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Abstract

Liquid democracy is the principle of making collective decisions by letting agents transitively delegate
their votes. Despite its significant appeal, it has become apparent that a weakness of liquid democracy
is that a small subset of agents may gain massive influence. To address this, we propose to change the
current practice by allowing agents to specify multiple delegation options instead of just one. Much like in
nature, where — fluid mechanics teaches us — liquid maintains an equal level in connected vessels, so do
we seek to control the flow of votes in a way that balances influence as much as possible. Specifically, we
analyze the problem of choosing delegations to approximately minimize the maximum number of votes
entrusted to any agent, by drawing connections to the literature on confluent flow. We also introduce a
random graph model for liquid democracy, and use it to demonstrate the benefits of our approach both
theoretically and empirically.

1 Introduction
Liquid democracy is a potentially disruptive approach to democratic decision making. As in direct democracy,
agents can vote on every issue by themselves. Alternatively, however, agents may delegate their vote, i.e.,
entrust it to any other agent who then votes on their behalf. Delegations are transitive; for example, if agents
2 and 3 delegate their votes to 1, and agent 4 delegates her vote to 3, then agent 1 would vote with the weight
of all four agents, including herself. Just like representative democracy, this system allows for separation
of labor, but provides for stronger accountability: Each delegator is connected to her transitive delegate by
a path of personal trust relationships, and each delegator on this path can withdraw her delegation at any
time if she disagrees with her delegate’s choices.

Although the roots of liquid democracy can be traced back to the work of Miller [18], it is only in
recent years that it has gained recognition among practitioners. Most prominently, the German Pirate
Party adopted the platform LiquidFeedback for internal decision-making in 2010. At the highest point,
their installation counted more than 10 000 active users [15]. More recently, two parties — the Net Party
in Argentina, and Flux in Australia — have run in national elections on the promise that their elected
representatives would vote according to decisions made via their respective liquid-democracy-based systems.
Although neither party was able to win any seats in parliament, their bids enhanced the promise and appeal
of liquid democracy.

However, these real-world implementations also exposed a weakness in the liquid democracy approach:
Certain individuals, the so-called super-voters, seem to amass enormous weight, whereas most agents do not
receive any delegations. In the case of the Pirate Party, this phenomenon is illustrated by an article in Der
Spiegel, according to which one particular super-voter’s “vote was like a decree,” even though he held no office
in the party. As Kling et al. [15] describe, super-voters were so controversial that “the democratic nature of
the system was questioned, and many users became inactive.” Besides the negative impact of super-voters on
perceived legitimacy, super-voters might also be more exposed to bribing. Although delegators can retract
their delegations as soon as they become aware of suspicious voting behavior, serious damage might be done
in the meantime. Furthermore, if super-voters jointly have sufficient power, they might find it more efficient
to organize majorities through deals between super-voters behind closed doors, rather than to try to win
a broad majority through public discourse. Finally, recent work by Kahng et al. [14] indicates that, even
if delegations go only to more competent agents, a high concentration of power might still be harmful for
social welfare, by neutralizing benefits corresponding to the Condorcet Jury Theorem.
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While all these concerns suggest that the weight of super-voters should be limited, the exact metric to
optimize for varies between them and is often not even clearly defined. For the purposes of this paper,
we choose to minimize the weight of the heaviest voter. As is evident in the Spiegel article, the weight of
individual voters plays a direct role in the perception of super-voters. But even beyond that, we are confident
that minimizing this measure will lead to substantial improvements across all presented concerns.

Just how can the maximum weight be reduced? One approach might be to restrict the power of delegation
by imposing caps on the weight. However, as argued by Behrens et al. [3], delegation is always possible by
coordinating outside of the system and copying the desired delegate’s ballot. Pushing delegations outside of
the system would not alleviate the problem of super-voters, just reduce transparency. Therefore, we instead
adopt a voluntary approach: If agents are considering multiple potential delegates, all of whom they trust,
they are encouraged to leave the decision for one of them to a centralized mechanism. With the goal of
avoiding high-weight agents in mind, our research challenge is twofold:

First, investigate the algorithmic problem of selecting delegations to minimize the maximum
weight of any agent, and, second, show that allowing multiple delegation options does indeed
provide a significant reduction in the maximum weight compared to the status quo.

Put another (more whimsical) way, we wish to design liquid democracy systems that emulate the law of
communicating vessels, which asserts that liquid will find an equal level in connected containers.

1.1 Our Approach and Results
We formally define our problem in Section 2. In addition to minimizing the maximum weight of any voter,
we specify how to deal with delegators whose vote cannot possibly reach any voter. In general, our problem
is closely related to minimizing congestion for confluent flow as studied by Chen et al. [7]. Not only does
this connection suggest an optimal algorithm based on mixed integer linear programming, but we also get a
polynomial-time (1 + log |V |)-approximation algorithm, where V is the set of voters.1 In addition, we show
that approximating our problem to within a factor of 1

2 log2 |V | is NP-hard.
In Section 3, to evaluate the benefits of allowing multiple delegations, we propose a probabilistic model

for delegation behavior — inspired by the well-known preferential attachment model [2] — in which we add
agents successively. With a certain probability d, a new agent delegates; otherwise, she votes herself. If she
delegates, she chooses k many delegation options among the previously inserted agents. A third parameter
γ controls the bias of this selection towards agents who already receive many delegations. Assuming γ = 0,
i.e., that the choice of delegates is unbiased, we prove that allowing two choices per delegator (k = 2)
asymptotically leads to dramatically lower maximum weight than classical liquid democracy (k = 1). In
the latter case, with high probability, the maximum weight is at least Ω(tβ) for some β > 0, whereas the
maximum weight in the former case is only O(log log t) with high probability, where t denotes simultaneously
the time step of the process and the number of agents. Our analysis draws on a phenomenon called the power
of choice that can be observed in many different load balancing models. In fact, even a greedy mechanism
that selects a delegation option to locally minimize the maximum weight as agents arrive exhibits this
asymptotic behavior, which upper-bounds the maximum weight for optimal resolution.

In Section 4, we complement our theoretical findings with empirical results. Our simulations demonstrate
that our approach continues to outperform classical preferential attachment for higher values of γ. We also
show that the most substantial improvements come from increasing k from one to two, i.e., that increasing k
even further only slightly reduces the maximum weight. We continue to see these improvements in terms of
maximum weight even if just some fraction of delegators gives two options while the others specify a single
delegate. Finally, we compare the optimal maximum weight with the maximum weight produced by the
approximation algorithm and greedy heuristics.

1Throughout this paper, let log denote the natural logarithm.

2



1.2 Related Work
Kling et al. [15] conduct an empirical investigation of the existence and influence of super-voters. The
analysis is based on daily data dumps, from 2010 until 2013, of the German Pirate Party installation of
LiquidFeedback. As noted above, Kling et al. find that super-voters exist, and have considerable power. The
results do suggest that super-voters behave responsibly, as they “do not fully act on their power to change
the outcome of votes, and they vote in favour of proposals with the majority of voters in many cases.” Of
course, this does not contradict the idea that a balanced distribution of power would be desirable.

There are only a few papers that provide theoretical analyses of liquid democracy [12, 9, 14]. We
would like to stress the differences between our approach and the one adopted by Kahng et al. [14]. They
consider binary issues in a setting with an objective ground truth, i.e., there is one “correct” outcome and
one “incorrect” outcome. In this setting, voters are modeled as biased coins that each choose the correct
outcome with an individually assigned probability, or competence level. The authors examine whether liquid
democracy can increase the probability of making the right decision over direct democracy by having less
competent agents delegate to more competent ones. By contrast, our work is completely independent of
the (strong) assumptions underlying the results of Kahng et al. In particular, our approach is agnostic to
the final outcome of the voting process, does not assume access to information that would be inaccessible
in practice, and is compatible with any number of alternatives and choice of voting rule used to aggregate
votes. In other words, the goal is not to use liquid democracy to promote a particular outcome, but rather
to adapt the process of liquid democracy such that more voices will be heard.

2 Algorithmic Model and Results
Let us consider a delegative voting process where agents may specify multiple potential delegations. This
gives rise to a directed graph, whose nodes represent agents and whose edges represent potential delegations.
In the following, we will conflate nodes and the agents they represent. A distinguished subset of nodes
corresponds to agents who have voted directly, the voters. Since voters forfeit the right to delegate, the
voters are a subset of the sinks of the graph. We call all non-voter agents delegators.

Each agent has an inherent voting weight of 1. When the delegations will have been resolved, the weight
of every agent will be the sum of weights of her delegators plus her inherent weight. We aim to choose a
delegation for every delegator in such a way that the maximum weight of any voter is minimized.

This task closely mirrors the problem of congestion minimization for confluent flow (with infinite edge
capacity): There, a flow network is also a finite directed graph with a distinguished set of graph sinks, the
flow sinks. Every node has a non-negative demand. If we assume unit demand, this demand is 1 for every
node. Since the flow is confluent, for every non-sink node, the algorithm must pick exactly one outgoing
edge, along which the flow is sent. Then, the congestion at a node n is the sum of congestions at all nodes
who direct their flow to n plus the demand of n. The goal in congestion minimization is to minimize the
maximum congestion at any flow sink. (We remark that the close connection between our problem and
confluent flow immediately suggests a variant corresponding to splittable flow; we discuss this variant at
length in Section 5.)

In spite of the similarity between confluent flow and resolving potential delegations, the two problems
differ when a node has no path to a voter / flow sink. In confluent flow, the result would simply be that
no flow exists. In our setting however, this situation can hardly be avoided. If, for example, several friends
assign all of their potential delegations to each other, and if all of them rely on the others to vote, their
weight cannot be delegated to any voter. Our mechanism cannot simply report failure as soon as a small
group of voters behaves in an unexpected way. Thus, it must be allowed to leave these votes unused. At
the same time, of course, our algorithm should not exploit this power to decrease the maximum weight, but
must primarily maximize the number of utilized votes. We formalize these issues in the following section.

3



2.1 Problem Statement
All graphs G = (N,E) mentioned in this section will be finite and directed. Furthermore, they will be
equipped with a subset V ⊆ sinks(G). For the sake of brevity, these assumptions will be implicit in the
notion “graph G with V ”.

Some of these graphs represent situations in which all delegations have already been resolved and in
which each vote reaches a voter: We call a graph (N,E) with V a delegation graph if it is acyclic, its sinks
are exactly the set V , and every other vertex has outdegree one. In such a graph, define the weight w(n) of
a node n ∈ N as

w(n) := 1 +
∑

(m,n)∈E

w(m).

This is well-defined because E is a well-founded relation on N .
Resolving the delegations of a graph G with V can now be described as the MinMaxWeight problem:

Among all delegation subgraphs (N ′, E′) of G with voting vertices V of maximum |N ′|, find one that
minimizes the maximum weight of the voting vertices.

2.2 Connections to Confluent Flow
We recall definitions from the flow literature as used by Chen et al. [7]. We slightly simplify the exposition
by assuming unit demand at every node.

Given a graph (N,E) with V , a flow is a function f : E → R≥0. For any node n, set in(n) :=∑
(m,n)∈E f(m,n) and out(n) :=

∑
(n,m)∈E f(n,m). At every node n ∈ N \ V , a flow must satisfy flow

conservation:
out(n) = 1 + in(n).

The congestion at any node n is defined as 1 + in(n). A flow is confluent if every node has at most one
outgoing edge with positive flow. We define MinMaxCongestion as the problem of finding a confluent
flow on a given graph such that the maximum congestion is minimized.

To relate the two presented problems, we need to refer to the parts of a graph (N,E) with V from which
V is reachable: The active nodes activeV (N,E) are all n ∈ N such that n E∗ v for some v ∈ V . The active
subgraph is the restriction of (N,E) to activeV (N,E). In particular, V is part of this subgraph.

Lemma 1. Let G = (N,E) with V be a graph. Its delegation subgraphs (N ′, E′) that maximize |N ′| are
exactly the delegation subgraphs with N ′ = activeV (N,E). At least one such subgraph exists.

Proof. First, we show that all nodes of a delegation subgraph are active. Indeed, consider any node n1 in
the subgraph. By following outgoing edges, we obtain a sequence of nodes n1 n2 . . . such that ni delegates to
ni+1. Since the graph is finite and acyclic, this sequence must end with a vertex nj without outgoing edges.
This must be a voter; thus, n1 is active.

Furthermore, there exists a delegation subgraph of (N,E) with nodes exactly activeV (N,E). Indeed, the
shortest-paths-to-set-V forest (with edges pointed in the direction of the paths) on the active subgraph is a
delegation graph.

