
Optimal Pricing For MHR and λ-Regular Distributions∗

YIANNIS GIANNAKOPOULOS and DIOGO POÇAS, TU Munich, Germany

KEYU ZHU†, Georgia Institute of Technology, USA

We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction

setting, where n bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone

Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an

(asymptotically) optimal revenue. In particular, the approximation ratio is shown to be 1 + O(ln lnn/lnn),
matched by a tight lower bound for the case of exponential distributions. This improves upon the previously

best-known upper bound of e/(e − 1) ≈ 1.58 for the slightly more general class of regular distributions. In the

worst case (over n), we still show a global upper bound of 1.35. We give a simple, closed-form description of

our prices which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely

just the expectation of its second-highest order statistic.

Furthermore, we extend our techniques to handle the more general class of λ-regular distributions that
interpolate betweenMHR (λ = 0) and regular (λ = 1). Our anonymous pricing rule now results in an asymptotic

approximation ratio that ranges smoothly, with respect to λ, from 1 (MHR distributions) to e/(e − 1) (regular
distributions). Finally, we explicitly give a class of continuous distributions that provide matching lower

bounds, for every λ.

CCS Concepts: • Theory of computation → Computational pricing and auctions; Approximation algo-
rithms analysis; Algorithmic mechanism design.

Additional Key Words and Phrases: pricing, optimal auctions, hazard rate distributions, regular distributions,

λ-regularity

1 INTRODUCTION
In this paper we study a traditional Myersonian auction setting: an auctioneer has an item to sell

and he is facing n potential buyers. Each buyer has a (private) valuation for the item, and these

valuations are i.i.d. according to some known continuous probability distribution F . You can think

of this valuation, as modelling the amount of money that the buyer is willing to spend in order to

get the item. An auction is a mechanism that receives as input a bid from each buyer, and then

decides if the item is going to be sold and to whom, and for what price. Our goal is to design

auctions that maximize the seller’s expected revenue.

We focus only on truthful auctions, that is, selling mechanisms that give no incentives to the

bidders to lie about their true valuation. Such auctions are both conceptually and practically

convenient. This restriction is essentially without loss for our revenue maximization objective, due

to the Revelation Principle
1
.

In general, such an optimal auction can be rather complicated and even randomized (aka a lottery).

However, in his celebrated result, Myerson [44] proved that (under some standard assumptions on

∗
An earlier version of this paper, not including the results for λ-regular distributions, appeared in WINE’18 [32].

Supported by the Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education and

Research (BMBF).

†
Work done mostly while visiting the Chair of Operations Research of TU Munich.

1
In this paper we will avoid discussing such subtler issues as implementability and truthfulness, since our goal is to study

the performance of specific and very simple pricing mechanisms. The interested reader is pointed to [45] as a good starting

point for a deeper investigation of those ideas.

Authors’ addresses: Yiannis Giannakopoulos, yiannis.giannakopoulos@tum.de; Diogo Poças, diogo.pocas@tum.de, TU

Munich, Chair of Operations Research, Arcisstr. 21, München, 80333, Bayern, Germany; Keyu Zhu, keyu.zhu@gatech.edu,

Georgia Institute of Technology, School of Industrial and Systems Engineering, 765 Ferst Drive NW, Atlanta, GA, 30332,

USA.

ar
X

iv
:1

81
0.

00
80

0v
3 

 [
cs

.G
T

] 
 3

1 
O

ct
 2

01
9



2 Yiannis Giannakopoulos, Diogo Poças, and Keyu Zhu

the valuations’ distribution) revenue maximization can be achieved by a very simple deterministic

mechanism, namely a second-price auction paired with a reserve value r . In such an auction, all

buyers with bids smaller than r are ignored and the item is sold to the highest bidder for a price

equal to the second-highest bid (or r , if no other bidder remains). Equivalently, you can think of

this as the seller himself taking part in the auction, with a bid equal to r , and simply running a

standard, Vickrey second-price auction; if the auctioneer is the winning bidder, then the item stays

with him, that is, it remains unsold. Furthermore, Bulow and Klemperer [12] essentially showed

that we can still guarantee a 1 − 1

n fraction of this optimal revenue, even if we drop the reserve

price r completely and use just a standard second-price auction.

No matter how simple and powerful the above optimal auction seems, it still requires explicitly

soliciting bids from all buyers and using the second-highest as the “critical payment”; this is

essentially a centralized solution, that asks for a certain degree of coordination. Arguably, there is

an even simpler selling mechanism which, as a matter of fact, is being used extensively in practice,

known as anonymous pricing: the seller simply decides on a selling price p, and then the item goes

to any buyer that can afford it (breaking ties arbitrarily); that is, we sell the item to any bidder with

a valuation greater or equal to p, for a price of exactly p.
The question we investigate in this paper, is how well can such an extremely simple selling mech-

anism perform when compared to an arbitrary, optimal auction. We resolve this in a very positive

way proving that, under natural assumptions on the valuation distribution, as the number of buyers

grows large, anonymous pricing achieves optimal revenue. More precisely, its approximation ratio

is 1 +O(ln lnn/lnn). Furthermore, we show that in order to get such a near-optimal performance,

the seller does not really need to have full knowledge of the bidders’ population; he just needs to

know the expectation of the second-highest order statistic of the valuation distribution, that is, (a

good estimate of) the expected second-highest bid is enough. Finally, we demonstrate how this

approximation ratio deteriorates as we gradually relax our distributional assumptions.

1.1 Related Work
The seminal reference in auction theory is the work of Myerson [44] who completely characterized

the revenue-maximizing auction in single-item settings with bidder valuations drawn from inde-

pendent (but not necessarily identical) distributions. Under his standard regularity condition (see

Section 2.1), this optimal auction has a very simple description when the valuation distributions are

identical: it is a second-price auction with a reserve. Furthermore, there is an elegant, closed-form

formula that gives the reserve price (see Section 2).

One can achieve good, constant approximations to that optimal revenue by using even simpler

auctions, namely anonymous pricingmechanisms. Thesemechanisms offer the same take-it-or-leave-

it price to all bidders, and the item is sold to someone who can afford it (breaking ties arbitrarily).

An upper bound of e/(e − 1) ≈ 1.58 on the approximation ratio of anonymous pricing can be

shown from the work of Chawla et al. [16]. Blumrosen and Holenstein [11] study the asymptotic

performance of pricing when the number of bidders grows large and demonstrate a lower bound on

the approximation ratio of 0.88/0.65 = 1.37 for anonymous pricing. If we allow for non-continuous

distributions that have point-masses, then Dütting et al. [24] provide a matching lower bound

of e/(e − 1). Although the class of MHR distributions (see Section 2.1) is a natural restriction of

Myerson’s regularity, that has been extensively studied in optimal auction theory, mechanism

design and complexity to derive powerful positive results (see, e.g., [6, 10, 13, 22, 23, 30, 31, 37]), no

better bounds are known for anonymous pricing in this class. This is one of our goals in this paper.

Schweizer and Szech [48] propose a quantitative notion of regularity, termed λ-regularity (see

Section 2.1), that allows for a smooth interpolation between the general class of regularity à la

Myerson and its MHR restriction. This is essentially equivalent to the notion of α-strong regularity
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of Cole and Roughgarden [18] (for α = λ − 1) and ρ-concavity of Caplin and Nalebuff [14] (for

ρ = −λ). These parametrizations have proved very useful in developing a fruitful and more “fine-

grained” theory of optimal auctions (see, e.g., [17, 26, 42, 43]).

Although not immediately related to our model, an important line of work studies the per-

formance of “simple” auctions, such as pricing and auctions with reserves, for the more general

case where bidders’ valuations may be non-identically distributed. In such settings, the elegance

of Myerson’s characterization is not in effect any more, and the optimal auction can be rather

complicated. Nevertheless, in an influential paper, Hartline and Roughgarden [37] showed that,

for regular distributions, a second-price auction with a single anonymous reserve guarantees a

4-approximation to the optimal ratio, and also provided a lower bound of 2. This upper bound

was subsequently improved to e ≈ 2.72 by Alaei et al. [3], achieved even by the simpler class of

anonymous pricing mechanisms. At the same paper, they also provided a lower bound of 2.23 for
the approximation ratio of anonymous pricing for non-i.i.d. bidders. This was recently improved to

2.62 [40] and proven to be tight by Jin et al. [39]. For bounds on the approximation ratios between

different pricing and reserve mechanisms, under various assumptions on the underlying distribu-

tions and the order of the bidders’ arrival, see [3, 16, 24, 40] and [36, Chapter 4]. For anonymous

pricing beyond the standard setting of linear utilities see the very recent work of Feng et al. [27].

Finally, we briefly mention that there is a very rich theory about sequential pricing that deals with

dynamically arriving buyers and which is inspired by and related to secretary-like online problems

and the powerful theory of prophet inequalities. See, e.g., [2, 15, 16, 20, 34, 41, 49]. An intriguing

equivalence between pricing and threshold stopping rules was recently established by Correa et al.

[21]. In particular, Correa et al. [19] showed an upper bound of 1.34 on the approximation ratio of

sequential pricing in the i.i.d. auction model which translates to the same bound for the i.i.d. prophet

setting; this resolved a long-standing open question from Hill and Kertz [38]. Similarly, it is not

difficult to see that our setting of regular i.i.d. anonymous pricing corresponds to single-threshold

rules for the i.i.d. prophet model, for which a tight bound of 1.58 is known [25, 38].

