), we show that subadditive

valuations are 2-close to XOS valuations (Proposition 3.4), which leads to approximation factor

of 1/4 (Theorem 8.4). We can also do better in the full-information setting: uniform prices can

guarantee a 1/3 fraction of the optimal social welfare (Theorem 6.1), and the approximation is

tight (Proposition 6.7), while even non-uniform prices cannot guarantee a factor bigger than 1/2,

even with only two agents (Proposition 6.6). In the case of two identical agents, uniform prices can

guarantee a 2/3 fraction of the optimal welfare (Theorem 6.5), and this is tight (Proposition 6.9).

With all these positive results, the reader might wonder whether constant factor guarantees

can be provided for general valuations. Unfortunately, this is not the case. For general valuations,

we show that even in the full-information setting and with non-uniform prices, and even when

there are only two agents and the arrival order is known, posted prices cannot guarantee more

than a 1/m fraction of the optimal social welfare (Proposition 7.1). If the seller can control the

arrival order, however, then even uniform prices can guarantee half of the optimal social welfare

(Theorem 7.3). No better bound is possible, even for identical valuations and with non-uniform

prices (Proposition 7.4).

1.3 Further Related Work

The design and analysis of simple mechanisms has been an active area of study in algorithmic

mechanism design, particularly within the last decade. This focus is motivated in part by the

observation that simple mechanisms are highly desired in practical scenarios. Examples of simple
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mechanisms that are used in practice are the generalized second price auctions (GSP) for online

advertising [14, 29, 26, 22, 23], and simultaneous item auctions (where the agents bid separately

and simultaneously on multiple items) [10, 5, 17, 20]. These mechanisms are not truthful and are

evaluated in equilibrium using the price of anarchy measure.

Posted price mechanisms is perhaps the most prevalent method for selling goods in practice. By

simply publishing prices for individual items, these mechanisms are extremely easy to understand

and participate in. It should therefore not come as a surprise that posted price mechanisms have

been studied extensively for various objective functions (e.g., welfare, revenue, makespan), infor-

mation structures of values (e.g., full-information, Bayesian, online), and valuation functions (e.g.,

unit-demand, submodular, XOS). For example, a long line of work has focused on sequential posted

prices for revenue maximization and has shown, among other things, that a form of posted price

mechanisms can achieve a constant fraction of the optimal revenue for agents with unit-demand

valuations [7, 8, 9]. Revenue maximization with sequential posted prices has also been studied for

a single item, both in large markets [6] and when the distributions are unknown [2], for additive

valuations [3, 4], and for a buyer with complements [15]. In several of these works, posted price

mechanisms are allowed to discriminate between agents and set different prices for each of them.

In addition to the aforementioned works, a new line of research has considered dynamic posted

prices in online settings such as for the k-server and parking problems [11]. Moreover, posted

price mechanisms have been studied in the context of welfare maximization in matching markets,

where prices are dynamic (i.e., can change over the course of the mechanism) but do not depend

on the identity of the agents [12]. Note that the prices used in the mechanisms we consider in this

paper are also not discriminatory. Our work, like many others before ours, relies on the Bayesian

framework to model a setting with incomplete information; Dütting et al. [13] provides a general

framework for posted price mechanisms in Bayesian settings.

The sequential arrival of agents considered in the setting of posted price mechanisms fits into

the framework of online mechanisms, which deals with dynamic environments with multiple agents

having private information [27]. Our work shows that for identical items and agents with subadditive

valuations, posted prices can guarantee a constant fraction of the welfare even while setting the

(uniform) prices up front.

2 Preliminaries

We consider a setting with a set M of m identical items, and a set N of n buyers. Each buyer has

a valuation function vi : 2M → R≥0 that indicates his value for every set of objects. Since items

are identical, the valuation depends only on the number of items. We assume that valuations are

monotone non-decreasing (i.e., vi(T ) ≤ vi(S) for T ⊆ S) and normalized (i.e., vi(∅) = 0). We use

vi(S|T ) = vi(S ∪ T )− vi(T ) to denote the marginal value of bundle S given bundle T .
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A buyer valuation profile is denoted by v = (v1, . . . , vn). An allocation is a vector of disjoint

sets x = (x1, . . . , xn), where xi denotes the bundle associated with buyer i ∈ [n] (note that it is

not required that all items are allocated). As with valuations, since we consider identical items, an

allocation can be represented by the number of items allocated to each buyer. The social welfare

(SW) of an allocation x is SW(x,v) =
∑n

i=1 vi(xi), and the optimal social welfare is denoted by

OPT(v). When clear from the context we omit v and write SW and OPT for the social welfare

and optimal social welfare, respectively.

For two valuation functions v, v′, we say that v ≥ v′ iff v(S) ≥ v′(S) for every set S. A hierarchy

over complement-free valuations is given by Lehmann et al. [21].

Definition 2.1. A valuation function v is

• additive if v(S) =
∑

i∈S v({i}) for every set S ⊆M .

• submodular if v({i}|S) ≥ v({i}|T ) for every item i 6∈ T and sets S, T such that S ⊆ T ⊆M .

• XOS if there exist additive valuation functions v1, . . . , vk such that v(S) = maxj=1,...,k v
j(S)

for every set S ⊆M .

• subadditive if v(S) + v(T ) ≥ v(S ∪ T ) for any sets S, T ⊆M .

Since we assume throughout the paper that all items are identical, we only work with symmetric

valuation functions.

Definition 2.2. A valuation function v is symmetric if v(S) = v(T ) for every sets S, T ⊆ M

such that |S| = |T |. A symmetric valuation function can thus be represented by a monotone non-

decreasing function v : {0, 1, . . . ,m} → R≥0, which assigns a non-negative real value to any integer

in [m] (recall v(0) = 0 as we assume normalized functions).

In what follows we adjust the definitions of additive, submodular, XOS, and subadditive func-

tions in Definition 2.1 to the case of symmetric valuation functions. The simplified definition for

XOS functions follows from the equivalence between XOS and fractional subadditivity [16].

Definition 2.3. A symmetric valuation function v is said to be

• additive if v(i) = a · i for every integer 0 ≤ i ≤ m for some constant a.

• submodular if v(i)− v(i− 1) ≥ v(i+ 1)− v(i) for every integer 1 ≤ i ≤ m− 1.

• XOS if v(i) ≥ i
j · v(j) for any integers 1 ≤ i < j ≤ m.

• subadditive if v(i) + v(j) ≥ v(i+ j) for any integers 1 ≤ i, j ≤ m with i+ j ≤ m.

We assume that the agents arrive sequentially. We will for the most part set static prices for

the items, and each arriving agent takes a bundle from the remaining items that maximizes her

6



utility, with ties broken arbitrarily. For some results we will assume dynamic prices, i.e., the seller

can set new prices for the remaining items for each iteration (but without knowing which agent

will arrive next). If prices p = (p1, . . . , pm) are set on the m items, and an agent buys a subset S

of them, then her utility is given by v(|S|) −
∑

i∈S pi. For most of the paper we will assume that

the arrival order of the agents is unknown, but we will also consider settings where we know this

order or where we even have control over the order. We are interested in the social welfare that we

can obtain by setting prices in comparison to the optimal social welfare with respect to the worst

case arrival order.

Given a buyer valuation profile with submodular valuations v1, . . . , vn, we will often consider

the multiset V = {vi(j) − vi(j − 1)|i ∈ [n], j ∈ [m]}, which consists of all marginal values for all

buyers and items. Let δ be the minimum positive difference between any two values in V , and let

ε = δ/2. Note that the optimal allocation is to sort the marginal values in V in non-increasing

order, and allocate items in that order. Thus, OPT is the sum of the m highest marginal values in

V .

For every value x, let G(x) be the number of marginal values in V that are strictly greater

than x, and let E(x) be the number of marginal values in V that are equal to x. Without loss of

generality, we will assume that G(0) ≥ m, since otherwise we can obtain the optimal social welfare

by setting all prices to ε, which guarantees that all G(0) items yielding positive marginal utility are

sold. Let b be the unique value satisfying G(b) < m and G(b) + E(b) ≥ m. Let m′ = G(b); i.e., m′

is the number of marginal values strictly greater than b.

Example 2.1. Suppose m = 3 and there are two agents. The first agent has the valuation v(1) = 5,

v(2) = 9, and v(3) = 11, while the second agent has the valuation v(1) = 2, v(2) = 4, and v(3) = 5.

Then we have V = {5, 4, 2, 2, 2, 1}, δ = 1, and ε = 0.5. The optimal welfare is 11 (obtained by either

allocating all three items to the first agent, or by allocating two items to the first agent and a single

item to the second agent). Moreover, we have G(2) = 2, E(2) = 3, b = 2, and m′ = G(2) = 2.

3 Properties of symmetric functions

In this section, we consider properties of symmetric functions. In addition to being interesting in

their own right, these properties will later help us establish welfare guarantees for posted prices

(Theorem 8.4).

First, we show that every symmetric function admits a unique minimal XOS function as well

as a unique minimal submodular function that upper bounds it.