By the first argument, all delegation subgraphs must be subgraphs of the active subgraph. By the second
argument, to have the maximum number of nodes, they must include all nodes of this subgraph.

Lemma 2. Let (N,E) with V be a graph and let f : E → R≥0 be a confluent flow (for unit demand). By
eliminating all zero-flow edges from the graph, we obtain a delegation graph.

Proof. We first claim that the resulting graph is acyclic. Indeed, for the sake of contradiction, suppose that
there is a cycle including some node n. Consider the flow out of n, through the cycle and back into n. Since
the flow is confluent, and thus the flow cannot split up, the demand can only increase from one node to the
next. As a result, in(n) ≥ out(n). However, by flow conservation and unit demand, out(n) = in(n) + 1,
which contradicts the previous statement.
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Furthermore, the sinks of the graph are exactly V : By assumption, the nodes of V are sinks in the original
graph, and thus in the resulting graph. For any other node, flow conservation dictates that its outflow be at
least its demand 1, thus every other node must have outgoing edges.

Finally, every node not in V must have outdegree 1. As detailed above, the outdegree must be at least
1. Because the flow was confluent, the outdegree cannot be greater.

As a result of these three properties, we have a delegation graph.

Lemma 3. Let (N,E) with V be a graph in which all vertices are active, and let (N,E′) be a delegation
subgraph. Let f : E → R≥0 be defined such that, for every node n ∈ N \ V with (unique) outgoing edge
e ∈ E′, f(e) := w(n). On all other edges e ∈ E \ E′, set f(e) := 0. Then, f is a confluent flow.

Proof. For every non-sink, flow conservation holds by the definition of weight and flow. By construction, the
flow must be confluent.

2.3 Algorithms
The observations made above allow us to apply algorithms — even approximation algorithms — for Min-
MaxCongestion to our MinMaxWeight problem, that is, we can reduce the latter problem to the former.

Theorem 4. Let A be an algorithm for MinMaxCongestion with approximation ratio c ≥ 1. Let A′ be an
algorithm that, given (N,E) with V , runs A on the active subgraph, and translates the result into a delegation
subgraph by eliminating all zero-flow edges. Then A′ is a c-approximation algorithm for MinMaxWeight.

Proof. By Lemma 1, removing inactive parts of the graph does not change the solutions to MinMaxWeight,
so we can assume without loss of generality that all vertices in the given graph are active.

Suppose that the optimal solution for MinMaxCongestion on the given instance has maximum con-
gestion α. By Lemma 2, it can be translated into a solution for MinMaxWeight with maximum weight α.
By Lemma 3, the latter instance has no solution with maximum weight less than α, otherwise it could be
used to construct a confluent flow with the same maximum congestion. It follows that the optimal solution
to the given MinMaxWeight instance has maximum weight α.

Now, A returns a confluent flow with maximum congestion at most c · α. Using Lemma 2, A′ constructs
a solution to MinMaxWeight with maximum weight at most c · α. Therefore, A′ is a c-approximation
algorithm.

Note that Theorem 4 works for c = 1, i.e., even for exact algorithms. Therefore, it is possible to solve
MinMaxWeight by adapting any exact algorithm for MinMaxFlow. For completeness we provide a
mixed integer linear programming (MILP) formulation of the latter problem in Appendix D.

Since the foregoing algorithm is based on solving an NP-hard problem, it might be too inefficient for
typical use cases of liquid democracy with many participating agents. Fortunately, it might be acceptable to
settle for a slightly non-optimal maximum weight if this decreases computational cost. To our knowledge, the
best polynomial approximation algorithm for MinMaxCongestion is due to Chen et al. [7] and achieves
an approximation ratio of 1 + log |V |. Their algorithm starts by computing the optimal solution to the
splittable-flow version of the problem, by solving a linear program. The heart of their algorithm is a non-
trivial, deterministic rounding mechanism. This scheme drastically outperforms the natural, randomized
rounding scheme, which leads to an approximation ratio of Ω(|N |1/4) with arbitrarily high probability [8].

2.4 Hardness of Approximation
In this section, we demonstrate the NP-hardness of approximating the MinMaxWeight problem to within a
factor of 1

2 log2 |V |. On the one hand, this justifies the absence of an exact polynomial-time algorithm. On
the other hand, this shows that the approximation algorithm is optimal up to a multiplicative constant.

Theorem 5. It is NP-hard to approximate the MinMaxWeight problem to a factor of 1
2 log2 |V |, even

when each node has outdegree at most 2.
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Not surprisingly, we derive hardness via a reduction from MinMaxCongestion, i.e., a reduction in
the opposite direction from the one given in Theorem 4. As shown by Chen et al. [7], approximating
MinMaxCongestion to within a factor of 1

2 log2 |V | is NP-hard. However, in our case, nodes have unit
demands. Moreover, we are specifically interested in the case where each node has outdegree at most 2, as
in practice we expect outdegrees to be very small, and this case plays a special role in Section 3.

Lemma 6. It is NP-hard to approximate the MinMaxCongestion problem to a factor of 1
2 log2 k, where

k is the number of sinks, even when each node has unit demand and outdegree at most 2.

The proof of Lemma 6 is relegated to Appendix A. We believe the lemma is of independent interest, as
it shows a surprising separation between the case of outdegree 1 (where the problem is moot) and outdegree
2, and that the asymptotically optimal approximation ratio is independent of degree. But it also allows us
to prove Theorem 5 almost directly.

Proof of Theorem 5. We reduce (gap) MinMaxCongestion with unit demand and outdegree at most 2 to
(gap) MinMaxWeight with outdegree at most 2. First, we claim that if there are inactive nodes, there is
no confluent flow. Indeed, let n1 be an inactive node. For the sake of contradiction, suppose that there exists
a flow f . Follow the positive flow to obtain a sequence n1 n2 . . . . By definition, none of the nodes reachable
from n1 can be a voter. Since, by flow conservation and unit demand, each node must delegate, the sequence
must be infinite. As detailed in the proof of Lemma 2, a confluent flow with unit demand cannot contain
cycles. Thus, the sequence contains infinitely many different nodes, which contradicts the finiteness of G.

Therefore, we can assume without loss of generality that in the given instance of MinMaxCongestion,
all nodes are active (as the problem is still NP-hard). The reduction creates an instance of MinMaxWeight
that has the same graph as the given instance of MinMaxCongestion. Using an analogous argument
to Theorem 4 (reversing the roles of Lemma 2 and Lemma 3 in its proof), we see that this is a strict
approximation-preserving reduction.

3 Probabilistic Model and Results
Our generalization of liquid democracy to multiple potential delegations aims to decrease the concentration
of weight. Accordingly, the success of our approach should be measured by its effect on the maximum
weight in real elections. Since, at this time, we do not know of any available datasets,2 we instead propose
a probabilistic model for delegation behavior, which can serve as a credible proxy. Our model builds on
the well-known preferential attachment model, which generates graphs possessing typical properties of social
networks.

The evaluation of our approach will be twofold: In Sections 3.2 and 3.3, for a certain choice of parameters
in our model, we establish a striking separation between traditional liquid democracy and our system. In
the former case, the maximum weight at time t is Ω(tβ) for a constant β with high probability, whereas in
the latter case, it is in O(log log t) with high probability, even if each delegator only suggests two options.
For other parameter settings, we empirically corroborate the benefits of our approach in Section 4.

3.1 The Preferential Delegation Model
Many real-world social networks have degree distributions that follow a power law [16, 19]. Additionally, in
their empirical study, Kling et al. [15] observed that the weight of voters in the German Pirate Party was
“power law-like” and that the graph had a very unequal indegree distribution. In order to meld the previous
two observations in our liquid democracy delegation graphs, we adapt a standard preferential attachment
model [2] for this specific setting. On a high level, our preferential delegation model is characterized by
three parameters: 0 < d < 1, the probability of delegation; k ≥ 1, the number of delegation options from

2There is one relevant dataset that we know of, which was analyzed by Kling et al. [15]. However, due to stringent privacy
constraints, the data privacy officer of the German Pirate Party was unable to share this dataset with us.
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(a) γ = 0 (b) γ = 1

Figure 1: Example graphs generated by the preferential delegation model for k = 2 and d = 0.5.

each delegator; and γ ≥ 0, an exponent that governs the probability of delegating to nodes based on current
weight.

At time t = 1, we have a single node representing a single voter. In each subsequent time step, we add
a node for agent i and flip a biased coin to determine her delegation behavior. With probability d, she
delegates to other agents. Else, she votes independently. If i does not delegate, her node has no outgoing
edges. Otherwise, add edges to k many i.i.d. selected, previously inserted nodes, where the probability of
choosing node j is proportional to (indegree(j) + 1)γ . Note that this model might generate multiple edges
between the same pair of nodes, and that all sinks are voters. Figure 1 shows example graphs for different
settings of γ.

In the case of γ = 0, which we term uniform delegation, a delegator is equally likely to attach to any
previously inserted node. Already in this case, a “rich-get-richer” phenomenon can be observed, i.e., voters
at the end of large networks of potential delegations will likely see their network grow even more. Indeed,
a larger network of delegations is more likely to attract new delegators. In traditional liquid democracy,
where k = 1 and all potential delegations will be realized, this explains the emergence of super-voters with
excessive weight observed by Kling et al. [15]. We aim to show that for k ≥ 2, the resolution of potential
delegations can strongly outweigh these effects. In this, we profit from an effect known as the “power of two
choices” in load balancing described by Azar et al. [1].

For γ > 0, the “rich-get-richer” phenomenon additionally appears at the degrees of nodes. Since the
number of received potential delegations is a proxy for an agent’s competence and visibility, new agents are
more likely to attach to agents with high indegree. In total, this is likely to further strengthen the inherent
inequality between voters. For increasing γ, the graph becomes increasingly flat, as a few super-voters receive
nearly all delegations. This matches observations from the LiquidFeedback dataset [15] that “the delegation
network is slowly becoming less like a friendship network, and more like a bipartite networks of super-voters
connected to normal voters.” The special case of γ = 1 corresponds to preferential attachment as described
by Barabási and Albert [2].

The most significant difference we expect to see between graphs generated by the preferential delegation
model and real delegation graphs is the assumption that agents always delegate to more senior agents. In
particular, this causes generated graphs to be acyclic, which need not be the case in practice. It does seem
plausible that the majority of delegations goes to agents with more experience on the platform. Even if this
assumption should not hold, there is a second interpretation of our process if we assume — as do Kahng et
al. [14] — that agents can be ranked by competence and only delegate to more competent agents. Then, we
can think of the agents as being inserted in decreasing order of competence. When a delegator chooses more
competent agents to delegate to, her choice would still be biased towards agents with high indegree, which
is a proxy for popularity.

In our theoretical results, we focus on the cases of k = 1 and k = 2, and assume γ = 0 to make the
analysis tractable. The parameter d can be chosen freely between 0 and 1. Note that our upper bound
for k = 2 directly translates into an upper bound for larger k, since the resolution mechanism always has
the option of ignoring all outgoing edges except for the two first. Therefore, to understand the effect of
multiple delegation options, we can restrict our attention to k = 2. This crucially relies on γ = 0, where
potential delegations do not influence the probabilities of choosing future potential delegations. Based on
related results by Malyshkin and Paquette [17], it seems unlikely that increasing k beyond 2 will reduce the
maximum weight by more than a constant factor.
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3.2 Lower Bounds for Single Delegation (k = 1, γ = 0)
As mentioned above, we first assume uniform delegation and a single delegation option per delegator, and
derive a complementary lower bound on the maximum weight. To state our results rigorously, we say that a
sequence (Em)m of events happens with high probability if P[Em]→ 1 for m→∞. Since the parameter going
to infinity is clear from the context, we omit it.

Theorem 7. In the preferential delegation model with k = 1, γ = 0, and d ∈ (0, 1), with high probability,
the maximum weight of any voter at time t is in Ω(tβ), where β > 0 is a constant that depends only on d.

We relegate the proof of Theorem 7 to Appendix B. Since bounding the expected value is conceptually
clearer and more concise than a bound holding with high probability, we prove an analogous theorem in
order to build intuition.

Theorem 8. In the preferential delegation model with k = 1, γ = 0, and d ∈ (0, 1), the expected maximum
weight of any voter at time t is in Ω(td).

Proof of Theorem 8. Let wt(i) denote the weight of node i at time t. Clearly, E[maxj wt(j)] ≥ E[wt(1)], and
therefore we can lower-bound the expected maximum weight of any node by the expected weight of the first
node.

For i ≥ 1, let Di denote the event that voter i transitively delegates to voter 1. In addition, denote
St := wt(1) =

∑t
i=1Di. Our goal is to prove that E[St] ∈ Θ(td).