1.2 Our Results
In this paper we study the performance of anonymous pricing mechanisms in single-item auction

settings with n bidders that have i.i.d. valuations from the same regular distribution F . These
mechanisms are extremely simple: the seller simply offers the same take-it-or-leave-it price p
to all potential buyers; the item is then sold to a buyer that can meet this price, that is, has a

valuation greater than or equal to p; the winning bidder pays p to the seller. Our benchmark is the

seller’s expected revenue (with respect to his incomplete, prior knowledge of the buyers’ bids via

distribution F ) and we compare against the maximum revenue achievable by any auction. For our

particular model, this optimal auction is a second-price auction with a reserve [44].

Our main result (Section 4.1; see also Fig. 1) is an explicit, closed-form upper bound on the

approximation ratio of the revenue of anonymous pricing for MHR distributions. As the number

n of buyers grows large, this ratio tends to the optimal value of 1, at a rate of 1 +O(ln lnn/lnn)
(Theorem 4.1). Additionally, we design an upper bound that is fine-tuned to handle also small

values of n (Theorem 4.2), and using this we provide a global, worst-case (with respect to n) upper
bound of 1.35 on the approximation ratio. Previously, only an upper bound of e/(e − 1) ≈ 1.58 was
known (for any value of n), holding for the entire class of regular distributions.
In Section 4.3 we demonstrate how the aforementioned positive guarantee on the revenue of

anonymous pricing can still be (within an exponentially decreasing additive constant) achieved
even if the seller does not have full knowledge of the prior distribution F (see Fig. 2). In particular

(Theorem 4.6), we give an explicit formula for such a “good” pricing rule that only depends on the

expectation of the second-highest order statistic of F .
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To complete the picture, in Section 4.2 we prove that our upper bound analysis is essentially

tight, by showing that the exponential distribution provides an (almost) tight gap instance between

the revenue of anonymous pricing and that of the optimal auction (Theorem 4.4; see also Fig. 2).

Finally, in Section 5 we relax our MHR assumption, allowing for λ-regular valuation distributions.

This provides a smooth, parametrized generalization of the MHR condition (λ = 0), all the way to

the entire class of standard (Myersonian) regularity (λ = 1). Extending our ideas from Section 4, we

are able to provide upper (Theorem 5.1) and lower (Theorem 5.3) bounds on the approximation

ratio of anonymous pricing, for all λ ∈ [0, 1] (see also Fig. 3). We conclude in Section 5.1, by looking

how these bounds behave in the limit as the number of bidders grows arbitrarily large; we derive a

tight value for the approximation ratio as a function of λ, which ranges smoothly from optimality

for MHR distributions (λ = 0) to e/(e − 1) ≈ 1.58 for the most general case of regular distributions

(λ = 1).

We conclude in Section 6 with some open questions for future work.

1.2.1 Techniques. Our upper bound technique differs from related previous approaches [3, 16] in

that we do not use the ex-ante relaxation of the revenue-maximization objective. Instead, we deploy

explicit upper bounds on the optimal revenue (Section 3.1) that depend on key parameters of the

valuation distribution F , namely its order statistics and its monopoly reserve. Then, we pair these

with a range of critical properties of λ-regular distributions that we develop in Sections 3.2 and 3.3.

We believe that some of these auxiliary results may be of independent interest, in particular the

order statistics tail-bounds of Lemmas 3.3 and 3.6 and the reserve-quantile optimal revenue bound

of Lemma 3.4 for the special case of MHR distributions.

Our lower bounds are constructed by means of explicitly defining a family of λ-regular, contin-
uous valuation distributions (see (19)), that act as “bad” instances for any λ. We achieve this by

generalizing an instance by Dütting et al. [24] (tailored to the special case of regular distributions)

to work for general λ’s, while at the same time “smoothing it out” to satisfy continuity.

2 MODEL AND NOTATION
A seller wants to sell a single item to n ≥ 2 bidders. The valuations of the bidders for the item are

i.i.d. from a continuous probability distribution supported over an interval DF ⊆ [0,∞), with cdf

F and pdf f . Throughout this paper we will assume that F is λ-regular, for some real parameter

λ ∈ [0, 1] (for formal definitions and discussion, see Section 2.1 right below). For a random variable

X ∼ F drawn from F and 1 ≤ k ≤ n, we will use Xk :n to denote the k-th lowest order statistic out

of n i.i.d. draws from F . That is, X1:n ≤ X2:n ≤ · · · ≤ Xn:n . For completeness and ease of reference,

we discuss some useful properties of order statistics in Appendix A.

A pricing mechanism that offers a take-it-or-leave-it price of p ∈ DF to all bidders gives to the

seller an expected revenue of

Price(F ,n,p) ≡ p[1 − Fn(p)] ,

since the probability of no bidder being able to afford price p is Fn(p). We will refer to such a

mechanism simply as (anonymous) pricing. Thus, the optimal (maximum) revenue achievable via

pricing is

Price(F ,n) ≡ sup

p∈DF

Price(F ,n,p) .

On the other hand, as discussed in the introduction, the optimal revenue attainable by any mecha-

nism may be higher; as a matter of fact, Myerson [44] showed that it is achieved by a second-price
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auction with a reserve equal to the monopoly reserve2

r ∗ ≡ argmax

r ∈DF

r (1 − F (r )) . (1)

of the valuation distribution. We denote this optimum revenue by Myerson(F ,n), and it can be

shown that

Myerson(F ,n) ≡ E [max {0,ϕ(Xn:n)}] ,

where ϕ(x) = x − 1−F (x )
f (x ) is the (nondecreasing) virtual valuation function of F (see Section 2.1) and

Xn:n its maximum order statistic. Keep in mind that, due to the monotonicity of ϕ and the definition

of the reserve r ∗, we know that ϕ(x) ≥ 0 for all x ≥ r ∗.
Sometimes it is more convenient to work in quantile space instead of the actual valuation domain.

More precisely, the quantile of distribution F corresponding to a value x ∈ DF is q(x) = 1 − F (x).
Using this, we can define what is known as the revenue curve of distribution F , by

R(q) ≡ F−1(1 − q) · q . (2)

In other words, if p ∈ DF is a price and q is its corresponding quantile, then R(q) is the expected
revenue of selling the item to a single bidder, using a price p. Thus, the monopoly reserve quantile

q∗ that corresponds to the monopoly reserve r ∗ defined in (1) is exactly a maximizer of the revenue

curve R(q). So, for a single bidder (n = 1):

Myerson(F , 1) = Price(F , 1) = sup

p∈DF

p(1 − F (p)) = sup

q∈[0,1]
R(q) = R(q∗) .

In general though for more players (n ≥ 2) this is not the case, and our goal in this paper is exactly

to study how well the optimal revenue Myerson(F ,n) can be approximated by pricing Price(F ,n).
That is, we want to bound the following approximation ratio:

APX(F ,n) ≡ Myerson(F ,n)
Price(F ,n) .

Finally, we use Hn to denote the n-th harmonic number Hn =
∑n

i=1
1

i , γ ≈ 0.577 for the Euler-
Mascheroni constant (see also Lemma B.1) and Γ, B for the standard gamma and beta functions:

Γ(x) =
∫ ∞
0

tx−1et dt , B(x ,y) =
∫
1

0
tx−1(1 − t)y−1 dt . Recall that Γ(n + 1) = n! for any nonnegative

integer n and B(x ,y) = Γ(x )Γ(y)
Γ(x+y) for all reals x ,y > 0 (see, e.g., [46, Chapter 5]).

2.1 λ-Regular Distributions
Consider a continuous distribution F supported over an interval DF of nonnegative reals, and a real

parameter λ ∈ [0, 1]. We will say that F is λ-regular if its λ-generalized virtual valuation function

ϕλ(x) ≡ λ · x − 1 − F (x)
f (x)

2
As will become clearer in the following Section 2.1, this quantity is well-defined for all λ-regular distributions with
λ ∈ [0, 1). For the special case of λ = 1, it might happen that there are multiple maximizers in (1), or even none. To formally

deal with such pathological cases, in the former we can take r ∗ = inf argmaxr ∈DF
r (1 − F (r )). In the latter we can slightly

abuse notation and use r ∗ = ∞, which is essentially equivalent to using an arbitrarily large price to approximate within

arbitrary accuracy the value of supr ∈DF
r (1 − F (r )); then, the corresponding reserve quantile is q∗ = 0 and maximizes

the revenue curve in (2) (for a more detailed and rigorous discussion of this issue see, e.g., [28, Appendix 1] and [29,

Appendix C].) The aforementioned choices do not affect the validity of any of the results in the rest of our paper.
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is monotonically nondecreasing in DF . From Schweizer and Szech [48, Proposition 1(iii)], this can

be equivalently restated as {
[1 − F (x)]−λ is convex, if λ ∈ (0, 1] ,
ln[1 − F (x)] is concave, if λ = 0 .

We will use Dλ to denote the family of all λ-regular distributions. It is not difficult to see that, for

any 0 ≤ λ ≤ λ′ ≤ 1, any λ-regular distribution is also λ′-regular. In other words, Dλ ⊆ Dλ′ . As a

matter of fact, this hierarchy is strict (as demonstrated by the distributions defined in (19)).

For the special case of λ = 1, the above definition recovers exactly the standard notion of

regularity à la Myerson [44]. Based on this, for simplicity and consistency, we will feel free in such

cases to drop the λ = 1 subscripts and refer to the corresponding distributions simply as regular and
to the function ϕ1(x) = ϕ(x) as the virtual valuation. An equivalent way of looking at regularity, is

that the revenue curve defined in (2) must be concave.

On the other extreme of the range, for λ = 0 we get the definition of Monotone Hazard Rate
(MHR) distributions.3 Intuitively, MHR distributions have exponentially decreasing tails. Although

they represent the strictest class within the λ-regularity hierarchy, they are still general enough

to give rise to a wide family of natural distributions, like the uniform, exponential, normal and

gamma.