Proposition 3.1. Let v be a symmetric function, let ṽ be the symmetric function ṽ(i) = maxj≥i
i
j ·

v(j). Then ṽ is XOS, ṽ ≥ v, and for every symmetric XOS function v̂ such that v̂ ≥ v, we have

v̂ ≥ ṽ.

Proof: We start by proving that ṽ is an XOS function. By Definition 2.3 it is enough to show
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that for every i, j such that i < j it holds that ṽ(i) ≥ i
j · ṽ(j). Let i, j be such that i < j.

We know that there exists k ≥ j such that ṽ(j) = j
k · v(k) by the definition of ṽ, and therefore

ṽ(i) ≥ i
k · v(k) = i

k ·
k
j · ṽ(j) = i

j · ṽ(j), as needed. It holds that ṽ ≥ v since ṽ(i) ≥ i
i · v(i) for all i.

Now, let v̂ be a symmetric XOS function such that v̂ ≥ v, and let i ≤ m. Let j = argmaxj≥i
i
j ·

v(j). We have that v̂(j) ≥ v(j), and by Definition 2.3 that v̂(i) ≥ i
j · v̂(j) ≥ i

j · v(j) = ṽ(i), as

needed.

Proposition 3.2. Let v be a symmetric function, and let ṽ be the symmetric function ṽ(i) =

maxj≥i,k≤i

(
i−k
j−k · (v(j)− v(k)) + v(k)

)
(when j = i = k the expression in the maximum is v(i)).

Then ṽ is submodular, ṽ ≥ v, and for every symmetric submodular function v̂ such that v̂ ≥ v, we

have v̂ ≥ ṽ.

Proof: We start by proving that ṽ is a submodular function. To this end, we present an alternative

way to define ṽ that makes its submodularity clear. Plot the points (i, v(i)) for all i ∈ [m] on a

graph, and define v′(0) = 0. If we have defined v′(j) for all j ≤ i, then consider the least k > i

such that no point of v lies strictly above the line connecting (i, v(i)) and (k, v(k)). For all j with

i < j ≤ k, define v′(j) so that the point (j, v′(j)) lies on this line. Since the slope of the lines

cannot increase along this process, v′ is submodular.

It holds that ṽ ≥ v since ṽ(i) ≥ v(i) for all i. We show that in fact ṽ = v′. Fix any i ∈ [m], and

suppose that v′(i) is defined by the line connecting (r, v(r)) and (s, v(s)) for some r < s. We have

v′(i) = v(r) + (v(s)− v(r)) · i−rs−r , so v′(i) ≤ ṽ(i). Moreover, since all points of v lie on or below this

line, the maximum of v(j) + (v(k)− v(j)) · i−jk−j is attained at j = r and k = s, so v′(i) = ṽ(i).

Now, let v̂ be any symmetric submodular function such that v̂ ≥ v, and let i ≤ m. Let

r, s = argmaxj≤i,k≥iv(j) + (v(k)− v(j)) · i−jk−j . We have that v̂(r) ≥ v(r) and v̂(s) ≥ v(s). Therefore

v̂(i) ≥ v̂(r) + (v̂(s)− v̂(r)) · i− r
s− r

= v̂(r) · s− i
s− r

+ v̂(s) · i− r
s− r

≥ v(r) · s− i
s− r

+ v(s) · i− r
s− r

= v(r) + (v(s)− v(r)) · i− r
s− r

= ṽ(i),

as needed.

We are interested in approximating functions with “simpler” functions. Specifically, for two

classes of functions V1 ⊆ V2, we want to determine the smallest constant c such that for any

function v ∈ V2, there exists a function ṽ ∈ V1 such that v ≤ ṽ ≤ cv. We answer this question for

each pair from the classes of subadditive, XOS, and submodular functions and show that the best

constant is c = 2 for all of these pairs. (Note that since all three classes are closed under scalar

multiplication, the inequality v ≤ ṽ ≤ cv above can also be replaced by v/c ≤ ṽ ≤ v.)
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Proposition 3.3. For every subadditive function v, there exists a submodular function ṽ such that

ṽ ≥ v and ṽ ≤ 2 · v.

Proof: Consider the minimal submodular function ṽ that upper bounds v defined in Proposition

3.2. For a certain i let s, r = argmaxj≥i,k≤i
i−k
j−k · (v(j)− v(k)) + v(k). It holds that

ṽ(i) =
i− r
s− r

· (v(s)− v(r)) + v(r)

≤ i

s
· (v(s)− v(r)) + v(r)

≤ i

s
· (v(i · ds/ie)− v(r)) + v(r)

≤ i

s
· (ds/ie · v(i)− v(r)) + v(r)

≤ i

s

((s
i

+ 1
)
· v(i)− v(r)

)
+ v(r)

=
i

s

((s
i

+ 1
)
· v(i)

)
+ v(r)

(
1− i

s

)
≤ i

s

((s
i

+ 1
)
· v(i)

)
+ v(i)

(
1− i

s

)
= 2 · v(i),

where the second and the last inequalities follow from the fact that v is nondecreasing, and the

third inequality follows from the fact that v is subadditive.

Proposition 3.3 immediately yields the following two results.

Proposition 3.4. For every subadditive function v, there exists an XOS function ṽ such that ṽ ≥ v
and ṽ ≤ 2 · v.

Proposition 3.5. For every XOS function v, there exists a submodular function ṽ such that ṽ ≥ v
and ṽ ≤ 2 · v.

Next, we show that the constant 2 is the best possible for all three pairs of classes. Proposi-

tion 3.7 follows directly from Proposition 3.6.

Proposition 3.6. For every 0 ≤ c < 2, there exists an XOS function v such that for every

submodular function ṽ with v ≤ ṽ, we have v(i) < ṽ(i)/c for some i.

Proof: Let l be a large integer to be chosen later. Consider the XOS function

v(i) =

1 if i ∈ {1, . . . , `}
i
` if i ∈ {`, . . . , `2}

.

By Proposition 3.2 and setting j = 1, k = `2, we have that the minimal submodular function ṽ that

upper bounds v satisfies

ṽ(`) ≥ v(1) +
`− 1

`2 − 1
· (v(`2)− v(1)) = 1 +

`− 1

`+ 1
.

Setting ` large enough so that `−1
`+1 > c− 1 yields the desired result.
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Proposition 3.7. For every 0 ≤ c < 2, there exists a subadditive function v such that for every

submodular function ṽ with v ≤ ṽ, we have v(i) < ṽ(i)/c for some i.

Proposition 3.8. For every 0 ≤ c < 2, there exists a subadditive function v such that for every

XOS function ṽ with v ≤ ṽ, we have v(i) < ṽ(i)/c for some i.

Proof: Let l be a large integer to be chosen later. Consider the subadditive function

v(i) =

1 if i ∈ {1, . . . , l}

2 if i = l + 1
.

By Proposition 3.1 we have that the minimal XOS function ṽ that upper bounds v satisfies ṽ(l) =
2l
l+1 . Setting l high enough so that 2l

l+1 > c yields the desired result.

4 Submodular valuations

In this section we consider submodular valuations. We first show a reduction from submodular

to unit-demand valuations. In particular we show how to transform n submodular valuations into

nm unit-demand valuations, in a way that every static pricing for the m items that guarantees ρ

of the optimal social welfare for the unit-demand valuations, will also guarantee ρ of the optimal

social welfare for the submodular valuations. Given this reduction, it is without loss of generality

to assume for positive results in Sections 4.1 and 4.2 (which deal with submodular valuations) that

all valuations are unit-demand.

Let M be a market with m items and n agents each with some valuation vi : [m] → R+. Let

OPT (M) be the social welfare of the welfare-maximizing allocation. In addition, given prices p,

let SW (M,p) be the worst case social welfare obtained in market M under pricing p.

Lemma 4.1. Let M be a market with n agents with symmetric submodular valuations vi’s over

[m]. Consider a market M′ with n ·m agents, denoted by (i, j) for i ∈ [n], j ∈ [m], with symmetric

unit-demand valuations vji with values vi(j)− vi(j − 1). The following holds:

• OPT (M) = OPT (M′)

• For every pricing p, SW (M,p) ≥ SW (M′,p).

Proof: We prove the two parts in order.

• Given an allocation of M that allocates xi items to agent i. The allocation in M′ that al-

locates items to agents (i, j) if j ≤ xi yields the same social welfare, and therefore OPT (M) ≤
OPT (M′). Given an allocation inM′ that allocates items to a set of agentsA = {(i1, j1), . . . , (im, jm)}.
The allocation in M that allocates |{j : (i, j) ∈ A}| items to agent i yields at least the same

social welfare, therefore OPT (M) ≥ OPT (M′). We get that OPT (M) = OPT (M′).
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• Let σ be the worst case order for market M with pricing p, where agent i arrives at turn

σ(i). And let x1, . . . , xn be the allocation that generates the worst case social welfare. Let σ′

be the order of arrival in market M′ where agent (i, j) arrives at turn m · (σ(i) − 1) + j. It

is easy to see that the allocation where agent (i, j) is allocated an item if and only if xi ≥ j,
is a valid allocation with respect to the order of arrival σ′ and pricing p. The social welfare

of this allocation is SW (M,p), therefore SW (M,p) ≥ SW (M′,p).