We begin by showing that the expected weight of voter 1 satisfies the following recurrences:

E[S1] = 1 (1)

E[St+1] =

(
1 +

d

t

)
· E[St] (2)

Indeed, for Eq. (1), voter 1’s weight after one time step is always 1. For Eq. (2), by linearity of expectation,
E[St+1] = E[St] + P[Dt+1]. For 1 ≤ i < t + 1, let D′t+1,i denote the event that in time t + 1, the coin flip
decides to delegate, voter i is chosen, and voter i transitively delegates to voter 1. Clearly, Dt+1 is the
disjoint union of all D′t+1,i. Therefore, P[Dt+1] =

∑t
1=1 P[D′t+1,i]. Since the coin tosses in step t + 1

are independent of the previous steps, P[D′t+1,i] = d · 1
t · P[Di]. Putting the last steps together, have

P[Dt+1] = d
t ·
∑t
i=1 P[Di] = d

t · E[St]. In total, E[St+1] = E[St] + d
t · E[St] = (1 + d

t ) · E[St].
Clearly, the recursion in Eqs. (1) and (2) must have a unique solution. We claim that it is

E[St] =
Γ(t+ d)

Γ(d+ 1) · Γ(t)
, (3)

where the Gamma function is Legendre’s extension of the factorial to real (and complex) numbers, defined
by Γ(z) =

∫∞
z=0

xz−1e−x dx. Indeed, The equation satisfies Eq. (1): Γ(1+d)
Γ(d+1)·Γ(1) = 1. For Eq. (2), we have(

1 +
d

t

)
· Γ(t+ d)

Γ(d+ 1) · Γ(t)
=
t+ d

t
· Γ(t+ d)

Γ(d+ 1) · Γ(t)
=

Γ(t+ 1 + d)

Γ(d+ 1) · Γ(t+ 1)
.

Using this closed-form solution, we can bound E[St] as follows. By Gautschi’s inequality [11, Eq. (7)],
we have

(t+ 1)d−1 ≤ Γ(t+ d)

Γ(t+ 1)
≤ td−1.

We multiply all sides by t to obtain

t · (t+ 1)d−1 ≤ Γ(t+ d)

Γ(t)
≤ td.
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Finally, we have
t · (t+ 1)d−1

Γ(d+ 1)
≤ Γ(t+ d)

Γ(d+ 1) · Γ(t)
≤ td

Γ(d+ 1)
. (4)

Next, we establish the tightness of the upper and lower bounds by showing that

lim
t→∞

t·(t+1)d−1

Γ(d+1)

td

Γ(d+1)

= 1. (5)

Indeed, simplifying yields

lim
t→∞

t·(t+1)d−1

Γ(d+1)

td

Γ(d+1)

= lim
t→∞

(t+ 1)d−1

td−1
=

(
lim
t→∞

t+ 1

t

)d−1

= 1,

as desired.
Therefore, from Eq. (4) and Eq. (5), we have shown that E[St] scales in Θ(td).

Before proceeding to the upper bound and showing the separation, we would like to point out that —
with a minor change to our model — these lower bounds also hold for γ = 1. While the probability of
attaching to a delegator n remains proportional to (1 + indegree(n))γ , the probability for voters n would
instead be proportional to (2 + indegree(n))γ .3 If we represent voters with a self-loop edge, both terms just
equal degree(n)γ , which arguably makes this implementation of preferential attachment cleaner to analyze
(e.g., [4]). Thus, we can interpret preferential attachment for γ = 1 as uniformly picking an edge and then
flipping a fair coin to decide whether to attach the edge’s start or endpoint. Since every node has exactly one
outgoing edge, this is equivalent to uniformly choosing a node and then, with probability 1

2 , instead picking
its successor. This has the same effect on the distribution of weights as just uniformly choosing a node in
uniform delegation, so Theorems 7 and 8 also hold for γ = 1 in our modified setting. Real-world delegation
networks, which we suspect to resemble the case of γ = 1, should therefore exhibit similar behavior.

3.3 Upper Bound for Double Delegation (k = 2, γ = 0)
Analyzing cases with k > 1 is considerably more challenging. One obstacle is that we do not expect to
be able to incorporate optimal resolution of potential delegations into our analysis, because the computa-
tional problem is hard even when k = 2 (see Theorem 5). Therefore, we give a pessimistic estimate of
optimal resolution via a greedy delegation mechanism, which we can reason about alongside the stochastic
process. Clearly, if this stochastic process can guarantee an upper bound on the maximum weight with high
probability, this bound must also hold if delegations are optimally resolved to minimize maximum weight.

In more detail, whenever a new delegator is inserted into the graph, the greedy mechanism immediately
selects one of the delegation options. As a result, at any point during the construction of the graph, the
algorithm can measure the weight of the voters. Suppose that a new delegator suggests two delegation
options, to agents a and b. By following already resolved delegations, the mechanism obtains voters a∗ and
b∗ such that a transitively delegates to a∗ and b to b∗. The greedy mechanism then chooses the delegation
whose voter currently has lower weight, resolving ties arbitrarily.

This situation is reminiscent of a phenomenon known as the “power of choice.” In its most isolated form,
it has been studied in the balls-and-bins model, for example by Azar et al. [1]. In this model, n balls are
to be placed in n bins. In the classical setting, each ball is sequentially placed into a bin chosen uniformly
at random. With high probability, the fullest bin will contain Θ(log n/ log log n) balls at the end of the
process. In the choice setting, two bins are independently and uniformly selected for every ball, and the ball
is placed into the emptier one. Surprisingly, this leads to an exponential improvement, where the fullest bin
will contain at most Θ (log log n) balls with high probability.

We show that, at least for γ = 0 in our setting, this effect outweighs the “rich-get-richer” dynamic
described earlier:

3Clearly, our results for γ = 0 hold for both variants.
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Theorem 9. In the preferential delegation model with k = 2, γ = 0, and d ∈ (0, 1), the maximum weight of
any voter at time t is log2 log t+ Θ(1) with high probability.

Due to space constraints, we defer the proof to Appendix C. In our proof we build on work by Malyshkin
and Paquette [17], who study the maximum degree in a graph generated by preferential attachment with the
power of choice. In addition, we incorporate ideas by Haslegrave and Jordan [13].4

4 Simulations
In this section, we present our simulation results, which support the two main messages of this paper: that
allowing multiple delegation options significantly reduces the maximum weight, and that it is computationally
feasible to resolve delegations in a way that is close to optimal.

Our simulations were performed on a MacBook Pro (2017) on MacOS 10.12.6 with a 3.1 GHz Intel Core
i5 and 16 GB of RAM. All running times were measured with at most one process per processor core. Our
simulation software is written in Python 3.6 using Gurobi 8.0.1 to solve MILPs. All of our simulation code
is open-source and available at https://github.com/pgoelz/fluid.

4.1 Multiple vs. Single Delegations
For the special case of γ = 0, we have established a doubly exponential, asymptotic separation between
single delegation (k = 1) and two delegation options per delegator (k = 2). While the strength of the
separation suggests that some of this improvement will carry over to the real world, we still have to examine
via simulation whether improvements are visible for realistic numbers of agents and other values of γ.

To this end, we empirically evaluate two different mechanisms for resolving delegations. First, we opti-
mally resolve delegations by solving the MILP for confluent flow in Appendix D with the Gurobi optimizer.
Our second mechanism is the greedy “power of choice” algorithm used in the theoretical analysis and intro-
duced in Section 3.3.

In Fig. 2, we compare the maximum weight produced by a single-delegation process to the optimal
maximum weight in a double-delegation process, for different values of γ and d. Since our theoretical
analysis used a greedy over-approximation of the optimum, we also run the greedy mechanism on the double-
delegation process. Corresponding figures for γ = 0.5 can be found in Fig. 9 in Appendix E.1.

These simulations show that our asymptotic findings translate into considerable differences even for small
numbers of agents, across different values of d. Moreover, these differences remain nearly as pronounced for
values of γ up to 1, which corresponds to classical preferential attachment. This suggests that our mechanism
can outweigh the social tendency towards concentration of votes; however, evidence from real-world elections
is needed to settle this question. Lastly, we would like to point out the similarity between the graphs for the
optimal maximum weight and the result of the greedy algorithm, which indicates that a large part of the
separation can be attributed to the power of choice.

If we increase γ to large values, the separation between single and double delegation disappears. In Fig. 10
in Appendix E.1, for γ = 2, all three curves are hardly distinguishable from the linear function d · time,
meaning that one voter receives nearly all the weight. The reason is simple: In the simulations used for that
figure, 99% of all delegators give two identical delegation options, and 99.8% of these delegators (98.8% of
all delegators) give both potential delegations to the heaviest voter in the graph. There are even values of
γ > 1 and d such that the curve for single delegation falls below the ones for double delegation (as can be
seen in Fig. 11 in Appendix E.1). Since adding two delegation options per step makes the indegrees grow
faster, the delegations concentrate toward a single voter more quickly, and again lead to a wildly unrealistic
concentration of weight. Thus, it seems that large values of γ do not actually describe our scenario of multiple
delegations.

As we have seen, switching from single delegation to double delegation greatly improves the maximum
weight in plausible scenarios. It is natural to wonder whether increasing k beyond 2 will yield similar

4More precisely, for the definition of the sequence (αk)k as well as in Lemmas 14 and 15.
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(a) γ = 0, d = 0.25
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(b) γ = 1, d = 0.25

0 1000 2000 3000 4000 5000

time

0

20

40

60

80

100

av
er

ag
e

m
ax

im
u

m
w

ei
gh

t

single delegation

greedy power of choice

optimal confluent flow

(c) γ = 0, d = 0.5

0 1000 2000 3000 4000 5000

time

0

50

100

150

200

250
av

er
ag

e
m

ax
im

u
m

w
ei

gh
t

single delegation

greedy power of choice

optimal confluent flow

(d) γ = 1, d = 0.5
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(e) γ = 0, d = 0.75
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(f) γ = 1, d = 0.75

Figure 2: Maximum weight averaged over 100 simulations of length 5 000 time steps each. Maximum weight
has been computed every 50 time steps.
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Figure 5: Frequency of maximum weights at time t over 1 000 runs. γ = 1, d = 0.5, k = 2. The black lines
mark the medians.

improvements. As Fig. 3 shows, however, the returns of increasing k quickly diminish, which is common to
many incarnations of the power of choice [1].

4.2 Evaluating Mechanisms
Already the case of k = 2 appears to have great potential; but how easily can we tap it?

We have observed that, on average, the greedy “power of choice” mechanism comes surprisingly close to
the optimal solution. However, this greedy mechanism depends on seeing the order in which our random
process inserts agents and on the fact that all generated graphs are acyclic, which need not be true in
practice. If the graphs were acyclic, we could simply first sort the agents topologically and then present the
agents to the greedy mechanism in reverse order. On arbitrary active graphs, we instead proceed through
the strongly connected components in reversed topological order, breaking cycles and performing the greedy
step over the agents in the component. To avoid giving the greedy algorithm an unfair advantage, we use this
generalized greedy mechanism throughout this section. Thus, we compare the generalized greedy mechanism,
the optimal solution, the (1 + log |V |)-approximation algorithm5 and a random mechanism that materializes
a uniformly chosen option per delegator.

On a high level, we find that both the generalized greedy algorithm and the approximation algorithm
perform comparably to the optimal confluent flow solution, as shown in Fig. 5 for d = 0.5 and γ = 1. As

5For one of their subprocedures, instead of directly optimizing a convex program, Chen et al. [7] reduce this problem to
finding a lexicographically optimal maximum flow in O(n5). We choose to directly optimize the convex problem in Gurobi,
hoping that this will increase efficiency in practice.
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Figure 6: Maximum weight per algorithm for d =
0.5, γ = 1, k = 2, averaged over 100 simulations.
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Figure 7: Running time of mechanisms on graphs
for d = 0.5, γ = 1, averaged over 20 simulations.

Fig. 6 suggests, all three mechanisms seem to exploit the advantages of double delegation, at least on our
synthetic benchmarks. These trends persist for other values of d and γ, as presented in Appendix E.4.

The similar success of these three mechanisms might indicate that our probabilistic model for k = 2
generates delegation networks that have low maximum weights for arbitrary resolutions. However, this is
not the case: The random mechanism does quite poorly on instances with as few as t = 100 agents, as shown
in Fig. 5a. With increasing t, the gap between random and the other mechanisms only grows further, as
indicated by Fig. 6. In general, the graph for random delegations looks more similar to single delegation than
to the other mechanisms on double delegation. Indeed, for γ = 0, random delegation is equivalent to the
process with k = 1, and, for higher values of γ, it performs even slightly worse since the unused delegation
options make the graph more centralized (see Fig. 12 in Appendix E.2). Because of the poor performance
of random delegation, if simplicity is a primary desideratum, we recommend using the generalized greedy
algorithm instead.