Given the above discussion, λ-regularity can be seen as a quantitative measure of the “regularity”

of the distribution, interpolating smoothly between MHR (λ = 0) and Myerson-regular (λ = 1)

distributions. It will also be convenient to define, for each λ ∈ [0, 1], the worst-case approximation

ratio among all λ-regular distributions:

APX(n, λ) ≡ sup

F ∈Dλ

APX(F ,n) = sup

F ∈Dλ

Myerson(F ,n)
Price(F ,n) .

This will be the main quantity of interest throughout our paper.

3 PRELIMINARIES
3.1 Bounds on the Optimal Revenue
In this section we collect the bounds on the optimal revenueMyerson(F ,n) that we will use for
our main positive results in Sections 4.1 and 5 to bound the approximation ratio of pricing. They

rely on the regularity of the valuation distribution. The first one is essentially a refinement of the

well-known Bulow-Klemperer bound [12] (see, e.g., [36, Corollary 5.3]), and it was proven by Fu

et al. [28]:

Lemma 3.1 (Fu et al. [28]). For n bidders with i.i.d. values from a regular distribution F ,

Myerson(F ,n) ≤ E[Xn−1:n] + R(q∗)(1 − q∗)n−1 ,
where X ∼ F and R is the revenue curve of F and q∗ is the quantile corresponding to the monopoly
reserve price r ∗ of F , q∗ = 1 − F (r ∗).

As an immediate consequence, the bound above holds also for the more restricted classes of

λ-regular distributions, for any λ ∈ [0, 1], and in particular for MHR distributions (see also the

discussion in Section 2).

Our second bound on the optimal revenue, designed particularly for MHR distributions, is a new

one and might be of independent interest also for future work:

3
A standard reference for MHR distributions is that from Barlow and Marshall [8]. For an in-depth treatment of the subject,

we refer to the book of Barlow and Proschan [9, Chapter 2].
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Lemma 3.2. For every MHR distribution F with monopoly reserve price r ∗ and quantileq∗ = 1−F (r ∗),
and any positive integer n,

Myerson(F ,n) ≤ r ∗
∫ q∗

0

1 − (1 − z)n
z

dz .

Proof. Fix an MHR distribution F , with monopoly reserve price r ∗ and corresponding quantile

q∗. Then, we know that for the virtual valuation (see Section 2) it is

ϕ(r ∗) = r ∗ − 1 − F (r ∗)
f (r ∗) ≥ 0 .

Also, from the MHR condition, for any x ≥ r ∗ it must be that

f (r ∗)
1 − F (r ∗) ≤

f (x)
1 − F (x) .

Combining the above we get that, for all x ≥ r ∗,

1 − F (x) ≤ f (x) · 1 − F (r
∗)

f (r ∗) ≤ r ∗ f (x) . (3)

Fix also a positive integer n, and let X ∼ F . Then (see also Appendix A) the maximum order statistic

Xn:n is distributed according to Fn . Observe that (see also Section 2)

∂ Price(F ,n,x)
∂ x

=
∂ x(1 − Fn(x))

∂ x
= 1 − Fn(x) − nxFn−1(x)f (x)

and thus

Myerson(F ,n) = E [max {0,ϕ(Xn:n)}]

=

∫ ∞

r ∗
ϕ(x)dFn(x)

=

∫ ∞

r ∗

(
x − 1 − F (x)

f (x)

)
nFn−1(x)f (x)dx

=

∫ ∞

r ∗
nxFn−1(x)f (x) − n(1 − F (x))Fn−1(x)dx

=

∫ ∞

r ∗
−∂ Price(F ,n,x)

∂ x
+ 1 − Fn(x) − n(1 − F (x))Fn−1(x)dx

= Price(F ,n, r ∗) +
∫ ∞

r ∗
1 + (n − 1)Fn(x) − nFn−1(x)dx .

Also, due to (3), for all x ≥ r ∗:

1 − Fn(x) − n(1 − F (x))Fn−1(x) =
[
1 − Fn(x)
1 − F (x) − nF

n−1(x)
]
(1 − F (x))

≤ r ∗
[
1 − Fn(x)
1 − F (x) − nF

n−1(x)
]
f (x) .

By performing a change of variable to quantile space, that is setting z = 1 − F (x) and observing

that
d z
d x = −f (x) and 1 − F (r ∗) = q∗, we get that∫ ∞

r ∗
1 − Fn(x) − n(1 − F (x))Fn−1(x)dx ≤ r ∗

∫ q∗

0

1 − (1 − z)n
z

− n(1 − z)n−1 dz

= −r ∗ [1 − (1 − q∗)n] + r ∗
∫ q∗

0

1 − (1 − z)n
z

dz
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= −Price(F ,n, r ∗) + r ∗
∫ q∗

0

1 − (1 − z)n
z

dz .

Thus,

Myerson(F ,n) ≤ r ∗
∫ q∗

0

1 − (1 − z)n
z

dz .

□

3.2 MHR Distributions
In this section we state some properties of MHR distributions that will play a critical role into

deriving our main results in the rest of the paper. Lemma 3.3, in particular, might be of independent

interest, since it is providing powerful tail-bounds with respect to the order statistics of the

distribution:

Lemma 3.3. For any continuous MHR random variable X , integers 1 ≤ k ≤ n and real c ∈ [0, 1],
Pr [X < c · E[Xk :n]] ≤ 1 − e−c(Hn−Hn−k ) .

Proof. Let E denote an exponential random variable and also let F andG denote the cumulative

probability functions of X and Xk :n , respectively. Then (see also Appendix A)

dG(y)
dy

= k

(
n

k

)
Fk−1(y)(1 − F (y))n−k dF (y)

dy
, (4)

for almost all y ∈ [0,∞). To simplify notation, also let ν = E[Xk :n]. Our goal then is to upper-bound

F (cν ), i.e. lower-bound 1 − F (cν ). Since F is MHR, ζ (c) = ln(1 − F (cν )) is a concave function of c
with ζ (0) = 0; thus, assuming c ∈ [0, 1] and applying Jensen’s inequality,

ln(1 − F (cν )) ≥ c ln(1 − F (ν )) ≥ c E [ln(1 − F (Xk :n))] = c
∫ ∞

0

ln(1 − F (y))dG(y) ;

the integral can be further simplified using (4) and the changes of variablesu = F (y), t = − ln(1−u);

c

∫ ∞

0

ln(1 − F (y))dG(y) = ck
(
n

k

) ∫ ∞

0

ln(1 − F (y))Fk−1(y)(1 − F (y))n−k dF (y)

= ck

(
n

k

) ∫
1

0

ln(1 − u)uk−1(1 − u)n−k du

= −ck
(
n

k

) ∫ ∞

0

t(1 − e−t )k−1(e−t )n−k dt

= −c E [Ek :n]
= −c(Hn − Hn−k ) ,

the last equality following from Appendix A. So, applying the exponential function on both sides,

finally we get the desired

1 − F (cν ) ≥ e−c(Hn−Hn−k ) .

□

The next lemma states some useful bounds on the monopoly reserve of an MHR distribution:

Lemma 3.4. For any MHR distribution with expectation µ, monopoly reserve r ∗ and corresponding
quantile q∗:
(1) q∗ ≥ 1/e ;
(2) ln(1/q∗) · µ ≤ r ∗ ≤ ln(1/q∗)

1−q∗ · µ.
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Proof. The first property is by now almost folklore, see e.g. [1, Lemma 1] or [7, Claim B.2].

Alternatively, it can be seen as the limiting case of Lemma 3.7 as λ→ 0, since limλ→0
+ (1−λ)1/λ = 1/e .

For the second property, applying [8, Corollary 3.10] for the first-order moments (r = 1), we get

that for any quantile q = 1 − F (x) of our MHR distribution with q ≥ 1/e , it must be that

− lnq · µ ≤ x ≤
[∫

1

0

qy dy

]−1
· µ =

(
q − 1
lnq

)−1
µ .

By the first property of our lemma, it is valid to use the above inequality with the monopoly reserve

quantile q∗ = 1 − F (r ∗) and so, by setting q ← q∗ and x ← r ∗ we have that

− ln(q∗)µ ≤ r ∗ ≤ − ln(q
∗)

1 − q∗ µ .

□

Finally, the following lemma shows that the high-order statistics of MHR distributions are

“well-behaved”, in the sense that they cannot be away from the expectation:

Lemma 3.5. For any MHR random variable X and integer n ≥ 2,

E[Xn−1:n] ≥
(
1 − Hn − 1

n − 1

)
· E[X ] .

Proof. For convenience denote µ = E[X ] and ν = E[Xn−1:n]. From Babaioff et al. [6, Lemma 5.3]

we know that, since X is MHR, its highest-order statistic is upper bounded by

E[Xn:n] ≤ Hn · µ .
Using this we get that:

n · µ = E
[

n∑
i=1

Xi :n

]
=

n−1∑
i=1

E[Xi :n] + E[Xn:n] ≤ (n − 1)ν + Hn · µ ,

and thus (n − 1)ν ≥ (n − Hn)µ, or equivalently, ν ≥ (n−Hn )
n−1 µ =

(
1 − Hn−1

n−1

)
µ. □

3.3 λ-Regular Distributions
The following lemmas are the counterparts of Lemma 3.3 and Lemma 3.4 (Property 1), extending

them to λ-regular distributions for λ > 0.

Lemma 3.6. Let X be a λ-regular distribution, for λ ∈ (0, 1]. Then, for any integer 1 ≤ k ≤ n and
real c ∈ [0, 1],

Pr [X ≤ c · E[Xk :n]] ≤ 1 −
(
1 + c

(
n!Γ(n + 1 − k − λ)
(n − k)!Γ(n + 1 − λ) − 1

))−1/λ
.