This completes the proof.

4.1 Non-uniform pricing

We first show that we can obtain 2/3 of the optimal welfare for submodular valuations if we are

allowed to set non-uniform prices.

Theorem 4.2. For every market with symmetric submodular valuations, there exists a static item

pricing p that guarantees at least 2/3 of the optimal social welfare.

Proof: By Lemma 4.1 it suffices to show the result for buyers with unit-demand valuations. Define

b,m′, and ε as in Section 2. Consider the following pricing structures:

(P1) set a price of b− ε to all items;

(P2) set a price of b− ε to m−m′ items and a price of b+ ε to m′ items.

We claim that the maximum of these pricing structures gives at least 2/3 of OPT.

Under pricing (P1) all m items will be sold, and each one has a marginal value of at least b;

thus, a social welfare of at least mb is guaranteed.

We next show that pricing (P2) guarantees a social welfare of at least max{OPT − (m −
m′)b,OPT −m′b}.

The first observation is that every buyer whose value is greater than b will buy an item. This

is because when the buyer arrives, at least one item with price b+ ε is available (there are m′ such

items initially, and the other buyers can buy at most m′ − 1 of them), and an item is worth to her

more than b + ε. Therefore, the social welfare of these items is at least OPT − (m −m′)b. This

also means that the social welfare under pricing (P2) is at least OPT − (m−m′)b.

The second observation is that at least m−2m′ items that generate value exactly b will be sold.

(It is possible that m − 2m′ is negative, but this does not affect our analysis.) This follows from

the fact that all m−m′ items with price b− ε will be sold (since these are the cheapest items and

the demand is at least m), and at most m′ of the m−m′ items will generate marginal value greater

than b when sold. Therefore, the social welfare from these items is at least (m− 2m′)b.

Since the sets of items considered in the first and second observations are disjoint, the total social

welfare obtained by (P2) is at least their sum, which is OPT−(m−m′)b+(m−2m′)b = OPT−m′b.

11



So the social welfare under pricing (P2) is at least max{OPT − (m−m′)b,OPT −m′b}, as stated.

The average of the guarantee of pricing (P1) and the two guarantees of pricing (P2) is then

(mb + OPT − (m − m′)b + OPT − m′b)/3 = 2OPT/3. Therefore, the best of these two pricing

structures gives social welfare at least 2OPT/3.

The following proposition shows that this bound is tight.

Proposition 4.3. There exists a market with two items and two buyers with symmetric submodular

valuations such that every static pricing can guarantee a social welfare of at most 2/3 of the optimal

social welfare.

Proof: Consider a market with two items and two buyers with the following valuations: Buyer 1

has a unit-demand valuation with a value of 2 for each item. Buyer 2 has an additive valuation with

a value of 1 for each item. The optimal welfare is OPT = 3, obtained by allocating to each buyer

a single item. We show that no pricing can guarantee more than a welfare of 2. Let p = (p1, p2)

be some pricing. Distinguish between the following cases.

1. If p1, p2 ≤ 1, then if the additive buyer arrives first, she will buy both items, resulting in a

social welfare of 2.

2. If one of the prices is ≤ 1 and the other price is > 1, then if the unit-demand buyer arrives

first, she will buy the cheaper item. Then the additive buyer will not buy anything, resulting

in a social welfare of 2.

3. If p1, p2 > 1, then the additive buyer will not buy any item, thus the social welfare cannot

exceed 2.

This concludes the argument.

The negative result in Proposition 4.3 is obtained for a market with two items. In what follows

we show that the guaranteed social welfare is higher when the number of items is large.

Theorem 4.4. For every market of m items with symmetric submodular valuations, there exists a

static item pricing p that guarantees at least 5/7− 1/m of the optimal social welfare.

Proof: By Lemma 4.1 it suffices to show the result for buyers with unit-demand valuations. Define

V, b,m′, and ε as in Section 2. In addition, let k = |{x ∈ V |x ≥ 2b}|. Recall that OPT is the sum

of the m highest values in V , and therefore OPT ≥ mb.

Let f(i, V ) be the function that returns the i-th highest value in the multiset V . Let α1 be

the sum of the highest bm′/2c values in V (i.e., α1 =
∑

i≤bm′/2c f(i, V )), and let α2 be the sum

of the remaining dm′/2e values (i.e., α2 =
∑
bm′/2c<i≤m′ f(i, V )). Consider the following pricing

structures:

(P1) set a price of b− ε to all items;

12



(P2) set a price of b− ε to m−m′ items and a price of b+ ε to m′ items;

(P3) set a price of b− ε to m− k items and a price of 2b− ε to k items;

(P4) set a price of b− ε to m− dm′/2e items and a price of b+ ε to dm′/2e items.

We claim that the maximum of these pricing structures gives at least 5/7− 1/m of OPT.

Following the same reasoning as in the proof of Theorem 4.2, pricing (P1) guarantees a social

welfare of at least mb and pricing (P2) guarantees a social welfare of at least max{OPT − (m −
m′)b,OPT −m′b}. We next consider the new pricings (P3) and (P4).

We first show that pricing (P3) guarantees a social welfare of at least α1 + (m −m′)b. Under

pricing (P3) all k items with value at least 2b will be sold, and following the analysis in Theorem 4.2,

at least m − 2k additional items will be sold for a value of exactly b. Thus, the social welfare is

at least
∑

i≤k f(i, V ) + (m − 2k)b. We show that this expression is at least α1 + (m −m′)b. We

consider two cases:

1. k < bm′/2c. In this case we have:∑
i≤k

f(i, V ) + (m− 2k)b

=
∑

i≤bm′/2c

f(i, V )−
∑

k<i≤bm′/2c

f(i, V ) + 2b(bm′/2c − k) + (m− 2bm′/2c)b

≥ α1 −
∑

k<i≤bm′/2c

(f(i, V )− 2b) + (m−m′)b ≥ α1 + (m−m′)b,

where the last inequality follows from the definition of k (which implies that f(i, V ) < 2b for

every i > k), and the remaining inequalities follow from simple algebraic manipulations.

2. k ≥ bm′/2c. In this case we have:∑
i≤k

f(i, V ) + (m− 2k)b

=
∑

i≤bm′/2c

f(i, V ) +
∑

bm′/2c<i≤k

f(i, V )− 2b(k − bm′/2c) + (m− 2bm′/2c)b

≥ α1 +
∑

bm′/2c<i≤k

(f(i, V )− 2b) + (m−m′)b ≥ α1 + (m−m′)b,

where the last inequality follows from the definition of k (which implies that f(i, V ) ≥ 2b for

every i ≤ k), and the remaining inequalities follow from simple algebraic manipulations.

Consider next pricing (P4). Distinguish between two cases:

1. All items are sold. In the worst case the following happens:

13



(a) Items with price b + ε (there are dm′/2e such items) will generate social welfare from

the lowest values in V that are at least b + ε. Thus, the social welfare is at least∑
bm′/2c<i≤m′ f(i, V ) = α2.

(b) Items with price b − ε will generate social welfare of b each. Thus, the social welfare is

at least (m− dm′/2e)b.

Together, if all items are sold, then the social welfare is at least α2 + (m− dm′/2e)b.

2. There exists an item that remains unsold. It follows that all values strictly greater than

b contribute to the social welfare (otherwise, there would be no unsold item), yielding a

contribution of at least α1 + α2 to the social welfare. In addition, all items of price b − ε
must be sold. There are at least m − m′ − dm′/2e such items beyond the ones considered

toward α1 + α2. Together, if there exists an unsold item, then the social welfare is at least

α1 + α2 + (m−m′ − dm′/2e)b.

Pricing (P4) guarantees the minimum of the two cases, which is:

min(α1 + α2 + (m−m′ − dm′/2e)b, α2 + (m− dm′/2e)b).

Note that the first term is chosen from the minimum exactly when α1 < m′b.

We now show that the best of these four pricing schemes guarantees a social welfare of at least

(5/7−1/m) ·OPT . Assume towards contradiction that all of the above pricing schemes obtain less

than (5/7− 1/m) ·OPT .

• From pricing (P2) we get that

(m−m′)b ≥ OPT − SW(P2) >
2 ·OPT

7
. (1)

m′b ≥ OPT − SW(P2) >
2 ·OPT

7
. (2)

• From pricing (P3) we get that

α2 ≥ OPT − SW(P3) >
2 ·OPT

7
. (3)

We consider two cases:

1. α1 > m′b: In this case we get from pricing (P4) that:

α1 − bm′/2cb > OPT − SW(P4) >
2 ·OPT

7
=⇒

α1 > bm′/2cb+
2 ·OPT

7
≥ m′b

2
− b

2
+

2 ·OPT
7

14



(2)
>

OPT

7
− b

2
+

2 ·OPT
7

=
3 ·OPT

7
− b

2

(3)
=⇒

α1 + α2 ≥ 3 ·OPT
7

− b

2
+

2 ·OPT
7

=
5 ·OPT

7
− b

2
.