As Fig. 7 and the graphs in Appendix E.5 demonstrate, all three other mechanisms, including the
optimal solution, easily scale to input sizes as large as the largest implementations of liquid democracy
to date. Whereas the three mechanisms were close with respect to maximum weight, our implementation
of the approximation algorithm is typically slower than the optimal solution (which requires a single call to
Gurobi), and the generalized greedy algorithm is blazing fast. These results suggest that it would be possible
to resolve delegations almost optimally even at a national scale.

5 Discussion
The approach we have presented and analyzed revolves around the idea of allowing agents to specify multiple
delegation options, and selecting one such option per delegator. As mentioned in Section 2, a natural variant
of this approach corresponds to splittable — instead of confluent — flow. In this variant, the mechanism
would not have to commit to a single outgoing edge per delegator. Instead, a delegator’s weight could be split
into arbitrary fractions between her potential delegates. Indeed, such a variant would be computationally
less expensive, and the maximum voting weight can be no higher than in our setting. However, we view our
concept of delegation as more intuitive and transparent: Whereas, in the splittable setting, a delegator’s vote
can disperse among a large number of agents, our mechanism assigns just one representative to each delegator.
As hinted at in the introduction, this is needed to preserve the high level of accountability guaranteed
by classical liquid democracy. We find that this fundamental shortcoming of splittable delegations is not
counterbalanced by a marked decrease in maximum weight. Indeed, representative empirical results given
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in Appendix E.3 show that the maximum weight trace is almost identical under splittable and confluent
delegations. This conclusion is supported by additional results in Appendix E.4. Furthermore, note that in
the preferential delegation model with k = 1, splittable delegations do not make a difference, so the lower
bounds given in Theorems 7 and 8 go through. And, when k ≥ 2, the upper bound of Theorem 9 directly
applies to the splittable setting. Therefore, our main technical results in Section 3 are just as relevant to
splittable delegations.

To demonstrate the benefits of multiple delegations as clearly as possible, we assumed that every agent
provides two possible delegations. In practice, of course, we expect to see agents who want to delegate but
only trust a single person to a sufficient degree. This does not mean that delegators should be required to
specify multiple delegations. For instance, if this was the case, delegators might be incentivized to pad their
delegations with very popular agents who are unlikely to receive their votes. Instead, we encourage voters
to specify multiple delegations on a voluntary basis, and we hope that enough voters participate to make
a significant impact. Fortunately, as demonstrated in Fig. 4, much of the benefits of multiple delegation
options persist even if only a fraction of delegators specify two delegations.

Without doubt, a centralized mechanism for resolving delegations wields considerable power. Even though
we only use this power for our specific goal of minimizing the maximum weight, agents unfamiliar with the
employed algorithm might suspect it of favoring specific outcomes. To mitigate these concerns, we propose
to divide the voting process into two stages. In the first, agents either specify their delegation options or
register their intent to vote. Since the votes themselves have not yet been collected, the algorithm can resolve
delegations without seeming partial. In the second stage, voters vote using the generated delegation graph,
just as in classic liquid democracy, which allows for transparent decisions on an arbitrary number of issues.
Additionally, we also allow delegators to change their mind and vote themselves if they are dissatisfied with
how delegations were resolved. This gives each agent the final say on their share of votes, and can only
further reduce the maximum weight achieved by our mechanism. We believe that this process, along with
education about the mechanism’s goals and design, can win enough trust for real-world deployment.

Beyond our specific extension, one can consider a variety of different approaches that push the current
boundaries of liquid democracy. For example, in a recent position paper, Brill [5] raises the idea of allowing
delegators to specify a ranked list of potential representatives. His proposal is made in the context of
alleviating delegation cycles, whereas our focus is on avoiding excessive concentration of weight. But, on
a high level, both proposals envision centralized mechanisms that have access to richer inputs from agents.
Making and evaluating such proposals now is important, because, at this early stage in the evolution of
liquid democracy, scientists can still play a key role in shaping this exciting paradigm.
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A Proof of Lemma 6 – Hardness of MinMaxCongestion

We first require the following lemma.

Lemma 10. Let G be a directed graph in which all vertices have an outdegree of at most 2. Given vertices
s1, s2, t1, t2, it is NP-hard to decide whether there exist vertex-disjoint paths from s1 to t1 and from s2 to t2.

Proof. Without the restriction on the outdegree, the problem is NP-hard.6 We reduce the general case to
our special case.

Let G′ be an arbitrary directed graph; let s′1, s′2, t′1, t′2 be distinguished vertices. To restrict the outdegree,
replace each node n with outdegree d by a binary arborescence (directed binary tree with edges facing away
from the root) with d sinks. All incoming edges into n are redirected towards the root of the arborescence;
outgoing edges from n instead start from the different leaves of the arborescence. Call the new graph G, and
let s1, s2, t1, t2 refer to the roots of the arborescences replacing s′1, s′2, t′1, t′2, respectively.

Clearly, our modifications to G′ can be carried out in polynomial time. It remains to show that there
are vertex-disjoint paths from s1 to t1 and from s2 to t2 in G iff there are vertex-disjoint paths from s′1 to
t′1 and from s′2 to t′2 in G′.

If there are disjoint paths in G′, we can translate these paths into G by visiting the arborescences corre-
sponding to the nodes on the original path one after another. Since both paths visit disjoint arborescences,
the new paths must be disjoint.

Suppose now that there are disjoint paths in G. Translate the paths into G′ by visiting the nodes
corresponding to the sequence of visited arborescences. Since each arborescence can only be entered via its
root, disjointness of the paths in G implies disjointness of the translated paths in G′.

We are now ready to prove Lemma 6.

Lemma 6. It is NP-hard to approximate the MinMaxCongestion problem to a factor of 1
2 log2 k, where

k is the number of sinks, even when each node has unit demand and outdegree at most 2.

Proof. We adapt the proof of Theorem 1 of Chen et al. [7].
Let G = (V,E), s1, s2, t1, t2 be given as in Lemma 10. Without loss of generality, G only contains nodes

from which t1 or t2 is reachable, t1 and t2 are sinks and all four vertices are distinct. Let ` = dlog2 |V |e
and k = 2`. Build the same auxiliary network as that built by Chen et al. [7], which consists of a binary
arborescence whose k − 1 nodes are copies of G. The construction is illustrated in Fig. 8. For more details,
refer to [7].

Without loss of generality, we can have polynomially-bounded positive integer demands. To express a
demand of d at a node n in our unit-demand setting, add d− 1 nodes with a single outgoing edge to n.

Denote the number of nodes in the network by φ := (k − 1) · |V |+ k, and set Φ := ` · φ+ 1. In [7], every
copy of s2 and t2 has demand 1, the copy of s1 at the root has demand 2, and all other nodes have demand
0. Instead, we give these nodes demands of Φ, 2Φ and 1, respectively. Note that the size of the generated
network7 is polynomial in the size of G and that the outdegree of each node is at most 2. From every node,
one of the sinks S displayed as rectangles in Fig. 8 is reachable. Since the minimum-distance-to-S spanning
forest describes a flow, a flow in the network exists.

Suppose that G contains vertex-disjoint paths P1 from s1 to t1 and P2 from s2 to t2. In each copy of G
in the network, route the flow along these paths. We can complete the confluent flow inside of this copy in
such a way that the demand of every node is routed to t1 or t2: By assumption, each of the nodes can reach
one of these two path endpoints. Iterate over all nodes in order of ascending distance to the closest endpoint
and make sure that their flow is routed to an endpoint. For the endpoints themselves, there is nothing to do.
For positive distance, a node might be part of a path and thus already connected to an endpoint. Else, look
at its successor in a shortest path to an endpoint. By the induction hypothesis, all flow from this successor
is routed to an endpoint, so route the node’s flow to this successor. If we also use the edges between copies

6Chen et al. [7] cite a previously established result for this [10].
7Even after unfolding our non-unitary-demand nodes.
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Figure 8: Auxiliary network generated from G, here for k = 16. Recreation of [7, Fig. 2].

of G and between the copies and the sinks, we obtain a confluent flow. Each sink except for the rightmost
one can only collect the demand of two nodes with demand Φ plus a number of nodes with demand 1. The
rightmost sink collects the demand from the single node with demand 2Φ plus some unitary demands. Thus,
the congestion of the system can be at most 2Φ + φ.

Now, consider the case in which G does not have such vertex-disjoint paths. In every confluent flow and
in every copy, there are three options:

• the flow from s1 flows to t2 and the flow from s2 flows to t1,

• the flow from s1 and s2 flows to t1, or

• the flow from s1 and s2 flows to t2.

In each case, the flow coming in through s1 is joined by additional demand of at least Φ. Consider the path
from the copy of s1 at the root to a sink. By a simple induction, the congestion at the endpoind of the ith
copy of G is at least (i + 1) · Φ. Thus, the total congestion at the sink must be at least (` + 1) · Φ. The
lemma now follows from the fact that

log2 k

2
(2Φ + φ) =

`

2
(2Φ + φ) < (`+ 1) · Φ.

B Proof of Theorem 7 – Lower Bound for k = 1 with High Proba-
bility

Theorem 7. In the preferential delegation model with k = 1, γ = 0, and d ∈ (0, 1), with high probability,
the maximum weight of any voter at time t is in Ω(tβ), where β > 0 is a constant that depends only on d.
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Proof. It suffices to show that, with high probability, there exists a voter at every time t whose weight is
bounded from below by a function in Ω(tβ).

For ease of exposition, we pretend that imax := log2
t

log t is an integer.8 We divide the t agents into
imax + 1 blocks B0, . . . , Bimax

. The first block B0 contains agents 1 to τ := log t, and every subsequent block
Bi contains agents (τ 2i−1, τ 2i].

We keep track of the total weight Si of all voters in B0 after the entirety of block Bi has been added.
Furthermore, we define an event Xi saying that a high enough number of agents in block Bi transitively
delegate into B0. If all Xi hold, Simax

scales like a power function. Then, we show that, as t increases,
the probability of any Xi failing goes to zero. Thus, our bound on Simax

holds with high probability. The
total weight of B0 and the weight of the maximum voter in B0 can differ by at most a factor of τ , which is
logarithmic. Thus, with high probability, there is a voter in B0 whose weight is a power function.

In more detail, let ε := 1
2 and let d′ := (1 − ε) d = d

2 . For each i ≥ 0, let Yi denote the number of votes
from block i transitively going into B0. Clearly, Si =

∑i
j=0 Yi. For i > 0, let Xi denote the event that

Yi > d′
τ
(

1 + d′

2

)i−1

2
.

Bounding the Expectation of Yi We first prove by induction on i that, if X1 through Xi hold, then

Si ≥ τ
(

1 +
d′

2

)i
. (6)

For i = 0, S0 = τ and the claim holds. For i > 0, by the induction hypothesis, Si−1 ≥ τ
(

1 + d′

2

)i−1

. By
the assumption Xi,

Yi > d′
τ
(

1 + d′

2

)i−1

2
.

Thus,

Si = Si−1 + Yi ≥ τ
(

1 +
d′

2

)i−1

+ d′
τ
(

1 + d′

2

)i−1

2
= τ

(
1 +

d′

2

)i−1 (
1 +

d′

2

)
= τ

(
1 +

d′

2

)i
.

This concludes the induction and establishes Eq. (6).
Now, for any agent j in Bi, the probability of transitively delegating into B0 is

d

∑
v∈V ∩B0

wj−1(v)

j − 1
≥ d Si−1

τ 2i
.

Conditioned on X1, . . . , Xi−1, we can thus lower-bound Yi by a binomial variable Bin
(
τ 2i−1, d Si−1

τ 2i

)
to

obtain

E[Yi | X1, . . . , Xi−1] ≥ τ 2i−1 d
Si−1

τ 2i
= d

Si−1

2
≥ d

τ
(

1 + d′

2

)i−1

2
.

Denoting the right hand side by

µ :− d
τ
(

1 + d′

2

)i−1

2
,

note that Xi holds if Yi > (1− ε)µ.

8The same argument works for imax :=
⌊
log2

t
log t

⌋
if we appropriately bound the term.
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Failure Probability Goes to 0 Now, we must show that, with high probability, all Xi hold. By under-
approximating the probability of delegation by a binomial random variable as before and by using a Chernoff
bound, we have for all i > 0

P[Xi | X1, . . . , Xi−1] ≥ P

[
Bin

(
τ 2i−1, d

τ (1 + d′/2)
i−1

τ 2i

)
> (1− ε)µ

]
≥ 1− e−

ε2 µ
2 .