Proof. Let F and G be the cumulative density functions of X and Xk :n respectively. Let also

ν = E[Xk :n]. As F is λ-regular, the function ζ (c) = (1 − F (cν ))−λ is a convex function on c , with
ζ (0) = 1; thus, assuming c ∈ [0, 1], and applying Jensen’s inequality,

ζ (c) ≤ 1 + c(ζ (1) − 1) = 1 + c((1 − F (ν ))−λ − 1) ≤ 1 + c(E[(1 − F (Xk :n))−λ] − 1) . (5)

The rest of the proof follows exactly as in the proof of Lemma 3.3. We use a change of variable

to compute the expected value:

E[(1 − F (Xk :n))−λ] =
∫ ∞

0

(1 − F (y))−λdG(y)
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= k

(
n

k

) ∫ ∞

0

F (y)k−1(1 − F (y))n−k−λdF (y)

= k

(
n

k

) ∫
1

0

uk−1(1 − u)n−k−λdu

= k

(
n

k

)
B(k,n + 1 − k − λ)

=
n!Γ(n + 1 − k − λ)
(n − k)!Γ(n + 1 − λ) .

Plugging this into (5) and rearranging gives us the desired result. □

Lemma 3.7 (Schweizer and Szech [48]). For any λ-regular distribution with λ ∈ (0, 1] and
monopoly quantile q∗,

q∗ ≥ (1 − λ)1/λ .

4 BOUNDS FOR MHR DISTRIBUTIONS
To facilitate us with stating and proving our bounds for the approximation ratio of pricing, we

define the following auxiliary function дn : [0,∞) −→ [0,∞), for any positive integer n,

дn(c) ≡ c[1 − (1 − e−c(Hn−1))n] (6)

and its (unique) maximizer in [0, 1] by
cn ≡ argmax

c ∈[0,1]
дn(c) . (7)

In Appendix C we prove some properties of дn that will be used in the rest of this section.

4.1 Upper Bounds
This section is dedicated to proving the main result of our paper. First (Theorem 4.1) we show that

pricing is indeed asymptotically optimal with respect to revenue and then (Theorem 4.2) we also

provide a more refined upper-bound on the approximation ratio that is fine-tuned to work well for

a small number of bidders n. As we will see in the following Section 4.2, our upper bound analysis

of this section is essentially tight (see also Fig. 2).

Theorem 4.1. Using the same take-it-or-leave-it price, to sell an item ton buyers with i.i.d. valuations
from a continuous MHR distribution F , is asymptotically optimal with respect to revenue. In particular,

APX(F ,n) = 1 +O

(
ln lnn

lnn

)
.

A plot of the exact values of this upper bound (given by (12) below) can be seen in Fig. 1 (blue).

Proof. First notice that by using the monopoly reserve price r ∗ of F as a take-it-or-leave it price

to the n bidders, we get an expected revenue of

Price(F ,n, r ∗) = r ∗(1 − F (r ∗)n) = r ∗[1 − (1 − q∗)n] = R(q∗)1 − (1 − q
∗)n

q∗
, (8)

where q∗ = 1 − F (r ∗) is the quantile of the monopoly reserve price, for which we know that q∗ ≥ 1

e
(Lemma 3.4), and R denotes the revenue curve (see Section 2).

Next, for simplicity denote ν = E [Xn−1:n]. For any real c ∈ [0, 1], if we offer a price of c · ν we

have

Price(F ,n, cν ) = cν [1 − F (cν )n] ≥ cν
[
1 −

(
1 − e−c(Hn−1)

)n ]
, (9)
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Fig. 1. The upper bounds on the approximation ratio APX(F ,n) of anonymous pricing for n i.i.d. bidders with
MHR valuations, given by Theorem 4.1 (blue) and Theorem 4.2 (red). The best (smallest) of the two converges
to the optimal value of 1 as the number of bidders grows large, at a rate of 1+O (ln lnn/lnn). A single, unified
plot of this can be seen in Fig. 2 (black), together with a matching lower bound (red). In the worst case (n = 3),
our upper bound is at most 1.354.

the inequality holding due to Lemma 3.3 (for k = n − 1). Optimizing with respect to c we get that

Price(F ,n) ≥ ν max

c ∈[0,1]
дn(c) . (10)

Using the two lower bounds (8) and (10) on the pricing revenue, in conjunction with the upper

bound on the optimal revenue from Lemma 3.1 we can bound the approximation ratio of pricing by

APX(F ,n) = Myerson(F ,n)
Price(F ,n)

≤ ν

ν maxc ∈[0,1] дn(c)
+
R(q∗)(1 − q∗)n−1

R(q∗) 1−(1−q
∗)n

q∗

=
1

maxc ∈[0,1] дn(c)
+
q∗(1 − q∗)n−1
1 − (1 − q∗)n (11)

≤ 1

maxc ∈[0,1] дn(c)
+
(e − 1)n−1

en − (e − 1)n (12)

= 1 +O

(
ln lnn

lnn

)
+O

(( e

e − 1

)−n )
. (13)

Equation (12) holds by observing that function x 7→ x (1−x )n−1
1−(1−x )n is decreasing over (0, 1], for any

n ≥ 2, and taking into consideration that q∗ ≥ 1/e , while for (13) we make use of the asymptotics

from Lemma C.1. The upper bound given by (12) is plotted by the blue line in Fig. 1. □
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Theorem 4.2. The approximation ratio of the revenue obtained by using the same take-it-or-leave-it
price, to sell an item to n buyers with i.i.d. valuations from a continuous MHR distribution F , is at most

APX(F ,n) ≤ max

q∈[1/e,1]
min

{
1

1 − (1 − e−Hn+1)n +
q(1 − q)n−1
1 − (1 − q)n ,

∫ q
0

1−(1−z)n
z dz

1 − (1 − q)n

}
.

In particular, the worst case (maximum) of this quantity is attained atn = 3 and is at mostAPX(F , 3) ≤
1.354.

A plot of the exact values of this upper bound can be seen in Fig. 1 (red).

Proof. From (11) in the proof of Theorem 4.1 we can get the following upper bound on the

approximation ratio, by using (possibly suboptimally) c ← 1 for the maximization operator:

APX(F ,n) ≤ 1

дn(1)
+
q∗(1 − q∗)n−1
1 − (1 − q∗)n =

1

1 − (1 − e−Hn+1)n +
q∗(1 − q∗)n−1
1 − (1 − q∗)n .

On the other hand, using the reserve price of F as a price and combining the guarantee of (8) with

the upper bound on the optimal revenue from Lemma 3.2, gives us

APX(F ,n) ≤
r ∗

∫ q∗

0

1−(1−z)n
z dz

R(q∗) 1−(1−q
∗)n

q∗

=

∫ q∗

0

1−(1−z)n
z dz

1 − (1 − q∗)n ,

since R(q∗) = r ∗q∗. Recalling that q∗ ∈ [1/e, 1] and taking the best (i.e., minimum) of the two bounds

above, finishes the proof. □

4.2 Lower Bound
The lower bound instance of this section (Theorem 4.4) shows that our main positive result for the

approximation ratio of pricing under MHR distributions in Theorem 4.1 is essentially tight (see

also Fig. 2). It is achieved by an exponential distribution instance. Before proving it, we need the

following auxiliary lemma about the maximizers of functions дn that we introduced in (6). Its proof

can be found in Appendix C.

Lemma 4.3. For any positive integer n, function дn (defined in (6)) has a unique maximizer. Fur-
thermore, for all n ≥ 17,

argmax

c≥0
дn(c) ≤ 1 .

Theorem 4.4. For n ≥ 2 bidders with exponentially i.i.d. valuations, the approximation ratio of
anonymous pricing is at least

APX(E,n) ≥ 1

maxc≥0 дn(c)
,

where function дn is defined in (6) and E is the exponential distribution. In particular, the upper bound
derived in the proof of Theorem 4.1 is tight (up to an exponentially vanishing additive factor).

A plot of the lower bound given by the theorem above can be seen in Fig. 2 (red).

Proof. Let X ∼ E be an exponential random variable. Since the revenue of a second-price

auction cannot be greater than the optimal one, we have

Myerson(E,n) ≥ E [Xn−1:n] = Hn − 1,
where the equality is taken from Appendix A. Furthermore,

Price(E,n) = sup

x ≥0
x
(
1 − FnE(x)

)
= sup

x ≥0
x
[
1 − (1 − e−x )n

]
= (Hn − 1)max

c≥0
дn(c) .
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Fig. 2. Bounds on the approximation ratio of anonymous pricing for n = 3, . . . , 30 i.i.d. bidders with MHR
valuations: the upper bound on optimal pricing (black) derived in Section 4.1 (see also Fig. 1), the lower bound
(red) given by Theorem 4.4, and the upper bound of pricing at the expected value of the second-highest order
statistic, scaled down by parameter cn (blue), given in Theorem 4.6 of Section 4.3. They are all (asymptotically)
optimal, their (additive) difference decreasing exponentially fast. They all converge to the optimal value of 1
at a rate of 1 +O(ln lnn/lnn).

Putting the above together, we get the desired lower bound on the approximation ratio.

For the tightness, we need to show that our lower bound is within an additive, exponentially

decreasing factor of the upper bound given in (12). Since the second term in (12) is at most

O
( ( e

e−1
)−n )

, it is enough to show that, for a sufficiently large number of bidders n,

max

c ∈[0,∞)
дn(c) = max

c ∈[0,1]
дn(c) .