Since pricing (P2) guarantees a social welfare of α1 + α2, the last inequality shows that

pricing (P2) obtains a social welfare of at least (5/7− 1/m) ·OPT (recall that b ≤ OPT/m),

a contradiction.

2. α1 ≤ m′b: In this case we get from pricing (P4) that:

dm′/2eb ≥ OPT − SW(P4) >
2 ·OPT

7
=⇒ m′b ≥ 2dm′/2eb− b ≥ 4 ·OPT

7
− b =⇒

mb = (m−m′)b+m′b
(1)

≥ 2 ·OPT
7

− b+
4 ·OPT

7
=

6 ·OPT
7

− b.

Since pricing (P1) guarantees a social welfare of at least mb, the last inequality shows that

pricing (P1) obtains a social welfare of at least (5/7− 1/m) ·OPT (recall that b ≤ OPT/m),

a contradiction.

This concludes the argument.

The guarantee in Theorem 4.4 approaches 5/7 ≈ 0.714 as the number of items grows. The next

theorem shows that this bound cannot exceed 0.802 even for an arbitrarily large number of items.

Theorem 4.5. For every constant c, there exists a market with m > c items with symmetric

submodular valuations such that for any static item pricing p, the social welfare guaranteed by the

pricing is at most 0.802 of the optimal social welfare.

Proof: Consider a market with m items for large enough m. We set β ≈ 2.24698 to be a solution

to the equation x3 − 2x2 − x+ 1 = 0, and α = 1
(β−1)2 ≈ 0.643104. An agent is said to be of type 1

(resp., type 2) if she has a unit-demand valuation with value 1 (resp., β) for all items. Consider a

market with m type-1 agents and bα ·mc type-2 agents. Consider the allocation that gives bα ·mc
items to type-2 agents, and b(1 − α) · mc items to type-1 agents. This allocation gives a social

welfare of bα ·mc ·β+ b(1−α) ·mc ≥ (α ·m−1) ·β+ (1−α) ·m−1 ≥ β
β−1m−4. Given any pricing

p, let c be the number of prices in p that are strictly greater than 1. We consider two cases:

• If c > m
β(β−1) = (1−α)m, then if the type-2 agents arrive first, followed by the type-1 agents,

then there will not be any item left for type-1 agents. Therefore, the social welfare is at most

α ·m · β = m · β + 1

β
≤ 0.802 ·

(
β

β − 1
m− 4

)
for large enough m.

• If c ≤ m
β(β−1) = (1−α)m, then if the type-1 agents arrive first, followed by the type-2 agents,

then the best-case scenario is that the type-1 agents buy the m − c cheap items while the
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type-2 agents buy the c expensive items. Therefore, the social welfare is at most

m− c+ c · β ≤ m+
m

β
= m · β + 1

β
≤ 0.802 ·

(
β

β − 1
m− 4

)
for large enough m.

This concludes the argument.

The next result shows that if we know the order of the agents beforehand (while having no

control over this order), then we can extract the full optimal welfare.

Theorem 4.6. For every market with symmetric submodular valuations with a known order of

arrival, there exists a static pricing p that guarantees the optimal social welfare.

Proof: Define b and ε as in Section 2, and number the agents from 1 to n according to their arrival

order. Let x1, . . . , xn be the optimal allocation that allocates the items of marginal value b greedily

(i.e., agent i gets an item of value b if and only if for all agents j < i, agent j also gets all items of

marginal value b that she desires). Let k be the index of the last agent to get an item of marginal

value b. Consider the pricing p where
∑

i≤k xi items are offered at price b−ε and
∑

i>k xi items are

offered at price b+ ε. This pricing guarantees that agent i will buy exactly xi items, and therefore

guarantees the optimal social welfare as needed.

4.2 Uniform pricing

Next, we show that if we restrict ourselves to using uniform pricing, we can still guarantee 1/2 of

the optimal welfare. Even though the result also follows from Theorem 8.2, which holds for XOS

valuations in the Bayesian setting, we provide a simpler analysis for this particular case.

Theorem 4.7. For every market with symmetric submodular valuations, there exists a static uni-

form pricing p that guarantees at least 1/2 of the optimal social welfare.

Proof: As in Theorem 4.2, setting a price of b − ε to all items guarantees a social welfare of at

least mb. On the other hand, if we set a price of b+ε to all items, then exactly m′ items will be sold

— those items with marginal values greater than b — and their marginal values will be realized by

the buyers. Thus, the social welfare is at least OPT − (m−m′)b.

Therefore, using the best of the two prices guarantees at least max(mb,OPT − (m − m′)b),
which is at least half of OPT .

The last bound is tight, as shown in the following proposition.

Proposition 4.8. There exists a market with m items and two buyers with symmetric submodular

valuations such that every uniform static pricing yields a social welfare of at most m
2m−1(≈ 1

2) of

the optimal social welfare.

Proof: Consider a market with m items and two buyers with the following valuations: Buyer 1 has

a unit-demand valuation with a value of m for each item. Buyer 2 has an additive valuation with
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a value of 1 for each item. The optimal welfare is OPT = 2m− 1, obtained by allocating a single

item to the first buyer, and m − 1 items to the second buyer. We show that no uniform pricing

can guarantee more than a welfare of m. Let p be some uniform pricing. Distinguish between the

following cases.

1. If p ≤ 1, then if the additive buyer arrives first and buys all items, the social welfare is m.

2. If p > 1, then the additive buyer will never buy any item, and therefore the social welfare is

at most m.

This concludes the argument.

The bound 1/2 for uniform pricing is still tight even with identical buyers.

Proposition 4.9. There exists a market with identical buyers with symmetric submodular valuation

such that every uniform static pricing yields a social welfare of at most n+1
2n (≈ 1

2) of the optimal

social welfare.

Proof: Consider a market with n2 items and n buyers with the following valuation: v(i) = n+ i

for i ≥ 1. The optimal welfare is OPT = 2n2, which can be achieved by giving each agent n items.

We show that no uniform pricing can guarantee more than a welfare of n2 + n ≈ OPT/2. Let p be

some uniform pricing. Distinguish between the following cases.

1. If p ≤ 1, then the first buyer will buy all items, and therefore the social welfare is n2 + n.

2. If p > 1, then every buyer will buy at most one item, and therefore the social welfare is at

most n · (n+ 1) = n2 + n.

This concludes the argument.

4.3 Dynamic pricing

If we allow dynamic pricing, the following result shows that we can extract the full optimal welfare.

Theorem 4.10. For every market with n agents with symmetric submodular valuations over m

items, there exists a dynamic item pricing that guarantees the optimal social welfare.

Proof: We prove the theorem by showing a pricing that maintains the invariant that the current

allocation can be completed to an optimal allocation in the induced market.

Define b and ε as in Section 2. Let X ⊆ [n], ` ≤ m be the remaining available agents and the

number of available items in some iteration. Let ki be the number of items worth strictly more

than b to agent i, and let yi be the number of items worth exactly b to agent i. The invariant

that the allocation so far can be completed to an optimal allocation implies that
∑

i∈X ki ≤ `

and
∑

i∈X(ki + yi) ≥ `. Consider the following pricing: If there exists an agent i ∈ X such that
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yi > `−
∑

j∈X kj , then we set a price of b− ε to mini∈X:yi>`−
∑
j∈X kj ki + `−

∑
j∈X kj items, and

a price of b+ ε to the remaining items. Otherwise, we set a price of b− ε to all items.

We claim that this pricing gives exactly OPT. Fix an iteration, and let i be the arriving buyer

in that iteration. We show that:

1. Buyer i buys at least max(ki, `−
∑

j∈X,j 6=i(kj + yj)) items.

2. Buyer i buys at most min(`−
∑

j∈X,j 6=i kj , ki + yi) items.

3. For every number of items x ∈ [ki+max(0, `−
∑

j∈X kj−
∑

j∈X,j 6=i yj),min(`−
∑

j∈X,j 6=i kj , ki+

yi)], it holds that OPT (X \ {i}, `− x) + vi(x) = OPT (X, `).

The combination of these properties ensures that the obtained allocation is optimal since in each

iteration, the value that agents i gets is equal to the loss of the social welfare for the remaining

agents and items.

We now prove the three aforementioned properties.

1. Firstly, if there exists i′ ∈ X such that i′ 6= i and yi′ > `−
∑

j∈X kj , then `−
∑

j∈X,j 6=i(kj +

yj) ≤ ki + `−
∑

j∈X kj − yi′ < ki, and therefore it is enough to show that agent i will buy at

least ki items. Agent i buys at least ki items since ` ≥
∑

j∈X kj ≥ ki and therefore at least

ki items are available at price no more than b+ ε.

Secondly, if the only agent i′ ∈ X such that yi′ > ` −
∑

j∈X kj is agent i, then we have

mini′∈X:yi′>`−
∑
j∈X kj ki′ = ki, and we get that the number of items that are offered at price

b − ε is ki + ` −
∑

j∈X kj ≤ ki + yi. Therefore agent i will buy exactly ki + ` −
∑

j∈X kj ≥
max(ki, `−

∑
j∈X,j 6=i(kj + yj)) items, since `−

∑
j∈X kj ≥ 0.