By the union bound,

P[∃i, 1 ≤ i ≤ imax . Xi fails] ≤
imax∑
i=1

e−
ε2 d τ (1+d′/2)i−1

4 .

We wish to show that the right hand side goes to 0 as t increases. We have

imax∑
i=1

e−
ε2 d τ (1+d′/2)i−1

4 ≤ imax

(
e−

ε2 d τ
4

)
(by monotonicity)

=

(
log2

t

log t

)(
t−

ε2 d
4

)
, (by definitions of imax , τ)

which indeed approaches 0 as t increases.

Bounding the Maximum Weight Note that the weight of B0 at time t is exactly Simax
. Set x :=

1 + d′/2 > 1, which is a constant. With high probability, by Eq. (6),

Simax

τ
≥
(

1 +
d′

2

)imax

= xlog2
t

log t =

(
t

log t

)log2 x

.

Since x > 1, log2 x > 0. For any 0 < β < log2 x,
Simax

τ ∈ Ω(tβ) with high probability. Since B0 has
weight Simax

and contains at most τ voters, with high probability there is some voter in B0 with that much
weight.

C Proof of Theorem 9 – Upper Bound
Because the proof of Theorem 9 is quite intricate and technical, we begin with a sketch of its structure.
Proofs for the individual lemmas can be found in the subsequent subsections.

C.1 Proof Sketch
For our analysis, it would be natural to keep track of the number of voters v with a specific weight wj(v) = k
at a specific point j in time. In order to simplify the analysis, we instead keep track of random variables

Fj(k) :=
∑
v∈V

wj(v)≥k

wj(v),

i.e., we sum up the weights of all voters with weight at least k. Since the total weight increases by one in
every step, we have

∀j. Fj(1) = j, and (7)
∀j, k. Fj(k) ≤ j. (8)

If Fj(k) < k for some j and k, the maximum weight of any voter must be below k.
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If we look at a specific k > 1 in isolation, the sequence (Fj(k))j evolves as a Markov process initialized
at F1(k) = 0 and then governed by the rule

Fm+1(k)− Fm(k) =


1 P = d

(
Fm(k)
m

)2

k P = d

((
Fm(k−1)

m

)2

−
(
Fm(k)
m

)2
)

0 else

. (9)

In the first case, both potential delegations of a new delegator lead to voters who already had weight at least
k. We must thus give her vote to one of them, increasing Fm(k) by one. In the second case, a new delegator
offers two delegations leading to voters of weight at least k−1, at least one of which has exactly weight k−1.
Our greedy algorithm will then choose a voter with weight k − 1. Because this voter is suddenly counted
in the definition of Fj(k), Fm(k) increases by k. Finally, if a new voter appears, or if a new delegator can
transitively delegate to a voter with weight less than k − 1, then Fm(k) does not change.

In order to bound the maximum weight of a voter, we first need to get a handle on the general distribution
of weights. For this, we define a sequence of real numbers (αk)k such that, for every k ≥ 1, the sequence
Fj(k)
j converges in probability to αk. Set α1 := 1. For every k > 1, let αk be the unique root 0 < x < αk−1

of the polynomial
ak(x, p) := d x2 + k d (p2 − x2)− x (10)

for p set to αk−1.9 Since ak(0, αk−1) > 0 and ak(αk−1, αk−1) < 0, such a solution exists by the intermediate
value theorem. Because the polynomial is quadratic, such a solution must be unique in the interval. It
follows that the αk form a strictly decreasing sequence in the interval (0, 1].

The sequence (αk)k converges to zero, and eventually does so very fast. However, this is not obvious
from the definition and, depending on d, the sequence can initially fall slowly. In Lemma 14, we demonstrate
convergence to zero, and in Lemma 15, we show that the sequence falls in O(k−2). Based on this, in
Lemma 16, we choose an integer k0 such that the sequence falls very fast from there. In the same lemma,
we define a more nicely behaved sequence (f(k))k≥k0 that is a strict upper bound on (αk)k≥k0 and that is
contained between two doubly-exponentially decaying functions.

Lemma 11. For all k ≥ 1, ε > 0 and functions ω(m) such that ω(m)→∞ and ω(m) < m (for sufficiently
large m),

P
[
∃j, ω(m) ≤ j ≤ m. Fj(k)

j
> αk + ε

]
→ 0.

Proof sketch (detailed in Appendix C.3). The proof proceeds by induction on k. For k = 1, the claim directly
holds. For larger k, we use a suitably chosen δ in place of ε and ω0 in place of ω for the induction hypothesis.
With the induction hypothesis, we bound the Fm(k−1)

m term in the recurrence in Eq. (9). Furthermore, all
steps Fj(k)−Fj−1(k) where Fj−1(k)

j−1 ≥ αk holds can be dominated by independent and identically distributed
random variables η′j .

Denote by π the first point j ≥ ω0(m) such that Fj(k)
j ≤ αk + ε

2 . The η′j then dominate all steps
Fj(k) − Fj−1(k) for ω0(m) < j ≤ π. Using Chernoff’s bound and suitably chosen δ and ω0, we show that,
with high probability, π ≤ ω(m).

Because of this, if Fj(k)
j > αk + ε for some j ≥ ω(m), the sequence

(
Fj(k)
j

)
j
must eventually cross from

below αk+ ε
2 to above αk+ε without in between falling below αk. On this segment, we can overapproximate

the sequence by a random walk with steps distributed as η′j . Since the sequence might previously fall below
αk an arbitrary number of times, we overapproximate the probability of ever crossing αk+ε for j ≥ ω(m) by
a sum over infinitely many random walks. This sum converges to 0 for m→∞, which shows our claim.

9The equation 0 = ak(x, p) can be obtained from Eq. (9) by naïvely assuming that Fj(k−1)

j
converges to a value p and Fj(k)

j

converges to x, then plugging these values in the expectation of the recurrence.
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The above lemma gives us a good characterization of the behavior of (Fj(k))j for any fixed k (and large
enough j). To prove an upper bound on the maximum weight, however, we are ultimately interested in
statements about Fj(k(m)), where k(m) ∈ Θ(log2 logm) and the range of j varies with m. In order to
obtain such results, we will first show in Lemma 12 that whole ranges of k simultaneously satisfy bounds
with high probability.

As in the previous lemma, we can only show our bounds with high probability for j past a certain period
of initial chaos. Taking a role similar to ω(m) in Lemma 11, we will define a function φ(m, k) that gives
each k a certain amount of time to satisfy the bounds, depending on m: Let ρ(m) := (log logm)

1
3 and define

φ(m, k) := ρ(m)C2k+1

, where C is an integer sufficiently large such that

logC > max
(

1, c1, log

(
2

1− d

)
+
c1
2

)
. (11)

In the above, c1 is a postive constant defining the lower bound on f(k) in Lemma 16.
Additionally, let k∗(m) be the smallest integer such that

C2k∗(m)+1

≥
√
m. (12)

Note that C2k∗(m)+1

< m because increasing the double exponent in increments of 1 is equivalent to squaring
the term. By applying logarithms to C2k∗(m)+1 ≥

√
m and C2k∗(m)+1

< m, we obtain log2 logC m − 2 ≤
k∗(m) < log2 logC m− 1, from which it follows that k∗(m) = log2 logm+ Θ(1).

Lemma 12. With high probability, for all k0 ≤ k ≤ k∗(m), and for all φ(m, k) ≤ j ≤ m,

Fj(k)

j
≤ f(k).

Proof sketch (detailed in Appendix C.4). Let Gk be the event

Gk :=

{
∀j, φ(m, k) ≤ j ≤ m. Fj(k)

j
≤ f(k)

}
.

Our goal is to show that Gk holds for all k in our range. Similarly to an induction, we begin by showing Gk0
with high probability and then give evidence for how, under the assumption Gk, Gk+1 is likely to happen.
Instead of an explicit induction, we piece together these parts in a union bound.

The base case Gk0 follows from Lemma 11 with ω(m) := φ(m, k0) and ε := f(k0)− αk0 .
For the step, fix some k ≥ k0, and assume Gk. We want to give an upper bound on the probability that

Gk+1 happens. We split this into multiple substeps: First, we prove that, given Gk, some auxiliary event
E(k + 1) happens only with probability converging to 0. Then, we show that E(k + 1) ⊆ Gk+1 where E
denotes the complement of an event E . This means that, whenever the unlikely event does not take place,
Gk+1 holds. This allows the step to be repeated.

If Gk does not hold for any k0 ≤ k ≤ k∗(m), then Gk0 or one of the E(k) must have happened. The union
bound converges to zero for m→∞, proving our claim.

As promised, the last lemma enables us to speak about the behavior of Fj(k(m)). We will use a sequence
of such statements to show that, with high probability, Fj(k(m)) for some k(m) does not change over a
whole range of j:

Lemma 13. There existsM > 0 and an integer r > 0 such that, for j0(m) := (log logm)M , Fm(k∗(m)+r) =
Fj0(m)(k∗(m) + r) holds with high probability. In addition, there is β > 1

2 such that, with high probability,

Fj0(m)(k∗(m) + r − 1) ≤ j0(m)1−β. (13)
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Proof sketch (detailed in Appendix C.5). In Lemma 18, we finally get a statement about Fj(k∗(m)): By
choosing different k for different j in Lemma 12, we obtain a constant β0 > 0 such that, with high probability,

∀j, log logm ≤ j ≤ m. Fj(k∗(m))

j
≤ j−β0 .

We now increase β0 until it is larger than 1
2 . Set r′0 := 0 and M0 := 1. In Lemma 19, we boost a

proposition of the form

∀j, (log logm)Mi ≤ j ≤ m. Fj(k∗(m) + r′i)

j
≤ j−βi

holding with high probability to obtain, for some Mi+1 > 0 and with high probability,

∀j, (log logm)Mi+1 ≤ j ≤ m. Fj(k∗(m) + r′i + 1)

j
≤ j− 3

2 βi .

If we set r′i+1 := r′i + 1 and βi+1 := 3
2 βi, we can repeatedly apply this argument until some βi > 1

2 . Let
M , r′ and β denote Mi, r′i and βi, respectively, for this i. If, furthermore, r := r′ + 1, Eq. (13) follows as a
special case.

We then simply union-bound the probability of Fj(k∗(m) + r) increasing for any j between j0(m) and m.
Using the above over-approximation in Eq. (9) gives us an over-harmonic series, whose value goes to zero
with m→∞.

We can now prove Theorem 9. Let Qi denote the maximum weight after i time steps.

Proof of Theorem 9. By Lemma 13, with high probability, Fm(k∗(m) + r) = Fj0(m)(k∗(m) + r). Therefore,
we have that with high probability

Fm(k∗(m) + r) = Fj0(m)(k∗(m) + r)

≤ Fj0(m)(k∗(m) + r − 1) (by monotonicity)

≤ j0(m)1−β (by Eq. (13))

=
(
(log logm)M

)1−β
≤ (log logm)M+1.

For any j and k, Qj ≤ max{k, Fj(k)}. Since, for large enough m, k∗(m) + r < (log logm)M+1, the
maximum weight Qm is at most (log logm)M+1 with high probability. This result holds for general m, so we
are allowed to plug in j0(m) for m. Then, Qj0(m) ≤ (log log j0(m))

M+1. Moreover, (log log j0(m))
(M+1)2

<
j0(m) for sufficiently large m becauseM is a constant and polylogarithmic terms grow asymptotically slower
than polynomial terms. Rewriting this yields

Qj0(m) ≤ (log log j0(m))
M+1

< j0(m)1/(M+1). (14)

Now, note that k∗(m) + r ≥
(
j0(m)1/(M+1)

)
for large enough m. Therefore, Eq. (14) implies that, with

high probability, a graph generated in j0(m) time steps has no voters of weight k∗(m) + r or higher. In
other words, with high probability, Fj0(m)(k∗(m) + r) = 0, so with high probability Fm(k∗(m) + r) = 0
(again by Lemma 13). This means that the maximum weight after m time steps is also upper-bounded by
k∗(m) + r = log2 logm+ Θ(1).

C.2 Bounds on (αk)k

Lemma 14.
α∞ := lim

k→∞
αk = α∞ = 0
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Proof. Set
a(x) := ak(x, x) = d x2 − x,

which is independent of k. Since a(x) is continuous, it must take on a maximum value ε on the interval
[α∞, 1] by the extreme value theorem. Thus, a(αk) ≤ ε for all k. It holds that ε ≤ 0, where ε = 0 iff a∞ = 0.
For some fixed k > 1 and for x ∈ (α∞, 1), consider

d

dx
ak(x, αk−1) = −2 d x (k − 1)− 1

> −2 k − 1.