This is exactly what we proved in Lemma 4.3, for any n ≥ 17. □

4.3 Explicit Prices – Knowledge of the Distribution
Our main result from Section 4.1 demonstrates that a seller, facing n bidders with i.i.d. valuations

from an MHR distribution F , can achieve (asymptotically) optimal revenue by using just an anony-

mous, take-it-or-leave-it price. Taking a careful look within the proof of Theorem 4.1, we see

that this upper bound is derived by comparing the optimal Myersonian revenue (via the bound

provided by Lemma 3.1) to that of two different anonymous pricings; namely, first (see (8)) we use

the monopoly reserve r ∗ of F , and then (see (9) and (10)) a multiple of the expectation ν = E[Xn−1:n]
of the second-highest order statistic of F , in particular cn · ν where cn = argmaxc ∈[0,1] дn(c) was
defined in (7). Although the latter price requires only the knowledge of ν = E[Xn−1:n], that is not
the case for the former; determining the reserve price r ∗ demands, in general, a detailed knowledge

of the distribution F : it is the maximizer of r (1 − F (r )).
As a result, we would ideally like to provide a more robust solution, that would still provide

optimality but depend only on limited information about F . If we pay even closer attention to the

proof of Theorem 4.1, and the derivation of (13) in particular, we will see that the summand of our

upper bound that corresponds to the pricing using r ∗ is exponentially decreasing, according to( e
e−1

)−n
. Therefore, if we could show that the expected revenue achieved by using an anonymous
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price of cnν is within a constant factor from that of using an anonymous price of r ∗, then we could

deduce that using only price cnν yields essentially the same approximation ratio (and in particular,

asymptotically optimal revenue). We now proceed to formalize this line of reasoning.

Lemma 4.5. For n ≥ 2 bidders with i.i.d. valuations from an MHR distribution F with monopoly
reserve r ∗ and parameters cn ∈ [0, 1] given by (7),

Price(F ,n, cn · E[Xn−1:n]) ≥ (1 − o(1))
e − 1
e
· Price(F ,n, r ∗) ,

where X ∼ F .

Proof. For convenience, denote µ = E[X ] and ν = E[Xn−1:n]. By the proof of Theorem 4.1 (see

(9) and (10)) we know that by offering an anonymous price of cn · ν gives us an expected revenue

of at least

Price(F ,n, cn · ν ) ≥ ν max

c ∈[0,1]
дn(c) ≥ max

c ∈[0,1]
дn(c)

n − Hn

n − 1 · µ ,

the second inequality holding due to Lemma 3.5.

On the other hand, from (8) we know that using the reserve price r ∗ as an anonymous price to

all bidders gives an expected revenue of at most

Price(F ,n, r ∗) = r ∗[1 − (1 − q∗)n] ≤ ln(1/q∗)
1 − q∗ [1 − (1 − q

∗)n] · µ ,

the inequality holding due to Lemma 3.4.

Putting everything together, we finally get that

Price(F ,n, r ∗)
Price(F ,n, cnν )

≤ ln(1/q∗)
1 − q∗ [1 − (1 − q

∗)n] n − 1
n − Hn

1

maxc ∈[0,1] дn(c)
(14)

≤ e

e − 1
n − 1
n − Hn

1

maxc ∈[0,1] дn(c)

≤ (1 + o(1)) e

e − 1 .

The second inequality holds because
ln(1/q∗)
1−q∗ [1 − (1 − q∗)n] ≤

ln(1/q∗)
1−q∗ ≤

e
e−1 , since the function

x 7→ ln(1/x )
1−x is decreasing for x > 0 and q∗ ≥ 1/e (from Property 1 of Lemma 3.4). The last inequality

is a consequence of Lemma C.1 and the fact that Hn ≤ ln(n) + 1. □

As discussed before, Lemma 4.5 shows us that there indeed exists an anonymous price that

depends on the knowledge of only the expectation of the second-highest order statistic of the

valuation distribution and which, furthermore, guarantees an (asymptotically) optimal revenue.

We can even provide a closed-form upper bound for it:

Theorem 4.6. Let F be an MHR distribution and Xn−1:n denote the second-highest out of n i.i.d.
draws from F . Then, using an anonymous price of cn · E[Xn−1:n], where cn is given in (7), to sell an
item to n ≥ 2 bidders with i.i.d. valuations from F , guarantees a revenue with approximation ratio of
at most

Myerson(F ,n)
Price(F ,n, cn E[Xn−1:n])

≤ 1

maxc ∈[0,1] дn(c)

[
1 +

1

e

n − 1
n − Hn

(
e − 1
e

)n−2]
.

A plot of this upper bound can be seen in Fig. 2 (blue).
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Fig. 3. Upper (Theorem 5.1) and lower (Theorem 5.3) bounds on the approximation ratio of anonymous pricing
for n = 5 (left), n = 20 (centre) and n = 100 (right) bidders with i.i.d. λ-regular valuations, as a function of λ.

Proof. Simulating the proof of the approximation upper bound in Theorem 4.1, but now using

(14) to approximate Price(F ,n, r ∗) by Price(F ,n, cn E[Xn−1:n]), the derivation in (11) gives us that

Myerson(F ,n)
Price(F ,n, cn E[Xn−1:n])

≤ 1

maxc ∈[0,1] дn(c)

+
ln(1/q∗)
1 − q∗ [1 − (1 − q

∗)n] n − 1
n − Hn

1

maxc ∈[0,1] дn(c)
· q
∗(1 − q∗)n−1
1 − (1 − q∗)n

=
1

maxc ∈[0,1] дn(c)

[
1 +

n − 1
n − Hn

ln(1/q∗)q∗(1 − q∗)n−2
]

≤ 1

maxc ∈[0,1] дn(c)

[
1 +

1

e

n − 1
n − Hn

(
e − 1
e

)n−2]
,

the last inequality coming from Lemma B.3, together with the fact that q∗ ∈ [1/e, 1] (see Property 1

of Lemma 3.4). □

5 BOUNDS FOR λ-REGULAR DISTRIBUTIONS
In this section we provide the generalized, λ-regular counterparts of our main results for MHR

distributions of the previous Section 4. In particular, we provide upper (Theorem 5.1; cf. Theorem 4.1)

and lower (Theorem 5.3; cf. Theorem 4.4) bounds on the approximation ratio of anonymous pricing

for n bidders with i.i.d. λ-regular valuations, and also derive an asymptotically tight expression for

large n (Theorem 5.5; cf. Theorem 4.1).

The following quantities will help us to state and prove our results in this section. For an integer

n ≥ 2 and λ ∈ (0, 1], we define the quantities βn,λ ,an,λ > 0 and the function дn,λ : [0,∞) → [0,∞)
as follows:

βn,λ ≡
n!Γ(2 − λ)
Γ(n + 1 − λ) =

n∏
k=2

(
1 − λ

k

)−1
, an,λ ≡


(1−λ)1/λ[1−(1−λ)1/λ]n−1

1−[1−(1−λ)1/λ]n , if λ ∈ (0, 1) ,
1

n , if λ = 1 ,
(15)

дn,λ(c) ≡ c
[
1 −

[
1 −

[
1 + c

(
βn,λ − 1

) ]−1/λ ]n ]
. (16)

The function дn introduced in Eq. (6) can be recovered from дn,λ in the limit λ → 0. Note also that

βn,λ corresponds to the fraction in Lemma 3.6 with k = n − 1. Using Stirling’s approximation (see,

e.g., Rudin [47, Ch. 8]) we can derive the asymptotics

βn,λ =
n!Γ(2 − λ)
Γ(n + 1 − λ) ∼ Γ(2 − λ)nλ , (17)
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valid for fixed λ, and for large n.

Theorem 5.1. Let F be a λ-regular distribution with λ ∈ (0, 1], and n ≥ 2. Using the same take-it-
or-leave-it price, to sell an item to n buyers with i.i.d. valuations from F , achieves an approximation
ratio of at most

APX(F ,n) ≤ 1

supc ∈[0,1] дn,λ(c)
+ an,λ

with respect to the optimal revenue, where an,λ and дn,λ are defined as in (15) and (16).

Proof. We follow the same steps as for Theorem 4.1, but use Lemma 3.6 and the quantile bound

from Lemma 3.7. Specifically, instead of (9) we bound the revenue from pricing at c · ν , where
c ∈ [0, 1] and ν = E [Xn−1:n], as

Price(F ,n, cν ) = cν [1 − F (cν )n] ≥ cν
[
1 −

[
1 −

[
1 + c

(
βn,λ − 1

) ]−1/λ ]n ]
. (18)

the inequality holding due to Lemma 3.6 (for k = n − 1). Optimizing with respect to c we get that

Price(F ,n) ≥ ν sup

c ∈[0,1]
дn,λ(c) .

We can now plug this bound at the derivation in Theorem 4.1 to get

APX(F ,n) = Myerson(F ,n)
Price(F ,n)

≤ ν

ν supc ∈[0,1] дn,λ(c)
+
R(q∗)(1 − q∗)n−1

R(q∗) 1−(1−q
∗)n

q∗

=
1

supc ∈[0,1] дn,λ(c)
+
q∗(1 − q∗)n−1
1 − (1 − q∗)n

≤ 1

supc ∈[0,1] дn,λ(c)
+ an,λ .

For the last step, we use the bound q∗ ≥ (1 − λ)1/λ from Lemma 3.7, together with the definition of

an,λ as in (15). □

For the lower bounds, we introduce the following family of rescaled Pareto distributions Fλ,r ,
with support [1,∞), for λ ∈ (0, 1] and r ∈ (0, 1]:

Fλ,r (x) = 1 − 1[
1 + 1

r (x − 1)
]
1/λ . (19)

These can be seen as lying at the edge of λ-regularity; it is not difficult to see that Fλ,r is λ-regular,
but not λ′-regular for λ′ < λ (see Section 2.1). They are inspired by the lower-bound construction

of Dütting et al. [24, Appendix C.3], but we generalized them to be λ-regular and also removed

the point mass at the right endpoint of the support in order to guarantee continuity. On the other

hand, for r = 1, our distributions reduce to standard Pareto: Fλ,1 = 1 − 1

x 1/λ .