Otherwise, there is no agent i′ such that yi′ > `−
∑

j∈X kj , and all items are priced at b− ε.
Therefore agent i buys ki + yi ≥ `−

∑
j∈X,j 6=i(kj + yj) items, since

∑
j∈X(kj + yj) ≥ `.

2. If yi > `−
∑

j∈X kj , then mini′∈X:yi′>`−
∑
j∈X kj ki′ ≤ ki, and the number of items at price b−ε

is at most `−
∑

j∈X,j 6=i kj . Since ki ≤ `−
∑

j∈X,j 6=i kj , agent i buys at most `−
∑

j∈X,j 6=i kj

items. Otherwise, agent i buys at most ki + yi ≤ ki + `−
∑

j∈X kj = `−
∑

j∈X,j 6=i kj items.

When all prices are at least b− ε, agent i does not buy more than ki + yi items.

3. We have

OPT (X, `) =
∑
j∈X

vj(kj) +

`−∑
j∈X

kj

 · b
= vi(x) +

∑
j∈X,j 6=i

vj(kj) +

`− x− ∑
j∈X,j 6=i

kj

 · b
18



= vi(x) +OPT (X\{i}, `− x).

The second equation follows from the fact that ki ≤ x ≤ ki + yi, implying that vi(x) =

vi(ki) + (x − ki)b. For the last equation, we need to show that (a) ` − x −
∑

j∈X,j 6=i kj ≥ 0

(i.e., there are enough items), and (b) `− x−
∑

j∈X,j 6=i kj ≤
∑

j∈X,j 6=i yj (i.e., all items will

be bought). Part (a) follows directly from (2) and part (b) follows directly from (1).

Therefore all three properties hold, and the proof is complete.

5 XOS valuations

In this section we consider XOS valuations. We give upper bounds on the approximation ratio for

both static and dynamic pricing.

Theorem 5.1. There exists a market of m items and two agents with symmetric XOS valuations

for which no static pricing yields more the 1− 1/e of the optimal social welfare.

Proof: Consider a market with m items for large enough m. Let k = bm/ec. Assume the following

agents’ valuations:

v1(i) =

k i < k;

i i ≥ k;

v2(i) =


∑

0≤j<m−k
m−k−j
m−1−j i > m− k;∑

0≤j<i
m−k−j
m−1−j i ≤ m− k.

One can check that v1 is XOS and v2 is submodular. The allocation that maximizes the social

welfare is the one that gives all items to agent 1, which generates a social welfare of m. We show

that if agent 2 arrives first, then for every pricing p, agent 1 will not buy more than one item.

Assume agent 2 bought s items, so that all remaining items have a price of at least m−k−s
m−1−s (otherwise

agent 2 would have bought more items). Agent 1’s marginal utility from buying i items beyond a

single item is:

u1(i+ 1)− u1(1) ≤

−i · m−k−sm−1−s i < k;

i− k − i · m−k−sm−1−s m− s > i ≥ k.

For the case where i < k, the marginal utility is clearly smaller than or equal to 0. For the case

where m − s > i ≥ k, the maximum marginal utility is obtained for i = m − s − 1, where it is

also smaller than or equal to 0. We conclude that agent 1 buys at most a single item, if agent 2

arrives first. Therefore the social welfare is bounded by v1(1) + v2(m) = k +
∑

0≤j<m−k
m−k−j
m−1−j =

m −
∑

0≤j<m−k
k−1

m−1−j = m −
∑

k≤j<m
k−1
j ≈ m − k + 1 ≈ (1 − 1/e) · OPT, where the last two

equalities follow by the choice of k = bm/ec.
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Theorem 5.2. There exists a market of three items and two agents with symmetric XOS valuations

for which no dynamic pricing yields more the 5/6 of the optimal social welfare.

Proof: Consider a market with two agents and three items, with the following valuations:

v1(i) =

4 i ≤ 2;

6 i = 3;

and the second agent has a unit-demand valuation with value 1. The allocation that maximizes the

social welfare is the one that gives all items to agent 1, generating a social welfare of 6. Let p be

the prices in the first iteration. If there exists an item j with price pj ≤ 1, then if agent 2 arrives

first, she will buy item j, and the social welfare will be at most 5. If all items have prices greater

than 1, then if agent 1 arrives first, then she will buy at most one item, and again the social welfare

will be at most 5.

6 Subadditive valuations

In this section we consider subadditive valuations. Our main result of this section is the existence

of a uniform price that guarantees at least 1/3 of the optimal welfare.

6.1 Upper bounds

Theorem 6.1. For every market of m items with symmetric subadditive valuations, there exists a

uniform static item pricing p that guarantees at least 1/3 of the optimal social welfare.

Proof: We begin by establishing some technical lemmas. The first lemma provides a guarantee

on the welfare obtained by an agent at a certain price in terms of the number of items left when

the agent arrives.

Lemma 6.2. Let v be a symmetric subadditive valuation function, and let ṽ be the minimal sub-

modular function such that ṽ ≥ v, as defined in Proposition 3.2. Let bk = ṽ(k) − ṽ(k − 1) be the

k-th marginal value of ṽ. When an agent with valuation v arrives, if there are k available items,

all priced at p = bk/2, then the welfare obtained from this agent is at least kbk/2.

Proof: For notational simplicity we write b = bk. Let ` = maxi{ṽ(i)− ṽ(i− 1) ≥ b}; notice that

` ≥ k by definition. Let α be the integer such that `
α ≤ k < `

α−1 . We can assume without loss of

generality that α ≥ 2, since for α = 1 the agent will buy k (= `) items and v(k) = ṽ(k) ≥ kb/2).

Let c = maxi{ṽ(i)− ṽ(i− 1) > b}; notice that c < k by submodularity of ṽ.

Let u(x) = v(x)− x · b/2 be the utility that an agent with valuation v derives from obtaining x

items. Let a =
⌊
`
α

⌋
, a =

⌈
`
α

⌉
, and β ≡ ` (mod α) with 0 ≤ β < α. By simple algebra it holds that

(α− β) · a+ β · a = `. (4)
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We have:

(α− β) · u(a) + β · u(a) = (α− β) ·
(
v(a)− a · b

2

)
+ β ·

(
v(a)− a · b

2

)
= (α− β) · v(a) + β · v(a)− β · a · b

2
− (α− β) · a · b

2
≥ v(`)− `b

2
,

where the last inequality follows from the subadditivity of v and Equation (4). Since the first

expression is a sum of α terms, there exists a number of items x′ ∈ {a, a} such that u(x′) ≥ v(`)− `b
2

α .

Now, let x∗ be the number of items that the agent actually buys. We know that x∗ ≥ c since the

first c items yield an average marginal value of more than b. Moreover, since the agent buys x∗

items when she has a choice of buying x′, we have u(x∗) ≥ u(x′) ≥ v(`)− `b
2

α . We now consider two

cases:

1. v(c) ≥ kb/2. In this case since we have that x∗ ≥ c it follows immediately that v(x∗) ≥ v(c) ≥
kb/2 as needed.

2. v(c) < kb/2. Since all marginal values beyond the cth item are no greater than b, we have

v(c+x) ≤ v(c)+bx for any x ≥ 0. This implies that u(c+x) ≤ u(c)+xb/2 . In particular, since

x∗ ≥ c and x∗ yields the optimal utility to the agent, we have u(c) ≤ u(x∗) ≤ u(c)+(x∗−c)b/2.

This implies that x∗ ≥ c+
⌈
u(x∗)−u(c)

b/2

⌉
, and it follows that:

v(x∗) = v(c) + (x∗ − c) · b
2

+ u(x∗)− u(c) ≥ v(c) +

⌈
u(x∗)− u(c)

b/2

⌉
· b

2
+ u(x∗)− u(c)

≥ v(c) + u(x∗)− u(c) + u(x∗)− u(c) = v(c) + 2u(x∗)− 2u(c)

≥ v(c) + 2 ·
v(`)− `b

2

α
− 2

(
v(c)− cb

2

)
=

2v(`)− `b− αv(c) + αcb

α

=
2(v(c) + (`− c)b)− `b− αv(c) + αcb

α
=
v(c)(2− α) + cb(α− 2) + `b

α

≥
kb
2 (2− α) + `b

α
≥

`b
2(α−1)(2− α) + `b

α
=
`b(2− α) + 2`b(α− 1)

2α(α− 1)
=

`b

2(α− 1)
≥ kb

2
,

as needed.

This completes the argument.

Since we want to set the same price for all items, we need a way to compare the welfare obtained

from setting different prices in order to apply Lemma 6.2. The next lemma states that the number

of items that an agent buys can only decrease as the price goes up.

Lemma 6.3. Let v be any non-decreasing valuation function, and let p1 < p2 be two prices (assigned

to all items). Let x1 = argmax(v(x)− p1 · x), and x2 = argmax(v(x)− p2 · x). Then x1 ≥ x2.