By the mean value theorem, ak(αk,αk−1)−ak(αk−1,αk−1)
αk−αk−1

> −2 k − 1. This is equivalent to αk − αk−1 <
ak(αk−1,αk−1)−ak(αk,αk−1)

2 k+1 . Since ak(αk−1, αk−1) = a(αk−1) ≤ ε and ak(αk, αk−1) = 0 by definition, it follows
that

αk − αk−1 ≤
ε

2 k + 1
<

ε

3 k
.

Then,

α∞ = α1 +

∞∑
k=2

(αk − αk−1) < 1 +
ε

3

∞∑
k=2

1

k
.

If ε < 0, the harmonic series on the right-hand side makes the term diverge to negative infinity, which is a
contradiction. Thus, ε = 0 and a∞ = 0.

Lemma 15.
αk ∈ O

(
1

k2

)
Proof. We will show that, for large enough k > k′, αk <

(
k−1
k

)2
αk−1. Then, by induction, αk ≤(∏k

i=k′+1

(
i−1
i

)2)
αk′ = 1

k2 (k′)
2
αk′ ∈ O

(
1
k2

)
for all k ≥ k′.

Consider the value

ak

((
k − 1

k

)2

αk−1, αk−1

)
= −d (k − 1)

(
k − 1

k

)4

α2
k−1 + d k α2

k−1 −
(
k − 1

k

)2

αk−1

= −dα2
k−1

(
(k − 1)5 − k5

k4

)
−
(
k − 1

k

)2

αk−1

= αk−1

(
−dαk−1

(
−5 k4 +O

(
k3
)

k4

)
−
(
k − 1

k

)2
)
.

Note that

lim
k→∞

−dαk−1

(
−5k4 +O

(
k3
)

k4

)
−
(
k − 1

k

)2

= −d 0 (−5)− 1 = −1,

where the limit of αk has been shown in Lemma 14. Thus, for sufficiently large k, ak
((

k−1
k

)2
αk−1, αk−1

)
<

0. As mentioned right after the definition of αk, ak(0, αk−1) > 0 and ak(αk−1, αk−1) < 0. Since ak(x, αk−1)

is a quadratic polynomial in x, there can be no root in
[(
k−1
k

)2
αk−1, αk−1

]
. Therewith, αk <

(
k−1
k

)2
αk−1,

as desired.

Lemma 16. There is a fixed integer k0, a function f with some starting value f(k0) and f(k) := k ·f(k−1)2

for k > k0 and constants c1, c2 > 0 such that

• for all k ≥ k0, f(k) > αk and
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• for all n ≥ 0,
exp (−c1 2n) ≤ f(k0 + n) ≤ exp (−c2 2n) .

Proof. Choose k0 such that αk0 <
1

2 e2 k0
. We can do so because, by Lemma 15, αk falls quadratically. Let

f(k) be defined as in the statement of the lemma with

f(k0) := αk0 +
1

2 e2 k0
<

1

e2 k0
. (15)

Since k ≥ 1, by the definition of αk,

αk = d (1− k)α2
k + k dα2

k−1 ≤ k dα2
k−1 < k α2

k−1. (16)

By construction, f(k0) > αk0 . If αk−1 < f(k − 1), then αk < k α2
k−1 < k f(k − 1)2 = f(k), where the

first inequality is Eq. (16). Thus, (f(k))k≥k0 strictly dominates (αk)k≥k0 .
We will now show the doubly exponential bounds on f(k). A simple induction on n ≥ 0 shows that

f(k0 + n) = f(k0)2n
n∏
i=1

(k0 + i)2n−i ,

and taking the logarithm of both sides yields

log(f(k0 + n)) = 2n log(f(k0)) + 2n
n∑
i=1

2−i log(k0 + i).

Therefore, because log(k0 + i) > 0, we see that

log(f(k0 + n)) > 2n log(f(k0)),

so setting c1 = − log(f(k0)) yields the desired lower bound.
For the upper bound, note that log(k0 + i) < log(k0) + i, which means that

n∑
i=1

2−i log(k0 + i) ≤
∞∑
i=1

2−i(log(k0) + i)

= log(k0) +
2

(2− 1)2

= log(k0) + 2.

Therefore, we have that

log(f(k0 + n)) ≤ 2n
(

log(f(k0)) + log(k0) + 2
)

= 2n log(f(k0) k0 e
2),

and because we have f(k0) k0 e
2 < 1 by Eq. (15), we can let c2 = − log(f(k0) k0 e

2) to complete the upper
bound.

C.3 Proof of Lemma 11
Lemma 11. For all k ≥ 1, ε > 0 and functions ω(m) such that ω(m)→∞ and ω(m) < m (for sufficiently
large m),

P
[
∃j, ω(m) ≤ j ≤ m. Fj(k)

j
> αk + ε

]
→ 0.
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Proof. By induction on k ≥ 1. For k = 1, Fj(1)
j = j

j = 1 = α1 for all j and the claim follows.
Now let k > 1. Since αk < 1 and since decreasing ε only strengthens our statement, we may assume

without loss of generality that
ε

2
< 1− αk. (17)

Let A be the event
A :=

{
∀j, ω0(m) ≤ j ≤ m. Fj(k − 1)

j
≤ αk−1 + δ

}
,

where δ > 0 and ω0 are fixed values depending on d, k and ε, which we will give later. By the induction
hypothesis, P[A]→ 1. Therefore, it suffices to show that

P
[
∃j, ω(m) ≤ j ≤ m. Fj(k)

j > αk + ε
∣∣∣ A]→ 0.

From here on, we assume that A holds and show that Fj(k)
j ≤ αk + ε with high probability.

Overapproximating Fj(k):

Let j be such that ω0(m) ≤ j ≤ m. Our goal in this section is to overapproximate Fj(k) as a sum of
independent and identically distributed random variables, at least under certain conditions. We begin by
decomposing Fj(k) as a sum of differences χi+1 := Fi+1(k)− Fi(k), distributed as in Eq. (9):

Fj(k) = Fω0(m)(k) +

j∑
i=ω0(m)+1

χi ≤ ω0(m) +

j∑
i=ω0(m)+1

χi, (18)

where the inequality follows from Eq. (8). By A, it holds that Fi−1(k−1)
i−1 ≤ αk−1 + δ for all i such that

ω0(m) < i ≤ m. Thus, for all such i

χi ≤ ηi :=


1 P = d

(
Fi−1(k)
i−1

)2

k P = d

(
(αk−1 + δ)

2 −
(
Fi−1(k)
i−1

)2
)

0 else

.

By setting gi := Fi(k)
i − αk, we can rewrite the above as

ηi =


1 P = d (αk + gi−1)

2

k P = d
(

(αk−1 + δ)
2 − (αk + gi−1)

2
)

0 else

.

Choose δ > 0 such that 2αk−1 δ + δ2 = ε
4 k d . The quadratic equation in δ must have a positive solution

because 2αk−1 and ε
4 k d are positive. Under the additional assumption that gi−1 ≥ 0, we can overapproximate

ηi by moving d(2αk gi−1 + g2
i−1) probability from the first to the second case to obtain:

ηi ≤ η′i :=


1 P = dα2

k

k P = d
(
α2
k−1 − α2

k + ε
4 k d

)
0 else

.

The η′i are independent and identically distributed. By the definition of αk in Eq. (10), E [η′i] = αk + ε
4 .
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Starting Point ω0(m) ≤ π ≤ ω(m):

Let π be the first j ≥ ω0(m) such that Fj(k)
j ≤ αk + ε

2 (write π = ∞ if no such j exists). We will use π as
a starting point for the following analysis, where we show that, with high probability, no j ≥ π violates our
desired property Fj(k)

j ≤ αk + ε. Since we want this to hold for all j ≥ ω(m), we must first show that, with
high probability, π ≤ ω(m).

Assume that this is not the case, i.e., that π > ω(m). Then, in particular, Fω(m)

ω(m) > αk + ε
2 . Furthermore,

for all i such that ω0(m) < i ≤ ω(m), gi−1 = Fi−1(k)
i−1 − αk > ε

2 > 0, and therefore χi ≤ ηi ≤ η′i.

P[π > ω(m)] ≤ P
[
Fω(m)(k)

ω(m)
> αk +

ε

2

]

≤ P

 ω(m)∑
i=ω0(m)+1

χi >
(
αk +

ε

2

)
ω(m)− ω0(m)

 (by Eq. (18))

≤ P

 ω(m)∑
i=ω0(m)+1

η′i > αk (ω(m)− ω0(m)) +
ε

2
ω(m)− (1− αk)ω0(m)


We choose ω0(m) :=

ε
2−

ε
3

1−αk− ε3
ω(m). Using Eq. (17), one verifies that the fraction is well-defined and that

0 ≤ ω0(m) ≤ ω(m). With this definition, it holds that ε
2 ω(m)− (1− αk)ω0(m) = ε

3 (ω(m)− ω0(m)). Thus,
we can rewrite the last inequality as

P[π > ω(m)] ≤ P

 ω(m)∑
i=ω0(m)+1

η′i >
(
αk +

ε

3

)
(ω(m)− ω0(m))

 .

The η′i are bounded by k, and E
[∑m

i=ω0(m)+1 η
′
i

]
=
(
αk + ε

4

)
(ω(m)−ω0(m)) is smaller by a constant factor

than
(
αk + ε

3

)
(ω(m) − ω0(m)). Therefore, by Chernoff’s bound, the probability decays exponentially in

ω(m)− ω0(m). Since ω(m)− ω0(m) ∈ Θ(ω(m))→∞, π ≤ ω(m) with high probability.

Behavior from π on:

We may now assume π ≤ ω(m). In this section, we bound the probability that Fj(k) surpasses the line
(αk + ε) j at some time j ≥ π.

Consider a random walk started at a position a and at some time t, whose steps are distributed as η′i.
Let M t

a(j) denote its position at time j, i.e., after j − t random steps. Should the random walk ever drop
below the line αk j, it is set to −∞ and stops evolving. Define a function

p(t0) := sup
t≥t0

P
[
∃j ≥ t. M t

(αk+ ε
2 ) t(j) > (αk + ε) j

]
.

Since the random walk only dominates Fj(k) as long as gj ≥ 0, i.e., as long as Fj(k) ≥ αk j, we dissect the
evolution of Fj(k) for increasing j ≥ π into segments. Set ρ0 := π. If, after some ρi, the process drops below
the line αk j and then enters the range

(
αk + ε

2

)
j − k < Fj(k) ≤

(
αk + ε

2

)
j again, call the time of entering

ρi+1. Else, write ρi+1 =∞. Clearly, if ρi <∞, ρi+1 ≥ ρi + 1. Thus, for all i, ρi ≥ π + i ≥ ω0(m) + i.

P[∃j ≥ π. Fj(k) > (αk + ε) j] ≤
∞∑
i=0

P[∃j, ρi+1 > j ≥ ρi. Fj(k) > (αk + ε) j]
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For crossing the line (αk+ε) j in the time range [ρj , ρj+1), the process must get from a position ≤ (αk+ ε
2 ) j

to > (αk + ε) j without dropping below αk j in between. This event is stochastically dominated by the event
that our random walk, when started from the potentially higher position (αk + ε

2 ) ρi at time ρi, will ever
cross (αk + ε) j:

P[∃j ≥ π. Fj(k) > (αk + ε) j] ≤
∞∑
i=0

p (ρi)

Because of the supremum in its definition, p(t0) is monotonically decreasing, and we can replace ρi by its
lower bound:

P[∃j ≥ π. Fj(k) > (αk + ε) j] ≤
∞∑
i=0

p (ω0(m) + i) ,

which, as we will show in Lemma 17, is

≤
∞∑

i=ω0(m)+1

s e−r i

for positive constants r and s. This series converges because
∑∞
i=0 s e

−r i = s er

er−1 . With increasing m, the
lower bound of the sum increases and the term goes to 0, proving our claim.

Lemma 17. There are positive constants r and s, depending only on ε and k, such that, for all t0,

p(t0) ≤ s e−r t0 .

Proof. Let M ′(n) be a random walk with step distribution η′i that–in contrast to M t
a(j)–starts at time and

position 0 and that does not have a stopping condition. M t
a(j) is dominated by a+M ′(j− t) for all a, t and

j where j ≥ t. The expectation of M ′(n) equals nE [η′i] = n
(
αk + ε

4

)
. For any fixed t,

Et :=
{
∃j ≥ t. M t

(αk+ ε
2 ) t(j) > (αk + ε) j

}
⊆
{
∃n ≥ 0. M ′(n) > (αk + ε) n+

ε

2
t
}

⊆
{
∃n ≥ 0. M ′(n)− E [M ′(n)] >

3

4
ε n+

ε

2
t

}
.