We first collect below some basic properties of rescaled Pareto distributions, concerning their

expected second-highest order statistic and pricing revenue; their proof can be found in Appendix C.

Lemma 5.2. For any λ ∈ (0, 1] and r ∈ (0, 1],
(1) EX∼Fλ,r [Xn−1:n] = 1 + r

(
βn,λ − 1

)
;

(2) Price(Fλ,r ,n) = supq∈[0,1]

(
1 + r

(
1

qλ − 1
))
(1 − (1 − q)n).



Optimal Pricing For MHR and λ-Regular Distributions 17

For the sake of exposition we introduce the function Hn,λ(r ,q), for n ≥ 2, λ ∈ (0, 1], r ∈ (0, 1],
and q = [0, 1],

Hn,λ(r ,q) =
(
1 + r

(
1

qλ
− 1

))
(1 − (1 − q)n) . (20)

Note that Hn,λ(r ,q) is continuously defined at q = 0 as the singularity is removable.

Theorem 5.3. For λ ∈ (0, 1], r ∈ (0, 1], and n ≥ 2 bidders with i.i.d. valuations from the rescaled
Pareto distribution Fλ,r (see (19)), the approximation ratio of anonymous pricing is at least

APX(Fλ,r ,n) ≥
1 + r

(
βn,λ − 1

)
supq∈[0,1]Hn,λ(r ,q)

. (21)

This implies the following lower bound on the approximation ratio of λ-regular distributions:

APX(n, λ) ≥ sup

r ∈[0,1]
inf

q∈[0,1]

1 + r
(
βn,λ − 1

)
Hn,λ(r ,q)

. (22)

Proof. Using Lemma 5.2 (1), and the fact that the optimal revenue can be lower bounded by the

second-highest order statistic, gives

Myerson(Fλ,r ,n) ≥ EX∼Fλ,r [Xn−1:n] = 1 + r
(
βn,λ − 1

)
.

Using Lemma 5.2 (2), and the definition of Hn,λ from (20), gives

Price(Fλ,r ,n) = sup

q∈[0,1]
Hn,λ(r ,q) .

Taking the ratio between these two quantities proves (21). If we optimize this ratio for r ∈ (0, 1],
we obtain

APX(n, λ) ≥ sup

r ∈(0,1]
APX(Fλ,r ,n)

≥ sup

r ∈(0,1]

1 + r
(
βn,λ − 1

)
supq∈[0,1]Hn,λ(r ,q)

= sup

r ∈[0,1]
inf

q∈[0,1]

1 + r
(
βn,λ − 1

)
Hn,λ(r ,q)

;

note that in the last step, we can allow r = 0 without loss since the right-hand side is well-defined

and gives a trivial lower bound of 1. □

A plot of the bounds given in Theorems 5.1 and 5.3 can be seen in Fig. 3, for different values of n
and λ.

5.1 Asymptotic Analysis
By observing the plots in Fig. 3, it seems that the upper and lower bounds are approaching some

smooth function of λ as n grows large; moreover, this function appears to increase from 1 at λ = 0

to
e

e−1 ≈ 1.58 at λ = 1, which would recover the known bounds for MHR (this paper, Section 4) and

regular (see, e.g., [16, 24]) distributions. In the remainder of this paper we prove this is indeed the

case, and characterize the limiting function. In other words, we are interesting in taking the limit

(as n →∞) of the quantities defined in Theorems 5.1 and 5.3.

For each λ ∈ (0, 1], let us define the function дλ : [0,∞) → [0,∞) as follows.

дλ(c) = c
(
1 − e−(cΓ(2−λ))−1/λ

)
. (23)
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Fig. 4. The asymptotically tight value of the approximation ratio of anonymous pricing, given in Theorem 5.5,
as a function of the regularity parameter λ (for n →∞ i.i.d. bidders).

The function дλ can be obtained from the function дn,λ introduced in Eq. (16) as n →∞. We also

define λ∗ ≈ 0.4940 as the unique positive root over (0, 1] of the equation (see Lemma B.4)

1 −
(
1 +

Γ(2 − λ)−1/λ
λ

)
e−Γ(2−λ)

−1/λ
= 0 . (24)

For each λ ∈ (0, 1), let also η(λ) denote the unique positive solution of the equation ex = 1 + x
λ ,

which is related to the function η(k) appearing in Blumrosen and Holenstein [11, Section 3.1.2]. In

fact, wemust mention here that one can derive a lower bound on the asymptotic approximation ratio

from [11], which coincides with our Theorem 5.5 in the branch 0 < λ ≤ λ∗. Although Blumrosen

and Holenstein, in general, study distributions satisfying the von Mises conditions, for their lower

bounds they make use of power law distributions of the form F (x) = 1 − 1/xk , for k > 1. These

correspond to our rescaled Pareto distribution Fr,λ from (19) with r = 1 and λ = 1/k .
For the main result of this section we shall make use of the following technical lemma whose

proof can be found in Appendix C.

Lemma 5.4. For each λ ∈ (0, 1], let дλ be defined as in (23) and η(λ) be the unique positive solution
of the equation ex = 1 + x

λ . Let also λ
∗ be the unique root of (24). The supremum of the function дλ

over [0, 1] is as follows.

If 0 < λ ≤ λ∗, then sup

c ∈[0,1]
дλ(c) = sup

c≥0
дλ(c) =

η(λ)1−λ
Γ(2 − λ)(λ + η(λ)) .

If λ∗ ≤ λ ≤ 1, then sup

c ∈[0,1]
дλ(c) = дλ(1) = 1 − e−Γ(2−λ)−1/λ .
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Theorem 5.5. For λ ∈ (0, 1], the approximation ratio of anonymous pricing with arbitrarily many
bidders having i.i.d. valuations from a λ-regular distribution, is asymptotically

lim

n→∞
APX(n, λ) = 1

sup
0≤c≤1 дλ(c)

=


Γ(2−λ)(λ+η(λ))

η(λ)1−λ , 0 < λ ≤ λ∗ ,

1

1−e−Γ(2−λ)−1/λ
, λ∗ ≤ λ ≤ 1 ,

where дλ is defined in (23), λ∗ is the unique root of (24), Γ is the gamma function, and η(λ) is the
unique positive solution of the equation ex = 1 + x

λ .

A plot of this asymptotic approximation ratio can be seen in Fig. 4.

Proof. The second equality, i.e. the characterization of supc ∈[0,1] дλ(c), comes from Lemma 5.4.

The proof of the theorem can be split into three parts; we start by providing an upper bound on

the asymptotics; as for the lower bounds, our proof considers the cases 0 < λ ≤ λ∗ and λ∗ < λ ≤ 1

separately.

To prove an upper bound, we start from the result obtained in Theorem 5.1,

APX(n, λ) ≤ 1

supc ∈[0,1] дn,λ(c)
+ an,λ .

For each λ ∈ (0, 1] and each c ∈ [0, 1], the Stirling approximation in (17) yields the pointwise

convergence дn,λ(c) → дλ(c). Thus, by elementary analysis
4
, we have

lim inf

n→∞
sup

0≤c≤1
дn,λ(c) ≥ sup

0≤c≤1
дλ(c) .

As the additive term an,λ vanishes as n →∞, we get the desired upper bound,

lim sup

n→∞
APX(n, λ) ≤ 1

supc ∈[0,1] дλ(c)
. (25)

To prove lower bounds, we study the asymptotic behaviour of the result obtained in Theorem 5.3,

APX(n, λ) ≥ sup

r ∈[0,1]
inf

q∈[0,1]

1 + r
(
βn,λ − 1

)
Hn,λ(r ,q)

.

We begin by setting r = 1, and applying the change of variables c = 1/(Γ(2 − λ)nλqλ), yielding

APX(n, λ) ≥
βn,λ

sup
0≤q≤1

1−(1−q)n
qλ

=

βn,λ
Γ(2−λ)nλ

supc≥1/(Γ(2−λ)nλ ) c
[
1 −

(
1 − (cΓ(2−λ))−1/λn

)n ] .
Note that the numerator of the above fraction goes to 1 as n →∞ due to Stirling’s approximation.

As for the denominator, we need some technical work to ensure that the limit and the supremum

operators commute, and to show that it converges to supc≥0 дλ(c). This is done in Lemma C.2 in

Appendix C. Thus, we get

lim inf

n→∞
APX(n, λ) ≥ 1

supc≥0 дλ(c)
, (26)

4
It is worth mentioning that one could prove, with some technical effort, that the convergence дn,λ (c) → дλ (c) is actually
uniform on c , which would allow us to interchange the limit with the supremum and write limn→∞ supc∈[0,1] дn,λ (c) =
supc∈[0,1] дλ (c); however, we will not need this result as the lower bound will be matching, so we omit its proof.
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which matches the desired quantity as long as 0 < λ ≤ λ∗, due to Lemma 5.4.

To get tight lower bounds for the case λ∗ < λ ≤ 1, we take an approach very much inspired by

that in [24]; our starting point is again Theorem 5.3, but now the idea is to carefully choose a value

of r which depends on n, for which a specific choice of optimal quantile q∗ gives the desired bound.