Proof: We know that v(x1)− x1 · p1 ≥ v(x2)− x2 · p1 and v(x2)− x2 · p2 ≥ v(x1)− x1 · p2. Using

these inequalities gives us:

v(x1)− v(x2)

p1
≥ x1 − x2 ≥

v(x1)− v(x2)

p2
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=⇒ (p2 − p1)(v(x1)− v(x2)) ≥ 0

=⇒ v(x1)− v(x2) ≥ 0

=⇒ v(x1) ≥ v(x2).

If it were the case that x1 < x2, then since v is non-decreasing, we must have v(x1) = v(x2). Our

initial inequalities then imply that x1 = x2, a contradiction. So x1 ≥ x2, as claimed.

By combining Lemmas 6.2 and 6.3, we can derive a guarantee on the social welfare obtained by

setting a uniform price.

Lemma 6.4. Let v1, . . . , vn be the subadditive valuations of the agents, and let ṽ1, . . . , ṽn be the

respective minimal submodular functions such that ṽi ≥ vi, as defined in Proposition 3.2. Define b

as in Section 2 with respect to the ṽi’s. When offering the agents the price b/2, the social welfare

obtained will be at least mb/2.

Proof: If all items were sold, then the revenue will be mb/2 and therefore the social welfare will

be at least mb/2 as needed. Otherwise, let `i = max{x | (ṽi(x) − ṽi(x − 1)) ≥ b}. We know that

there exists an agent i such that she bought less than `i items (else all items would have been sold).

Suppose that upon the arrival of agent i there are k items remaining for sale. If k ≥ `i then agent

i will buy at least `i items, contradicting our assumption, so k < `i.

Let b′ be the kth marginal value of ṽi; in particular, b′ ≥ b. By Lemma 6.2, if we set a price

of b′/2, then the welfare obtained from agent i is at least kb′/2. Now, by Lemma 6.3, we can only

sell more items to agent i by setting a lower price b/2. This implies that the welfare obtained by

this agent is at least kb/2. In addition, it is known that m− k items were sold prior to the arrival

of agent i, contributing at least (m− k)b/2 to the social welfare. We conclude that the total social

welfare is at least (m− k)b/2 + kb/2 = mb/2.

With Lemma 6.4 in hand, we can now derive the 1/3 approximation on the social welfare with

uniform pricing.

Let v1, . . . , vn be the subadditive valuations of the agents, and let ṽ1, . . . , ṽn be the respective

minimal submodular functions such that ṽi ≥ vi, as defined in Proposition 3.2. Define V, b,m′,

and ε with respect to the ṽi’s as in Section 2. We show that one of the following pricing schemes

guarantees at least 1/3 of the optimal social welfare:

(P1) a uniform price of b+ ε;

(P2) a uniform price of b/2.

Let (x1, . . . , xn) be the optimal partition of items to agents (where xi is the number of items

allocated to agent i), and let OPT = v1(x1) + . . . + vn(xn) be the optimal social welfare. It is

easy to see that OPT ≤
∑

b<b′∈V b
′ + (m −m′)b (since the RHS is the optimal allocation under

valuations ṽi’s, which is at least as high as the optimal welfare of vi’s).
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Pricing (P1) guarantees exactly a welfare of
∑

b<b′∈V b
′. Pricing (P2) by Lemma 6.4 guarantees

a welfare of at least mb/2. The best of the two guarantees yields at least 1/3 of the optimal social

welfare.

If there are two identical agents, the bound in Theorem 6.1 can be improved to 2/3.

Theorem 6.5. For every market of m items and two identical agents with symmetric subadditive

valuations, there exists a uniform static item pricing p that guarantees at least 2/3 of the optimal

social welfare.

Proof: Let OPT be the optimal social welfare, and v the valuation function of the two agents.

Set a uniform price of OPT/3m. In the optimal allocation, the total utility of the two agents, if

they were to buy the items at this price, is OPT −m ·OPT/3m = 2OPT/3, so at least one agent

gets utility at least OPT/3. This means that in the allocation that results from setting the price

OPT/3m, the first agent must also get utility at least OPT/3, since all items are still available. If

the first agent buys at most half of the items, so does the second agent, and the total utility (and

hence the welfare) is at least 2OPT/3 as we want. So suppose that the first agent buys m′ > m/2

items. The first agent contributes m′ ·OPT/3m to the revenue and has utility at least OPT/3, so

since welfare is the sum of revenue and utility, we have v(m′) ≥ OPT
3 ·

(
1 + m′

m

)
.

It suffices to show that the second agent contributes at least 2OPT/3 − v(m′) to the welfare.

We consider two cases.

1. v(m −m′) ≥ 2OPT
3 − v(m′) + OPT

3m · (m −m′). In this case, the second agent can guarantee

utility at least 2OPT/3− v(m′) by buying all of the remaining m−m′ items, so the agent’s

actual utility (and hence contribution to the welfare) is at least 2OPT/3− v(m′).

2. v(m−m′) < 2OPT
3 −v(m′)+ OPT

3m ·(m−m
′). Let k :=

⌊
m′

m−m′
⌋
, and let x := m′−k(m−m′) =

(k + 1)m′ − km ≥ 0. By considering the possibility that the second agent buys x items, we

get the desired conclusion if v(x) ≥ 2OPT
3 − v(m′) + OPT

3m · x. Hence we may assume that

v(x) < 2OPT
3 − v(m′) + OPT

3m · x. We have

v(m′) = v(k(m−m′) + x)

≤ k · v(m−m′) + v(x)

< (k + 1)

(
2OPT

3
− v(m′)

)
+
OPT

3m
·m′,

where the first inequality follows from subadditivity of v. Rearranging, we find that (k +

2) · v(m′) < OPT
3 ·

(
2k + 2 + m′

m

)
. Combining this with the previous estimate v(m′) ≥

OPT
3 ·

(
1 + m′

m

)
, we have (k + 2)

(
1 + m′

m

)
< 2k + 2 + m′

m , which rearranges to x < 0, a

contradiction. Hence the second case cannot occur.

This completes the proof.
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6.2 Lower bounds

The next propositions show that the bound in Theorem 6.1 cannot be improved to more than 1/2,

and in the case of using only uniform pricing, cannot be improved to more than 1/3. This means

that the bound in Theorem 6.1 is tight for uniform pricing.

Proposition 6.6. There is a market with symmetric subadditive valuations with m items and two

agents such that no static pricing p guarantees more than 1/2 of the optimal social welfare.

Proof: Consider a market where the first agent has a valuation v1(i) = 1 for i ≤ m − 1 and

v1(m) = 2, and the second agent has a unit-demand valuation with value 1
m−1 . The optimal

allocation is giving all the items to the first agent (therefore the optimal social welfare is 2). Let p

be any pricing. If there exists i such that pi ≤ 1
m−1 , then if agent 2 arrives first, she will buy an

item and the social welfare will be bounded by 1 + 1
m−1 . Otherwise we have pi >

1
m−1 for all i. In

this case, agent 1 has no incentive to buy more than one item, and again the social welfare will be

bounded by 1 + 1
m−1 . Taking m large, this yields the ratio of 1/2 as claimed.

Proposition 6.7. There is a market with symmetric subadditive valuations with m items and three

agents such that no uniform static pricing p guarantees more than 1/3 of the optimal social welfare.

Proof: Consider a market where the first agent has a valuation v1(i) = m − 1 + i for i ≤ m − 1

and v1(m) = 3m − 2, the second agent has a unit-demand valuation with value 2, and the third

agent has an additive valuation v3(i) = i. The optimal allocation is giving all items to the first

agent, which yields the optimal social welfare of 3m − 2. Let p be any uniform pricing. If p ≤ 1,

then if agent 3 arrives first, she will buy all the items and the social welfare will be bounded by m.

If 1 < p ≤ 2, then if agent 2 arrives first, then she will buy an item and then only the first agent

will buy an additional item, and the social welfare will be bounded by m+ 2.

Otherwise we have that p > 2. In this case, agent 1 has no incentive to buy more than one

item, the other agents will not buy any item, and again the social welfare will be bounded by m.

Taking m large, this yields a ratio of 1/3, as claimed.

In the case of two identical agents, the approximation cannot be improved to more than 3/4.

In this special case, we can guarantee at least half of the social welfare by applying Theorem 7.3.

Proposition 6.8. There exists a market of m items and two identical agents with a subadditive

valuation such that no static pricing guarantees more the 3/4 of the optimal social welfare.

Proof: Assume that m is even for simplicity. Consider the function

v(i) =


m/4 i < m/2

m/2− 1− ε i = m/2

m/2 i > m/2

.

And consider a market where there are two agents with valuation v. The optimal allocation is to

give m/2 to each agent, which generates a social welfare of m − 2 − 2ε. In order to set prices so
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that each agent will want to buy exactly m/2 items, we need that the m/2 more expensive items

cost less than m/2− 1− ε, and therefore there exists one among them that cost less than 1. When

the first agent arrives, she will buy either exactly m/2 + 1 items or less than m/2 items, since the

cheapest m/2 + 1 cost less than 1 each. Therefore the social welfare obtained by any static pricing

in this market cannot be more than 3m/4 ≈ 3OPT/4, as claimed.