Call the last event E ′t. By Hoeffding’s inequality, for any n ≥ 0,

P
[
M ′(n)− E [M ′(n)] >

3

4
ε n+

ε

2
t

]
≤ exp

(
−

2
(

3
4 ε n+ ε

2 t
)2

nk2

)
.

Set r := 3 ε2

2 k2 to obtain

P
[
M ′(n)− E [M ′(n)] >

3

4
ε n+

ε

2
t

]
≤ exp

(
−r

(
3

4
n+ t+

t2

3n

))
≤ exp

(
−r

(
3

4
n+ t

))
.

Thus,

P[E ′t] ≤
∞∑
n=0

exp

(
−r

(
3

4
n+ t

))
= e−r t

∞∑
n=0

exp

(
−3

4
r n

)
= e−r t

e
3
4 r

e
3
4 r − 1

.
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By setting s := e
3
4
r

e
3
4
r−1

, have P[E ′t] ≤ e−r t s. Since this bound decreases monotonically in t,

p(t0) = sup
t≥t0

P[Et] ≤ sup
t≥t0

e−r t s = e−r t0 s.

C.4 Proof of Lemma 12
Lemma 12. With high probability, for all k0 ≤ k ≤ k∗(m), and for all φ(m, k) ≤ j ≤ m,

Fj(k)

j
≤ f(k).

Proof.

Definitions

Define the event
Gk :=

{
∀j, φ(m, k) ≤ j ≤ m. Fj(k)

j
≤ f(k)

}
.

As in Lemma 11, we dissect Fj(k + 1) for any φ(m, k + 1) ≤ j ≤ m as

Fj(k + 1)

j
=
Fφ(m,k)(k + 1)

j
+

1

j

j∑
i=φ(m,k)+1

ξi(k + 1),

where ξi+1(k+1) := Fi+1(k+1)−Fi(k+1) as in Eq. (9). We now define a random variable Xj,k+1 to bound
the sum of ξi terms from above. Let Xj,k+1 be distributed as

Xj,k+1 ∼ (k + 1) · Binom(j − φ(m, k), d f(k)2),

and note that, on Gk,
∑j
i=φ(m,k)+1 ξi(k + 1) is stochastically dominated by Xj,k+1. This is because the

(j − φ(m, k)) many ξi are independent, bounded by (k − 1) and have non-zero value with probability

d
(
Fi−1(k)
i−1

)2

= d f(k)2.
Now, consider the event

E(k + 1) =

∃j, φ(m, k + 1) ≤ j ≤ m.
j∑

i=φ(m,k)+1

ξi(k + 1) > γ E [Xj,k+1]

 ,

where γ := d+1
2 d > 1 is a constant chosen such that d γ = d+1

2 < 1.

E(k + 1) Is Unlikely

We bound P[E(k + 1) ∩ Gk] using standard Chernoff bounds as follows:

P[E(k + 1) ∩ Gk] ≤ P[∃j, φ(m, k + 1) ≤ j ≤ m. Xj,k+1 > γ E [Xj,k+1]]

≤ P[∃j, φ(m, k + 1) ≤ j ≤ m. Xj,k+1

k + 1
> γ E

[
Xj,k+1

k + 1

]
]

≤
m∑

j=φ(m,k+1)

exp

− (γ − 1)2 E
[
Xj,k
k+1

]
3
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≤
m∑

j=φ(m,k+1)

exp

(
− (γ − 1)2

3
(j − φ(m, k)) d f(k)2

)

Set c := (γ−1)2 d
3 . From γ > 1, it follows that c is positive. We then have

P[E(k + 1) ∩ Gk] ≤
∞∑

j=φ(m,k+1)

exp
(
−c f(k)2 (j − φ(m, k))

)
≤
∞∑
`=0

exp
(
−c f(k)2 (`+ φ(m, k + 1)− φ(m, k))

)
(` := j − φ(m, k + 1))

≤ e−c f(k)2 (φ(m,k+1)−φ(m,k))
∞∑
`=0

e−c f(k)2 `

≤ 1

1− e−c f(k)2
e−c f(k)2 (φ(m,k+1)−φ(m,k)). (geometric series)

Furthermore, since the sequence of f(k) converges to 0, we can find a constant C ′ (independent of k) such
that

C ′ ≥ f(k)2

1− e−c f(k)2
.

Indeed, note that if we let x := f(k)2, then it suffices to show that limx→0
x2

1−e−c x2
is constant. Because

both the numerator and denominator go to 0 in the limit as x approaches 0, we can apply L’Hôpital’s rule
to obtain

lim
x→0

x

1− e−c x
= lim
x→0

1

c e−c x
=

1

c
.

Plugging this in yields

P[E(k + 1) ∩ Gk] ≤ C ′

f(k)2

(
e−c f(k)2 (φ(m,k+1)−φ(m,k))

)
.

Now, expanding the definition of φ, and applying Lemma 16 to bound f(k)2, we have

P[E(k + 1) ∩ Gk] ≤ C ′
e−c ρ(m)

(
C2k+2

−C2k+1
)

exp (−c1 2k−k0+1)

exp (−c1 2k−k0+1)

 (by Lemma 16)

≤ C ′
(
e
−c ρ(m)

(
C2k+2

−C2k+1
)

exp (−c1 2k−k0+1)+c1 2k−k0+1
)

≤ C ′
(
e
−c ρ(m)C2k+1

(
C2k+1

−1
)

exp (−c1 2k)+c1 2k−k0+1
)
.

Because
(
C2k+1 − 1

)
> 1 and C2k+1

> C2k for k > 0, we have

P[E(k + 1) ∩ Gk] ≤ C ′
(
e−c ρ(m)C2k exp (−c1 2k)+c1 2k−k0+1

)
. (19)

Gk and E(k + 1) Together Imply Gk+1

Given both Gk and the complement of E(k + 1), we know that

Fj(k + 1)

j
=
Fφ(m,k)(k + 1)

j
+

1

j

j∑
i=φ(m,k)+1

ξi(k + 1)
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≤ φ(m, k)

j
+

1

j
(γ E [Xj,k+1]) (by Eq. (8), E(k + 1))

≤ φ(m, k)

φ(m, k + 1)
+

d+1
2d

j
(k + 1) (j − φ(m, k)) d f(k)2 (j ≥ φ(m, k + 1), E [Xj,k+1])

≤ C2k+1−2k+2

+

(
d+ 1

2

)
(k + 1) f(k)2 (def. of φ, j − φ(m, k) ≤ j).

Since 2k+1 − 2k+2 = −2k+1, and since, by Eq. (11), C > 2
1−d e

c1 2−1 ≥ 2
1−d e

c1 2−k0 ,

Fj(k + 1)

j
≤
(

2

1− d
ec1 2−k0

)−2k+1

+
d+ 1

2
(k + 1) f(k)2 (Eq. (11))

≤
(

2

1− d

)−2k+1

e−c1 2−k0 2k+1

+
d+ 1

2
(k + 1) f(k)2

≤
(

1− d
2

)
e−c12k+1−k0

+
d+ 1

2
(k + 1) f(k)2

≤
(

1− d
2

)
f(k + 1) +

d+ 1

2
f(k + 1) (by Lemma 16)

= f(k + 1).

Combining the Previous Steps

In the previous step, we established Gk ∩ E(k + 1) ⊆ Gk+1. This implies Gk ∩ Gk+1 ⊆ E(k + 1) ∩ Gk.
Conceptually, this means that if Gk happens but not Gk+1, this can be blamed on the unlikely event E(k+1).
We show the implication: By taking the complement of both sides, we have Gk+1 ⊆ Gk ∪ E(k + 1). By
intersecting of both sides with Gk, we obtain Gk+1 ∩ Gk ⊆ (Gk ∪ E(k + 1)) ∩ Gk. From here, note that
Gk ∩ Gk = ∅ and therefore we have Gk+1 ∩ Gk ⊆ E(k + 1) ∩ Gk.

We are interested in the probability that Gk fails for some k0 ≤ k ≤ k∗(m), which we can upper-bound
as

P
[
∃k, k0 ≤ k ≤ k∗(m). Gk

]
≤ P

[
Gk0
]

+

k∗(m)−1∑
k=k0

P
[
Gk+1 ∩ Gk

]
≤ P

[
Gk0
]

+

k∗(m)−1∑
k=k0

P[E(k + 1) ∩ Gk]

by the above. By Eq. (19),

P
[
∃k, k0 ≤ k ≤ k∗(m). Gk

]
≤ P

[
Gk0
]

+

k∗(m)−1∑
k=k0

C ′
(
e−c ρ(m)C2k exp (−c1 2k)+c1 2k−k0+1

)

= P
[
Gk0
]

+

k∗(m)−1∑
k=k0

C ′
(
e−c ρ(m) (C/ec1 )2

k
+c1 2k−k0+1

)
.

For m sufficiently large, it is easy to verify that the term inside the sum is monotonically decreasing in k.
Indeed, note that for large m, the exponent is dominated by −c′ ρ(m) (C/ec1)2k because c1 2k−k0+1 has no
dependence on m, and by Eq. (11), C/ec1 > 1. Therefore, for some constant A ≈ c (C / ec1)2k0 , we have

P
[
∃k0 ≤ k ≤ k∗(m). Gk

]
≤ P

[
Gk0
]

+ (k∗(m)− k0) e−Aρ(m)
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≤ P
[
Gk0
]

+ k∗(m) e−Aρ(m).

The left summand converges to zero as discussed in the proof sketch. Furthermore, because k∗(m) =
O(log logm), the right summand tends to 0 with m→∞. Indeed, note that

k∗(m) e−Aρ(m) = elog k∗(m) e−A (log logm)1/3

= elog k∗(m)−A(log logm)1/3

∈ eO(log log logm)−Ω((log logm)1/3).

For large enough m, the exponent diverges to negative infinity. As a result, k∗(m) e−Aρ(m) → 0 and thus
P[∃k0 ≤ k ≤ k∗(m). Gk]→ 0.

C.5 Proof of Lemma 13
Lemma 18. There exists a constant β0 > 0 such that, with high probability,

∀j, log logm ≤ j ≤ m. Fj(k∗(m))

j
≤ j−β0 .

Proof. First, let k0 ≤ k ≤ k∗(m) and φ(m, k) ≤ j′ ≤ m. Putting together the previous results yields

Fj′(k∗(m))

j′
≤ Fj′(k)

j′
(Fj′(k) is monotone in k)

≤ f(k) (Lemma 12)

≤ exp
(
−c2 2k−k0

)
(Lemma 16)

with high probability. By arithmetic,

Fj′(k∗(m))

j′
=
(
C1/ logC

)−c2 2k−k0

=
(
C1/ logC

)−c2 2k+2

2k0+2

=
(
C−2k+2

) c2

2k0+2 logC

=

(
1

C2k+2

)β
=

(
ρ(m)

φ(m, k + 1)

)β
,

where β := c2
2k0+2 logC

> 0 is a constant independent of j, k and m. From the strong formulation in
Lemma 12, it follows that this holds with high probability for all such j and k simultaneously.

Now, consider some j in the range log logm ≤ j ≤ m mentioned in the lemma. We can find some k(j)
between k0 and k∗(m) such that

φ(m, k(j)) ≤ j ≤ φ(m, k(j) + 1). (20)

In order to show that we can find such a k(j), by the monotonicity of φ(m, k) in k, it suffices to show
that φ(m, k∗(m) + 1) ≥ m and φ(m, k0) ≤ log logm. Because φ(m, k0) = (log logm)1/3 C2k0+1

, and because
C2k0+1

is a constant, for large enough m, φ(m, k0) is indeed less than log logm. As for the upper bound, we
have

φ(m, k∗(m) + 1) = (log logm)1/3 C2k∗(m)+2
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= (log logm)1/3 C2·2k∗(m)+1

= (log logm)1/3
(
C2k∗(m)+1

)2

≥ (log logm)1/3
(√
m
)2 (by Eq. (12))

= (log logm)1/3m

≥ m. (for large m)

Because of Eq. (20), we can apply the results from the first section to get

Fj(k∗(m))

j
≤
(

ρ(m)

φ(m, k(j) + 1)

)β
≤
(
ρ(m)

j

)β
=

(
(log logm)1/3

j

)β
≤
(
j1/3

j

)β
= j−

2
3 β

= j−β0 ,

where β0 := 2
3β.

Lemma 19. Assume that there exist constants M1 > 0, 0 < β < 1
2 and a function k(m) ∈ log2 logm+ Θ(1)

such that, with high probability,

∀j, (log logm)M1 ≤ j ≤ m. Fj(k(m))

j
≤ j−β.