For each n ≥ 2 and λ ∈ (0, 1], recall the function Hn,λ : [0, 1] × [0, 1] → R from (20). As this

function is continuous on a compact set, we can apply Berge’s Maximum Theorem (see, e.g, [4,

Theorem 17.31]) to conclude that the correspondence r 7→ argmaxq∈[0,1]Hn,λ(r ,q) is non-empty,

compact valued and upper hemicontinuous.
5
When r = 0, we have Hn,λ(0,q) = 1 − (1 − q)n , which

has a single peak at q = 1. Next we consider the case r = 1, that is, Hn,λ(1,q) = 1

qλ (1 − (1 − q)
n). In

Lemma C.3, Appendix C, we prove that this function has a single peak, and that for λ∗ < λ ≤ 1 and

large enough n, its peak lies to the left of β−1/λn,λ . Thus, by hemicontinuity, we can conclude that, for

large enough n, there must exist some value of r ∈ [0, 1], say rn , such that Hn,λ(rn ,q) is maximized

at precisely the quantile q∗n = β−1/λn,λ .
6
We can now plug this into Theorem 5.3, obtaining

APX(n, λ) ≥ inf

0≤q≤1

1 + rn
(
βn,λ − 1

)
Hn,λ(rn ,q)

=
1 + rn

(
βn,λ − 1

)(
1 + rn

(
βn,λ − 1

) ) (
1 −

(
1 − β−1/λn,λ

)n )
=

1

1 −
(
1 − β−1/λn,λ

)n ;

by taking limits (and with the help of Stirling’s approximation), we get

lim inf

n→∞
APX(n, λ) ≥ 1

1 − e−Γ(2−λ)−1/λ
,

which matches the desired quantity as long as λ∗ < λ ≤ 1, due to Lemma 5.4. This concludes the

proof. □

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we studied the performance of anonymous selling mechanisms for a Bayesian setting

with a single item and n bidders with i.i.d. valuations. We completely characterized the asymptotic

approximation ratio (with respect to the optimal, Myersonian revenue) for λ-regular distributions
with λ ∈ [0, 1],

lim

n→∞
sup

F ∈Dλ

APX(F ,n) = 1

sup
0≤c≤1 дλ(c)

.

This quantity increases smoothly (see Fig. 4) from 1 for MHR distributions to
e

e−1 ≈ 1.58 for

regular distributions. For the special case of MHR distributions, we also characterized the rate of

convergence and provided explicit, “good” pricing schemes that depend only on the knowledge of

the expected second-highest order statistic of the distribution.

A few interesting questions remain. Two quantities of independent interest are

sup

n≥2
sup

F ∈Dλ

APX(F ,n) and sup

F ∈Dλ

lim sup

n→∞
APX(F ,n) .

5
One could, with additional technical work, also prove that Hn,λ (r, q) has a single peak (in q) for each r , making this

correspondence a continuous function; the rest of the argument would be essentially an application of the intermediate

value theorem.

6
Note that this statement is not merely existential: we can compute rn by solving the equation

∂
∂ qHn,λ (rn, q∗n ) = 0.
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The first one corresponds to global bounds on the approximation ratio, which require a finer

analysis, especially in the “small” n range. Even for MHR distributions, there is still a gap between

the global upper bound of 1.35 (numerically achieved at n = 3 in Theorem 4.2) and the global lower

bound of 1.27 (numerically achieved at n = 17 in Theorem 4.4).

The second one intuitively captures settings where the seller’s prior knowledge of a large market

is assumed to be size-independent. Studying this quantity amounts to asking: do the lower bounds

of Theorem 5.5 require constructing a “bad” distribution Fn for each n separately? In the range

closer to MHR, i.e. 0 < λ ≤ λ∗, the answer is “no”: our lower bounds were obtained by setting

r = 1 globally, independent of n. But even for regular distributions, there is still a gap between the

size-independent lower bound of 1.40 (achieved by numerically maximizing (26)) and the upper

bound of 1.58 (see Fig. 4 at λ = 1).

Another interesting direction would be to characterize analytically the rate of convergence (with

respect to the number of bidders n) of the approximation ratio given by Theorem 5.1. In other

words, generalize Theorem 4.1 for λ-regular distributions with λ > 0.
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A ORDER STATISTICS
For the benefit of the reader and for ease of reference, in this section we collect some fundamental

facts from probability theory that are used in the paper.

Let F be (the cumulative function (cdf) of) a continuous probability distribution supported over

an interval DF ⊆ [0,∞). Then F is an absolutely continuous function and thus almost everywhere

differentiable in DF with F ′(x) = f (x), where f is the density function (pdf) of F . Let X ∼ F be a

random variable drawn from F . Then, for any x ∈ DF , Pr [X ≤ x] = F (x)
Let integers 1 ≤ k ≤ n. Then the pdf fk :n of Xk :n , i.e. the k-th (lowest) order statistic out of n

i.i.d. draws from F , is given by (see [5, Eq. (2.2.2)])

fk :n(x) = k
(
n

k

)
Fk−1(x)(1 − F (x))n−k f (x) , x ∈ DF .

In particular, the cdf of Xn:n is simply Fn:n(x) = Fn(x).
The exponential distribution has cdf FE(x) = 1 − e−y and pdf fE(y) = e−y , for y ∈ [0,∞). In

particular, for Y ∼ E, the expected values of its order statistics are (see, e.g., [5, Eq. (4.6.6)])

E [Yk :n] = Hn − Hn−k ,

where Hm =
∑m

i=1
1

i is them-th harmonic number.

B TECHNICAL LEMMAS
Lemma B.1. The sequence Hn − ln(n) is strictly decreasing for all integers n ≥ 1, and converges (as

n →∞) to the Euler–Mascheroni constant γ ≈ 0.577.

Proof. This is a well-known fact from analysis, see e.g. [33, Eq. (6.64)]. □

Lemma B.2. For all integers n ≥ 5,

ln(n) − ln(ln(n)) ≤ Hn − 1 .

Proof. Since lnn is increasing with respect to the positive integer n, using the value of the

constant γ ≈ 0.577 it is not difficult to numerically check that for any n ≥ 5 we have

lnn ≥ ln 5 ≈ 1.609 > 1.526 ≈ e1−γ .
As a result, using Lemma B.1, we can see that

Hn − 1 ≥ ln(n) + γ − 1 = ln

n

e1−γ
> ln

n

lnn
= lnn − ln lnn .

□
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Lemma B.3. For any integer n ≥ 2 and any x ∈ [1/e, 1],

ln(1/x)x(1 − x)n−2 ≤ 1

e

(
e − 1
e

)n−2
.

Proof. If we define the function f : (0, 1] −→ (0,∞) with

fn(x) = ln

(
1

x

)
x(1 − x)n−2 ,

then fn(1/e) = 1

e

( e−1
e

)n−2
. Thus, it is enough to show that fn is monotonically decreasing in [1/e, 1].

Taking its derivative, we see that indeed

f ′n(x) = (1 − x)n−3
[
x − 1 + (1 − (n − 1)x) ln

(
1

x

)]
≤ (1 − x)n−3

[
x − 1 + (1 − x) ln

(
1

x

)]
= −(1 − x)n−2

[
1 − ln

(
1

x

)]
≤ 0 .

The first inequality is due to the fact that n ≥ 2 and ln(1/x) ≥ 0 and the last one due to x ≥ 1/e . □

Lemma B.4. The quantity

ξ (λ) = 1 −
(
1 +

Γ(2 − λ)−1/λ
λ

)
e−Γ(2−λ)

−1/λ

has a unique zero λ∗ over the interval (0, 1]; moreover, ξ (λ) < 0 for 0 < λ < λ∗, and ξ (λ) > 0 for
λ∗ < λ ≤ 1.

Proof. For the proof of this result we will use the well-known fact that the gamma function is

continuously differentiable over [1, 2], and its derivative changes sign from negative to positive at

a single point in this interval ([46, Ch. 5]).

Observe that ξ is continuously differentiable in (0, 1], with

ξ ′(λ) = e−Γ(2−λ)
−1/λ

λ2Γ(2 − λ)1+1/λ
(
Γ(2 − λ)−1/λ + λ − 1

)
Γ′(2 − λ) ;

the first two factors in this expression are strictly positive over (0, 1], whereas the third factor

changes sign from positive to negative at a unique point, say
˜λ. It follows that ξ (λ) is strictly

increasing over (0, ˜λ) and strictly decreasing over ( ˜λ, 1]. As ξ (0+) = −∞ and ξ (1) > 0, we get the

desired result. □

C ANALYTIC PROPERTIES OF AUXILIARY FUNCTIONS
Lemma (Lemma 4.3). Functions дn defined in (6) have a unique point of maximum

ξn = argmax

c≥0
дn(c) .

Furthermore, for all n ≥ 17,
ξn ≤ 1 .
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Proof. Let n be a positive integer. First we compute the first and second derivatives of дn :

д′n(c) = 1 −
(
1 − e−c(Hn−1)

)n (
1 + n

c(Hn − 1)
ec(Hn−1) − 1

)
(27)

д′′n (x) =
n(Hn − 1)

(
1 − e−c(Hn−1)

)n [
ec(Hn−1)(c(Hn − 1) − 2) − nc(Hn − 1) + 2

](
ec(Hn−1) − 1

)
2

.

There is a unique point τn > 0 on which function x 7→ ex (x − 2) − nx + 2 changes sign from

negative to positive, so the same holds for function д′′n ; thus, д
′
n is strictly decreasing over (0,τn)

and increasing over (τn ,∞). Furthermore, notice that limc→0 д
′
n(c) = 1 and limc→∞ д′n(c) = 0. This

means that there has to be a unique point ξn > 0 (where ξn < τn) at which д
′
n changes sign from

positive to negative. Therefore, ξn is the unique global maximizer of дn .
In order to prove that a positive real y is above that maximization point, i.e., y ≥ ξn , it is enough

to show that function дn is decreasing at y, or equivalently, д′n(y) < 0. So, recalling from Lemma B.1

that Hn − 1 > ln(n) + γ − 1, in order to complete our proof it is enough to show that

д′n

(
lnn + γ − 1
Hn − 1

)
< 0 for all n ≥ 17 .