If we use uniform pricing, we cannot guarantee more than 2/3 of the welfare for two identical

agents. This means that the bound in Theorem 6.5 is tight.

Proposition 6.9. There is a market with symmetric subadditive valuations with m items and two

identical agents such that no uniform static pricing p guarantees more than 2/3 of the optimal

social welfare.

Proof: Consider a market where both agents have the valuation v(i) = m + i. An optimal

allocation is to give one item to the first agent and the remaining items to the second agent for a

social welfare of 3m. Let p be any uniform pricing. If p ≤ 1, then the first agent buys all the items

and the social welfare is 2m. Otherwise we have p > 1, and both agents only buy one item for a

social welfare of 2m+ 2. Taking m large, this yields a ratio of 2/3 as claimed.

7 General valuations

In this section we consider general valuations. While the analysis assumes monotonicity, all results

hold even for non-monotone valuations; simply do all calculations based on the monotone closure

of the valuations, and the results hold for the valuations themselves.

7.1 Worst-case ordering

We first show that for general valuations, we cannot guarantee more than 1/m of the optimal

welfare even if we know the order of arrival.

Proposition 7.1. There is a market with symmetric valuations over m items and two agents such

that no static pricing p guarantees more than 1/m of the optimal social welfare even for a known

order of arrival.

Proof: Consider a market where the first agent has a unit-demand valuation with value 1, and the

second agent is single-minded for the set of all items with value m. The optimal allocation is giving

all the items to the second agent (therefore the optimal social welfare is m). Let p be any pricing.

If there exists i such that pi < 1, then the first agent will buy an item and the social welfare will

be bounded by 1. Otherwise, pi ≥ 1 for all i and therefore the price of the bundle of all items is at

least m. This means agent 2 has no incentive to buy the bundle and the social welfare obtained by

these prices is 0.
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The example in Proposition 7.1 is as bad as it gets: We can guarantee 1/m of the optimal

welfare with uniform pricing.

Theorem 7.2. For every market of m identical items, there exists a uniform static item pricing

p that guarantees at least 1/m of the optimal social welfare.

Proof: Consider an allocation that yields the optimal welfare, and let β be the highest average

welfare per item among all agents in this allocation. Clearly, OPT ≤ mβ. Set the uniform price to

be β − ε for small enough ε. Then at least one item will be sold, since the agent with the highest

average welfare per item in the optimal allocation can achieve positive utility. It follows that the

welfare obtained by this pricing is at least β.

7.2 Best-case ordering

Next, we show that if we can choose the order of arrival, then we can guarantee at least half of the

optimal welfare. We remark that when agents are identical, the order of arrival does not matter,

and therefore our result holds for the setting with identical agents as well.

Theorem 7.3. For every market of m identical items, there exists a uniform static item pricing

p along with an order of arrival that guarantees at least 1/2 of the optimal social welfare.

Proof: Let v1, . . . , vn be the valuations of the agents, and let ṽ1, . . . , ṽn be the respective minimal

submodular functions such that ṽi ≥ vi, as defined in Proposition 3.2. Define V, b, and m′ as in

Section 2 with respect to the ṽi’s. In addition, one can find a sufficiently small ε so that at the

price b − ε, whenever an agent buys an additional set of items that belong to the same “marginal

value segment” of ṽi, the average marginal value of items in the set is at least b. Let (x1, . . . , xn)

be the optimal allocation of items to agents where xi is the number of items allocated to agent i,

and let OPT = v1(x1) + . . .+ vn(xn) be the optimal social welfare.

We show how to construct a pricing scheme that guarantees at least OPT/2:

(P1) a uniform price of b + ε with any arrival order (in this case the order does not influence

the social welfare);

(P2) a uniform price of b− ε with some arrival order σ to be chosen.

It is easy to see that OPT ≤
∑

b<b′∈V b
′+(m−m′)b, since the RHS is the optimal allocation under

valuations ṽi’s, which is at least as high as the optimal welfare under vi’s.

Pricing (P1) guarantees a welfare of exactly
∑

b<b′∈V b
′. We next show that we can generate

orders σ, σ′ so that the social welfare of the best of pricing (P1) and pricing (P2) with order σ or

σ′ will guarantee at least OPT/2. We start with an arbitrary order σ for (P2) and consider three

cases.

1. All items are sold. The social welfare will be at least mb, and the best of pricing (P1) and

(P2) with order σ will generate a social welfare of at least OPT/2.
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2. Not all items are sold, but the number of items bought by every agent i is at least the

number of items with marginal contribution greater than b (with respect to ṽi). Suppose

that m′ ≤ k < m items are sold in total (and therefore the social welfare of pricing (P2) and

order σ is exactly
∑

b<b′∈V b
′ + (k −m′)b). In this case we have that there exists an agent i

such that ṽi(m − k + 1) − ṽi(m − k) ≥ b; otherwise the agents would get all the items that

contribute to them at least b until at least k + 1 items are sold. We set σ′ to be an order

where agent i is the first agent to arrive. In order σ′ and pricing (P2), we have that the

first agent (i.e., agent i) will buy at least m − k + 1 items (since the marginal value of the

first m − k + 1 items is at least b and the price is less than b, and all items are available in

this stage). The sum of the social welfare of the two schemes (with order σ or σ′) is at least∑
b<b′∈V b

′+ (k−m′)b+ (m− k+ 1)b ≥ OPT , and therefore the best of the two will generate

at least OPT/2 as needed.

3. Not all items are sold, and the number of items bought by some agent i is less than the

number of items with marginal contribution greater than b (with respect to ṽi). Suppose that

k items are sold in total. In this case we have that k > m −m′; otherwise, when an agent

with marginal value greater than b is offered, there will be enough items available for her to

buy all items with marginal value greater than b (since there are at most m′ such items and

at least m′ items are available for her to buy). Therefore the social welfare of this pricing

scheme is at least kb > (m − m′)b. Therefore the best of this pricing scheme and pricing

scheme (P1) will generate a social welfare of at least OPT/2.

This concludes the argument.

The bound 1/2 in Theorem 7.3 is also tight.

Proposition 7.4. There exists a market of m items for which no static pricing and order of arrival

yields more than 1/2 of the optimal social welfare.

Proof: Assume that m is even for simplicity. Consider the function

v(i) =


0 i < m/2

m/2− ε i = m/2

m/2 + 1 i > m/2

.

And consider a market where there are two agents with valuation v. Since the agents have the

same valuation, the order of arrival does not influence the social welfare. The optimal allocation

is to give m/2 items to each agent. In order to set prices so that each agent will want to buy at

least m/2 items, we need that the m/2 more expensive items together cost less than m/2− ε, and

therefore there exists one among them that costs less than 1. When the first agent arrives, she will

buy exactly m/2 + 1 items, since the cheapest m/2 + 1 cost less than 1 each. Therefore the social

welfare obtained by any static pricing in this market cannot exceed m/2 + 1 ≈ OPT/2, as claimed.

27



8 Bayesian setting

In this section, we consider the Bayesian setting, where the valuation function of each agent is

drawn independently from a distribution which can be different for different agents.

8.1 XOS valuations

Feldman et al. [18] showed that if agents’ valuations are drawn independently from a distribution

over XOS valuation functions, then there exist prices that yield expected welfare at least half of the

expected optimal welfare. These posted prices are non-uniform, even when the result is specialized

to the case of identical items. We first restate Feldman et al.’s result and then show that if the

items are identical, then the same bound can be obtained using uniform prices.

Theorem 8.1. [18] Let F = F1× . . .×Fn be a product distribution over XOS valuation functions.

For every v = (v1, . . . , vn) ∈ F , let X∗(v) = (X∗1 (v), . . . , X∗n(v)) be any allocation that maximizes

the social welfare. Let a = (a1, . . . , an) be additive functions such that vi(S) ≥ ai(S) for any subset

S of items, and vi(X
∗
i ) = ai(X

∗
i ). When the items are offered at prices pj = Ev∈F [ai(j)/2 where j ∈

X∗i (v)], the expected social welfare is at least OPT/2.

Theorem 8.2. Let F = F1 × . . . × Fn be a product distribution over symmetric XOS valuation

functions. Let OPT be the expected optimal social welfare. When all items are offered at the

uniform price OPT/2m, the expected social welfare is at least OPT/2.

Proof: Let G be the uniform distribution over m different classes of the zero valuation. We notate

the m different classes as 0σ for σ ∈ [m]. Let F̂ be the distribution F × G. In other words, in

addition to the distribution F over the valuations of the n agents, we also add another agent whose

valuation is always zero. Clearly, the distributions F̂ and F have the same expected optimal social

welfare, and for any prices p > 0, the expected social welfare when considering F̂ and F is the

same since the added agent never buys an item.