Then, there is an M2 > 0 such that, with high probability,

∀j, (log logm)M2 ≤ j ≤ m. Fj(k(m) + 1)

j
≤ j− 3

2 β.

Proof. Let C be the event in the hypothesis, and assume that it holds in the following. Moreover, set
j0(m) := (log logm)M1 .

Let j be such that j0(m) ≤ j ≤ m. As in Lemma 11, write Fj(k(m) + 1) = Fj0(m)(k(m) + 1) +∑j
i=j0(m)+1 χi, where χi = Fi(k(m)+1)−Fi−1(k(m)+1). On C, χi

k(m)+1 is dominated by a Bernoulli variable
with mean d (i−1)−2 β by the recurrence in Eq. (9). The Bernoulli variable in turn is dominated by a Poisson
variable with mean λ = − log

(
1− d (i− 1)−2 β

)
since its probability of being 0 is e−λ = 1 − d (i − 1)−2 β .

All these random variables are independent.
For a general Bernoulli variable with mean 0 < p < 1 and its dominating Poisson variable with mean

− log(1− p), look at the ratio of these means − log(1−p)
p . Its derivative with respect to p is log(1−p)

p2 + 1
p (1−p) ,

which is positive for all p. Thus, the ratio must increase monotonically in p, and for p := d (i − 1)−2 β , the
ratio must decrease monotonically in i. Thus, if we set c := d

(
− log(1−d 1−2 β)

d 1−2 β

)
= − log(1−d) > 0, the mean

of the Poisson variable corresponding to χi
k(m)+1 can be overapproximated by c (i − 1)−2 β for large enough

m.
Consider ∆j :=

∑j
i=j0(m)+1 χi. Since the sum of independent Poisson variables is a Poisson variable with

the sum of the means as its mean, we can dominate ∆j

k(m)+1 by a Poisson variable Xj with mean

E [Xj ] :=
c

1− 2β
j1−2β
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≥ c

1− 2β
i1−2β

∣∣∣∣j−1

j0(m)−1

(for large enough m)

= c

∫ j−1

j0(m)−1

i−2 β di

≥ c
j−1∑

i=j0(m)

i−2 β (by comparison with Riemann sum)

=

j∑
i=j0(m)+1

c (i− 1)−2 β .

By the tail bound described in [6], for any C ′ > 1,

P[Xj ≥ C ′ E [Xj ]] ≤ exp

(
−2

((C ′ − 1)E [Xj ])
2

2E [Xj ]

C ′ logC ′ − C ′ + 1

(C ′ − 1)2

)
= exp (−(C ′ logC ′ − C ′ + 1)E [Xj ])

= exp

(
− c

1− 2β
(C ′ logC ′ − C ′ + 1) j1−2 β

)
We can fix a sufficiently large constant C ′, dependent on d and β but independent from m, such that
C ′ ≤ c

1−2 β (C ′ logC ′ − C ′ + 1) and thus

P[Xj ≥ C ′ E [Xj ]] ≤ exp
(
−C ′ j1−2 β

)
for all j between j0(m) and m. Therefore,

P[∃j, j0(m) ≤ j ≤ m. ∆j ≥ (k(m) + 1)C ′ E [Xj ]] ≤
∞∑

j=j0(m)

exp
(
−C ′ j1−2 β

)
.

Since β < 1
2 by assumption, the terms exp(−C ′ j1−2β) fall faster than those of the sequence

∑
1
j2 . By the

direct comparison test, the series converges, and the probability goes to 0 for m→∞. With high probability,
it must hold that

Fj(k(m) + 1) ≤ Fj0(m)(k(m) + 1) + (k(m) + 1)C ′
c

1− 2β
j1−2 β

≤ j0(m) + (k(m) + 1)C ′
c

1− 2β
j1−2 β .

As k(m) = log2 logm + Θ(1), k(m) + 1 is also in log2 logm + Θ(1). We can choose M2 large enough such
that j0(m) ≤ 1

2 (log logm)M2 (1− 3
2 β) and such that (k(m) + 1)C ′ c

1−2 β ≤
1
2 (log logm)

β
2 M2 for sufficiently

large m. Then, for all j between (log logm)M2 and m,

Fj(k(m) + 1) ≤ 1

2
j1− 3

2 β +
1

2
j
β
2 j1−2 β = j1− 3

2 β .

Lemma 13. There existsM > 0 and an integer r > 0 such that, for j0(m) := (log logm)M , Fm(k∗(m)+r) =
Fj0(m)(k∗(m) + r) holds with high probability. In addition, there is β > 1

2 such that, with high probability,

Fj0(m)(k∗(m) + r − 1) ≤ j0(m)1−β. (13)
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Proof. We repeatedly strengthen Lemma 18 using Lemma 19, increasing β in every step until β > 1
2 . Note

that Lemma 19 does not apply to β exactly equal to 1
2 . In this case, we weaken our hypthesis by slightly

decreasing β such that we obtain β > 1
2 in the next step.

After increasing β r′ many times, we obtain β > 1
2 and M such that the event

C := ∀j, j0(m) ≤ j ≤ m. Fj(k∗(m) + r′) ≤ j1−β

holds with high probability. For r := r′ + 1, this shows Eq. (13).
Assuming C, we can bound

P[∃j, j0(m) ≤ j ≤ m. Fj(k∗(m) + r′ + 1) > Fj0(m)(k∗(m) + r′ + 1)]

≤
m−1∑

i=j0(m)

d

(
Fi(k∗(m) + r′)

i

)2

(Eq. (9))

≤ d
m−1∑

i=j0(m)

(
i1−β

i

)2

= d
m∑

i=j0(m)

i−2β

= o(1)

because β > 1/2 and therefore the series is over-harmonic.

D MILP Formulation for Minimizing Congestion
Congestion minimization for confluent flow can be expressed as a mixed integer linear program (MILP).

To stress the connection to MinMaxWeight, denote the congestion at a voter i by w(i). For each
potential delegation (u, v), f(u, v) gives the amount of flow between u and v. This flow must be nonnegative
(22) and satisfy flow conservation (23). Congestion is defined in Eq. (24). To minimize maximum congestion,
we introduce a variable z that is higher than the congestion of any voter (25), and minimize z (21).

So far, we have described a Linear Program for optimizing splittable flow. To restrict the solutions to
confluent flow, we must enforce an ‘all-or-nothing’ constraint on outflow from any node, i.e. at most one
outgoing edge per node can have positive flow. We express this using a convex-hull reformulation. We
introduce a binary variable xu,v for each edge (26), and set the sum of binary variables for all outgoing
edges of a node to 1 (27). If M is a constant larger than the maximum possible flow, we can then bound
f(u, v) ≤M xu,v (28) to have at most one positive outflow per node.

The final MILP is thus

minimize z (21)
subject to f(m,n) ≥ 0 ∀(m,n) ∈ E, (22)∑

(n,m)∈E

f(n,m) = 1 +
∑

(m,n)∈E

f(m,n) ∀n ∈ N \ V, (23)

w(v) = 1 +
∑

(n,v)∈E

f(n, v) ∀v ∈ V, (24)

z ≥ w(v) ∀v ∈ V, (25)
xm,n ∈ {0, 1} ∀(m,n) ∈ E, (26)∑
(n,m)∈E

xn,m = 1 ∀n ∈ N \ V, (27)
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f(m,n) ≤M · xm,n ∀(m,n) ∈ E. (28)

E Additional Figures

E.1 Single vs. Double Delegation
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(a) γ = 0.5, d = 0.25
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(b) γ = 0.5, d = 0.5

0 1000 2000 3000 4000 5000

time

0

200

400

600

800

1000

av
er

ag
e

m
ax

im
u

m
w

ei
gh

t

single delegation

greedy power of choice

optimal confluent flow

(c) γ = 0.5, d = 0.75

Figure 9: Maximum weight averaged over 100 simulations of length 5 000 time steps each. Maximum weight
has been computed every 50 time steps.
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Figure 10: Maximum weight averaged over 100 simulations, computed every 50 time steps. γ = 2, d = 0.5.
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(a) γ = 1.25, d = 0.25: 1.6%
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(b) γ = 1.5, d = 0.25: 59.8%
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(c) γ = 1.25, d = 0.5: 28.2%
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(d) γ = 1.5, d = 0.5: 87.7%
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(e) γ = 1.25, d = 0.75: 55.4%
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(f) γ = 1.5, d = 0.75: 94.1%

Figure 11: Maximum weight averaged over 100 simulations of length 5 000 time steps each. Maximum weight
has been computed every 50 time steps. The subfigure captions contain the percentage of delegators who
give two identical delegation options.
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E.2 Random vs. Single Delegation
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(a) γ = 0, d = 0.25
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(b) γ = 0, d = 0.5
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(c) γ = 0, d = 0.75
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(d) γ = 0.5, d = 0.25
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(e) γ = 0.5, d = 0.5
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(f) γ = 0.5, d = 0.75
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(g) γ = 1, d = 0.25
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(h) γ = 1, d = 0.5
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(i) γ = 1, d = 0.75

Figure 12: Maximum weight averaged over 200 simulations of length 2 000 time steps each. Maximum weight
has been computed every 20 time steps.

E.3 Confluent vs. Splittable Flow
In order to determine whether we could gain significantly from relaxing the problem to that of splittable
delegations, we evaluate the penalty incurred from enforcing confluence. That is, we examine the requirement
that each delegator must delegate all of her weight to exactly one other agent instead of splitting her vote
among multiple agents. This is equivalent to comparing the optimal solutions to the problems of confluent
and splittable flow on the same graph. We compute these solutions by solving an MILP and LP, respectively.

As seen in Fig. 13, the difference between the two solutions is negligible even for large values of t. Fig. 13a
plots a single run of the two solutions over time and suggests that the confluent solution is very close to the
ceiling of the fractional LP solution. Fig. 13b averages the optimal confluent and splittable solutions over
100 traces to demonstrate that, in our setting, the solution for confluent flow closely approximates the less
constrained solution to splittable flow on average.
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(b) Averaged over 100 traces

Figure 13: Confluent vs. splittable flow: γ = 1, d = 0.5, k = 2.
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Figure 14: Frequency of maximum weights at time 500 over 1 000 runs: γ = 0, d = 0.25, k = 2.
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(a) All mechanisms and optimal splittable solution
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Figure 15: Frequency of maximum weights at time 500 over 1 000 runs: γ = 0, d = 0.5, k = 2.
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0.00

0.05 greedy power of choice

0.00

0.05 (1 + log |V |)-approximation

0.00

0.05 optimal confluent flow

0 20 40 60 80 100 120 140
0.00

0.05 optimal splittable flow

0.0 0.2 0.4 0.6 0.8 1.0

maximum weight

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

(b) Excluding random delegation

Figure 16: Frequency of maximum weights at time 500 over 1 000 runs: γ = 0, d = 0.75, k = 2.
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Figure 17: Frequency of maximum weights at time 500 over 1 000 runs: γ = 0.5, d = 0.25, k = 2.
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Figure 18: Frequency of maximum weights at time 500 over 1 000 runs: γ = 0.5, d = 0.5, k = 2.
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Figure 19: Frequency of maximum weights at time 500 over 1 000 runs: γ = 0.5, d = 0.75, k = 2.
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(a) All mechanisms and optimal splittable solution
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Figure 20: Frequency of maximum weights at time 500 over 1 000 runs: γ = 1, d = 0.25, k = 2.
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(a) All mechanisms and optimal splittable solution
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Figure 21: Frequency of maximum weights at time 500 over 1 000 runs: γ = 1, d = 0.5, k = 2.
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(a) All mechanisms and optimal splittable solution

0.00

0.01 greedy power of choice

0.00

0.01 (1 + log |V |)-approximation

0.00

0.01 optimal confluent flow

50 100 150 200 250 300
0.00

0.01 optimal splittable flow

0.0 0.2 0.4 0.6 0.8 1.0

maximum weight

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

u
en

cy

(b) Excluding random delegation

Figure 22: Frequency of maximum weights at time 500 over 1 000 runs: γ = 1, d = 0.75, k = 2.
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E.5 Running Times
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(a) γ = 0, d = 0.25
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(b) γ = 1, d = 0.25
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(c) γ = 0, d = 0.5
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(d) γ = 1, d = 0.5
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(e) γ = 0, d = 0.75
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(f) γ = 1, d = 0.75

Figure 23: Running time of mechanisms, averaged over 20 simulations. Running time computed every 20
steps of the simulation. Curve for a mechanism m is discontinued at size s if the mechanism needed more
than 8 minutes total to resolve delegations of size 1, 21, 41, . . . , s in one simulation.
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