We will do this by demonstrating that д′n

(
lnn+γ−1
Hn−1

)
is a decreasing sequence (with respect to n)

that gets negative for n = 17. Using the explicit formula (27) for д′n , we can see that

д′n

(
lnn + γ − 1
Hn − 1

)
= 1 −

(
1 − e1−γ

n

)n (
1 +

lnn + γ − 1
eγ−1 − 1/n

)
is decreasing, since sequences

(
1 − e1−γ

n

)n
and 1+

lnn+γ−1
eγ −1−1/n are both positive and increasing. Finally

it is easy to compute (by simple substitution) that for n = 17, д′
17

(
ln 17+γ−1
H17−1

)
≈ −0.019 < 0. □

Lemma C.1. For the functions дn defined in (6),

max

c ∈[0,1]
дn(c) = 1 −O

(
ln lnn

lnn

)
= 1 − o(1) . (28)

Proof. For any integer n ≥ 5, we will lower bound the maximum value of дn(x) by evaluating it

on the following numbers:

c̃n =
lnn − ln lnn

Hn − 1
=

ln (n/lnn)
Hn − 1

≤ 1 ;

the inequality holds due to Lemma B.2. We have that

дn(c̃n) =
ln (n/lnn)
Hn − 1

[
1 −

(
1 − e− ln( n

lnn )
)n ]

=
lnn − ln lnn

Hn − 1

[
1 −

(
1 − lnn

n

)n ]
≥ lnn − ln lnn

lnn

(
1 − 1

n

)
= 1 −O

(
ln lnn

lnn

)
,
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the inequality being a consequence of the fact that

(
1 − x

n

)n ≤ e−x for any positive real x ≤ n with

x ← lnn and also due to Hn ≤ 1 + lnn. □

Lemma (Lemma 5.2). For the rescaled Pareto distribution Fλ,r given by (19), for λ ∈ (0, 1] and
r ∈ (0, 1], we have the following expressions for its expected second-highest order statistic and optimal
anonymous pricing,
(1) EX∼Fλ,r [Xn−1:n] = 1 + r

(
βn,λ − 1

)
;

(2) Price(Fλ,r ,n) = sup
0≤q≤1

(
1 + r

(
1

qλ − 1
))
(1 − (1 − q)n),

where βn,λ is given by (15).

Proof. Point 2 follows directly from the change of variables

q = 1 − Fλ,r (x) ⇔ x = 1 + r

(
1

qλ
− 1

)
= 1 − r + r

qλ
.

To prove point 1, we use the same change of variables to express the expectation in terms of the

gamma function:

E [Xn−1:n] = n(n − 1)
∫ ∞

1

xFn−2(x)(1 − F (x))dF (x)

= n(n − 1)
∫

1

0

(
1 − r + r

qλ

)
q(1 − q)n−2 dq

= (1 − r )n(n − 1)B(2,n − 1) + rn(n − 1)B(2 − λ,n − 1)

= 1 − r + r n!Γ(2 − λ)
Γ(n + 1 − λ)

= 1 + r (βn,λ − 1) .
□

Lemma (Lemma 5.4). For each λ ∈ (0, 1], let дλ be defined as in (23) and η(λ) be the unique positive
solution of the equation ex = 1 + x

λ . Let also λ
∗ be the unique root of (24). The supremum of the

function дλ over [0, 1] is as follows.

If 0 < λ ≤ λ∗, then sup

c ∈[0,1]
дλ(c) = sup

c≥0
дλ(c) =

η(λ)1−λ
Γ(2 − λ)(λ + η(λ)) .

If λ∗ ≤ λ ≤ 1, then sup

c ∈[0,1]
дλ(c) = дλ(1) = 1 − e−Γ(2−λ)−1/λ .

Proof. Fix λ ∈ (0, 1). Observe that дλ is twice continuously differentiable; with some calculations

one can see that

д′λ(c) = 1 − e−(cΓ(2−λ))−1/λ
[
1 +
(cΓ(2 − λ))−1/λ

λ

]
;

д′′λ (c) =
e−(cΓ(2−λ))

−1/λ

λ2c1+2/λΓ(2 − λ)2/λ
[
−1 + (1 − λ)(cΓ(2 − λ))1/λ

]
;

one also has the limits дλ(0) = 0, дλ(∞) = 0, д′λ(0) = 1, д′λ(∞) = 0, д′′λ (0) = 0, д′′λ (∞) = 0. Now note

that there is a unique point, τλ =
1

Γ(2−λ)(1−λ)λ , at which д
′′
λ changes sign from negative to positive,

so that there is a unique point ξλ ≤ τλ at which д′λ changes sign from positive to negative. Thus дλ
has a unique peak over [0,∞) which corresponds to the unique root of its derivative. This peak

occurs in the interval [0, 1] if and only if д′λ(1) ≤ 0; solving for λ, we get λ ≤ λ∗ as in (24) and
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Lemma B.4. Thus, if λ ≥ λ∗, the supremum of дλ(c) over [0, 1] is achieved at c = 1; this includes

the case λ = 1 since a similar analysis yields that д′′λ is strictly negative and д′λ is strictly positive.

On the other hand, for λ ≤ λ∗, by looking at the equation д′λ(c) = 0 and performing the change of

variables x = (cΓ(2 − λ))−1/λ we get ex = 1 + x
λ , or x = η(λ); plugging these back into дλ(c) gives

us the desired result. □

Lemma C.2. For each λ ∈ (0, 1], we have the limit

lim

n→∞
sup

c≥1/(Γ(2−λ)nλ )
c

[
1 −

(
1 − (cΓ(2 − λ))

−1/λ

n

)n ]
= sup

c≥0
дλ(c) .

Proof. Define the sequence of auxiliary functions hn,λ for n ≥ 2,

hn,λ(c) =

c, c ≤ 1

Γ(2−λ)nλ ,

c
[
1 −

(
1 − (cΓ(2−λ))

−1/λ

n

)n ]
, c ≥ 1

Γ(2−λ)nλ .

These functions are continuous, vanish at infinity, and converge pointwise to дλ , which is also

continuous. Also, for any ϵ > 0, the restriction of hn,λ to [ϵ,∞) forms an eventually decreasing

sequence (with respect to n) , since x ≤ n ≤ m implies (1 − x/n)n ≤ (1 − x/m)m ([35, Theorem 35]).

Thus, by Dini’s Theorem [47, Theorem 7.13], over any interval [a,b] with 0 < a < b < ∞, the
sequence hn,λ converges uniformly to дλ and we have lim

n→∞
sup

c ∈[a,b]
hn,λ(c) = supc ∈[a,b] дλ(c).

To conclude the proof, let z∗λ be the unique maximizer of дλ(c) (see also the proof of Lemma 5.4).

Take 0 < ϵ ≤ дλ(z∗). Take N large enough so that hn,λ are decreasing over [ϵ,∞), for n ≥ N . Take

δ such that hN (c) ≤ ϵ for all c ≥ δ . Putting all this together, we have

lim sup

n→∞
sup

c ∈[0,ϵ ]
hn,λ(c) ≤ ϵ ;

lim sup

n→∞
sup

c ∈[ϵ,δ ]
hn,λ(c) = sup

c ∈[ϵ,δ ]
дλ(c) ≤ дλ(z∗) ;

lim sup

n→∞
sup

c≥δ
hn,λ(c) ≤ ϵ ,

and thus lim supn→∞ supc≥0 hn,λ(c) ≤ supc≥0 дλ(c). Since by elementary analysis we also have

lim infn→∞ supc≥0 hn,λ(c) ≥ supc≥0 дλ(c), this concludes the proof. □

Lemma C.3. For each λ ∈ (0, 1] and n ≥ 2, the function

Hn,λ(1,q) =
1 − (1 − q)n

qλ
,

defined over q ∈ [0, 1], has a unique maximizer ξn,λ . Moreover, if in addition λ∗ < λ ≤ 1, then
ξn,λ ≤ β−1/λn,λ for large enough n. Here λ∗ is the unique root of (24) and βn,λ is defined as in (15).

Proof. For simplicity we shall assume that λ < 1; when λ = 1 a similar analysis implies that the

unique maximizer occurs at ξn,λ = 0.

The first derivative of Hn,λ is

∂Hn,λ(1,q)
∂ q

=
λ

q1+λ

[
(1 − q)n−1

[
1 + q

(n
λ
− 1

)]
− 1

]
,

which (for λ < 1) has a positive pole at q = 0 and is negative at q = 1. Its first factor is always

positive, and its second factor can be differentiated:

H̃n,λ(1,q) = (1 − q)n−1
[
1 + q

(n
λ
− 1

)]
− 1 ;
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∂ H̃n,λ(1,q)
∂ q

=
n

λ
(1 − q)n−2 [(1 − λ) − q(n − λ)] .

This function changes sign from positive to negative at a single point, τn,λ =
1−λ
n−λ . Thus, both H̃n,λ

and
∂
∂ qHn,λ change sign from positive to negative at a single point ξn,λ ≥ τn,λ , which enables us

to conclude that Hn,λ(1,q) has a single peak.
Next, we argue that the unique maximizer of Hn,λ(1,q) is smaller than the quantity β−1/λn,λ , for

large enough n. In order to do this, observe that

∂Hn,λ (1,q)
∂ q

����
q=β−1/λn,λ

= λβ1+1/λn,λ

[(
1 − β−1/λn,λ

)n−1 [
1 + β−1/λn,λ

(n
λ
− 1

)]
− 1

]
.

The first factor of the above expression is strictly positive for all choices of n and 0 < λ ≤ 1. The

second factor actually has a limit as n →∞; it converges to(
1 +

Γ(2 − λ)−1/λ
λ

)
e−Γ(2−λ)

−1/λ − 1 .

This quantity is negative precisely when λ > λ∗, as proven in Lemma B.4. Thus, as long as

λ > λ∗, we have that
∂
∂ qHn,λ

(
1, β−1/λn,λ

)
is negative for large enough n, which implies that the

unique maximizer of Hn,λ(1,q) is to the left of β−1/λn,λ . □
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