Let v = (v1, . . . , vn) ∈ F , and let X∗(v) = (X∗1 (v), . . . , X∗n(v)) be any optimal allocation

with respect to v. We define an optimal allocation for every v̂ = (v1, v2, . . . , vn, 0σ) ∈ F̂ to

be X̂∗i (v̂) = {j ∈ [m] | j + σ ∈ X∗i (v)}, where j + σ is considered modulo m. This is an

optimal allocation since the functions are symmetric and the allocation gives the same number

of items to each agent as the original optimal allocation. Let a = (a1, . . . , an) be the additive

functions corresponding to X∗(v) that maximize the social welfare, as defined in Theorem 8.1. Let

â = (â1, . . . , ân) be the additive functions where âi({j}) = ai({j + σ}). Due to the symmetry over

the items, these functions also maximize the social welfare.

We now show that with the new distribution F̂ , the prices are all identical and equal to

OPT/2m. The prices calculated according to Theorem 8.1 are

pj = Ev̂∼F̂

[
âi({j})/2 where j ∈ X̂∗i (v̂)

]
= Ev∼F ,0σ∼G [ai({j + σ})/2 where j + σ ∈ X∗i (v)]
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=
1

2m
· Ev∼F

∑
j′

ai({j′}) where j′ ∈ X∗i (v)

 =
1

2m
·OPT (v) =

OPT

2m
.

This concludes the argument.

8.2 Subadditive and general valuations

We now define a notion that describes how close an arbitrary valuation function is to an XOS

function and derive approximation results in terms of this closeness quantity. The proof of Theorem

8.3 follows the analysis presented by Feldman et al. [18].

Definition 8.1. We say that a (not necessarily symmetric) valuation function v is c-close to XOS if

there exists an XOS function ṽ such that for every set of item S, it holds that v(S)/c ≤ ṽ(S) ≤ v(S).

Theorem 8.3. For any product distribution F over (not necessarily symmetric) valuation functions

that are c-close to XOS, there exist anonymous prices p that guarantee an expected social welfare

of at least 1/2c of the optimal expected welfare.

Proof: For every v = (v1, . . . , vn), let X∗(v) = (X∗1 , . . . , X
∗
n) be an allocation that maximizes

the social welfare with respect to the functions v. Let ṽ = (ṽ1, . . . , ṽn) be the vector of the

corresponding XOS functions; i.e., vi/c ≤ ṽi ≤ vi for every i. Let a = (a1, . . . , an) be additive

functions such that ṽi(S) ≥ ai(S) for any subset S of items, and ṽi(X
∗
i ) = ai(X

∗
i ).

For every item j, we define wj to be the social welfare contribution of item j under valuations

a, and we set its price to be pj = Ev∼F [wj ]/2. (Recall that every vector of valuations v defines an

optimal allocation X∗(v) and XOS functions ṽ, and the allocation and the XOS functions in turn

define additive functions a). The expected maximal social welfare is E[SW] = Ev∼F [
∑
vi(X

∗
i )].

Fix i and (vi,v−i). Let SOLDi(v) denote the items that have been sold before the arrival

of agent i. Consider v′−i ∼ F−i which is independent of v, and let ṽ′−i be the XOS functions

that approximate v′−i. Let X∗(vi,v
′
−i) be an optimal allocation under the valuations (vi,v

′
−i); in

particular, X∗i (vi,v
′
−i) is the bundle assigned to agent i in this allocation. Define a′ analogously

to a with respect to the allocation X∗(vi,v
′
−i) and the valuations ṽ′−i. Let Si(vi,v−i,v

′
−i) =

X∗i (vi,v
′
−i)\SOLDi(v) be the subset of items in X∗i (vi,v

′
−i) that are available when agent i arrives;

therefore her utility is at least the utility from purchasing this set of items. Thus her utility satisfies

ui(v) ≥ Ev′−i

 ∑
j∈Si(vi,v−i,v′−i)

(a′({j})− pj)+
 ,

where f+ = max(f, 0). Here we use the assumption that a′i(S) ≤ ṽi(S) ≤ vi(S) for any subset S of

items. Adding these inequalities for all i and taking expectation over v gives us:
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Ev∼F

[
n∑
i=1

ui(v)

]
≥

∑
j∈M

n∑
i=1

Evi,v−i,v′−i [1j∈X∗i (vi,v′−i) · (a
′({j})− pj)+ · 1j 6∈SOLDi(v)]

=
∑
j∈M

n∑
i=1

Evi,v−i,v′−i [1j∈X∗i (vi,v′−i) · (a
′({j})− pj)+ · 1j 6∈SOLDi(v−i)]

=
∑
j∈M

n∑
i=1

Ev−i [1j 6∈SOLDi(v−i)] · Evi,v′−i [1j∈X∗i (vi,v′−i) · (a
′({j})− pj)+]

≥
∑
j∈M

n∑
i=1

Prv[j 6∈ SOLD(v)] · Evi,v′−i [1j∈X∗i (vi,v′−i) · (a
′({j})− pj)+]

=
∑
j∈M

(
Prv[j 6∈ SOLD(v)] ·

n∑
i=1

Ev[1j∈X∗i (v) · (a({j})− pj)+]

)

≥
∑
j∈M

(
Prv[j 6∈ SOLD(v)] ·

n∑
i=1

Ev[1j∈X∗i (v) · (a({j})− pj)]

)
=

∑
j∈M

Prv[j 6∈ SOLD(v)] · pj .

In the second line, we replace SOLDi(v) by SOLDi(v−i) since the set of items sold before

the arrival of agent i does not depend on vi. In the fourth line, we decrease each probability

Prv−i [j 6∈ SOLD(v−i)] to Prv[j 6∈ SOLD(v)]; the inequality holds since all the remaining terms

are non-negative. In the fifth line, we replace v′−i by v−i since these valuations are drawn from the

same distribution and we are taking their expectation. The last line follows from the definition of

pj .

The expected revenue of this mechanism is
∑

j Prv[j ∈ SOLD(v)] · pj . Therefore the expected

social welfare guaranteed by these prices is at least
∑

j∈M Prv[j ∈ SOLD(v)] · pj +
∑

j∈M Prv[j 6∈
SOLD(v)] · pj
=
∑

j∈M pj . Finally,

∑
j∈M

pj =
1

2
· Ev

∑
j∈M

wj

 =
1

2
· Ev

[
n∑
i=1

ṽi(X
∗
i )

]
≥ 1

2c
· Ev

[∑
vi(X

∗
i )
]
,

and therefore we have a 2c approximation, as claimed.

Since any symmetric subadditive function is 2-close to XOS according to Proposition 3.4, The-

orem 8.3 implies that we can obtain at least 1/4 of the expected optimal welfare when the agents’

valuations are drawn from a product distribution over subadditive valuations. In addition, using

techniques similar to those in the proof of Theorem 8.2, we can achieve this with uniform prices.

Theorem 8.4. Let F = F1×· · ·×Fn be a product distribution over symmetric subadditive valuation
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functions. Let OPT be the expected maximal social welfare. There exists a uniform price on the

items for which the expected social welfare is at least OPT/4.

Finally, we show that we cannot extend our results in the Bayesian setting to general valuations,

even if we can control the order of arrival.

Proposition 8.5. There is a market with a distribution over symmetric valuations with n agents

and m = n2 items such that no static pricing p yields expected welfare more than Θ(1/n) of the

optimal expected welfare, even if we can control the arrival order.

Proof: Consider a market with n identical agents (so that the arrival order does not affect

the expected welfare). Each agent is unit-demand with value 1 with probability 1 − 1/n, and

single-minded with value m over the grand bundle with probability 1/n. With probability at least

1− 1/e, there exists a single-minded agent, implying that the expected optimal welfare is at least

(1 − 1/e)m = Θ(n2). If we price all items at least 1, then a single-minded agent will not buy

anything, and the welfare is at most n. Otherwise, we price some item below 1. With probability

1 − 1/n, the first agent will buy this item and the welfare is again at most n. So the expected

welfare in this case is at most (1− 1/n)n+ (1/n)m = O(n).

9 Discussion

In this paper, we study the fraction of the optimal social welfare that can be achieved via posted

prices in markets with identical items under various assumptions on the designer’s information and

agents’ valuations. We show that in the Bayesian setting, uniform posted prices can guarantee 1/2

and 1/4 of the optimal welfare for XOS and subadditive valuations, respectively. If the designer has

full information on agents’ valuations, then 1/3 of the optimal welfare can be obtained via uniform

prices for subadditive valuations. For general valuations, we exhibit a tight bound of 1/m for both

uniform and non-uniform prices; on the other hand, if the designer can control the arrival order,

then 1/2 of the optimal welfare can be guaranteed for such valuations.

Our work sheds light on the power of uniform prices for settings with identical items. For

submodular valuations in the full-information setting, there is a gap between the guarantee that

can be obtained by uniform and non-uniform prices, while for XOS valuations in the Bayesian

setting there is no gap. It remains open whether such a gap exists for subadditive valuations, both

for the full-information and the Bayesian setting. Another important open question in the more

general setting with non-identical (i.e., heterogeneous) items that remains from previous work is

whether the bound of logm for subadditive valuations by Feldman et al. [18] can be improved, or

whether a constant approximation can be achieved in this setting.
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