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Abstract

In the Byzantine agreement problem, n nodes with possibly different input values aim to reach
agreement on a common value in the presence of t < n/3 Byzantine nodes which represent arbitrary
failures in the system. This paper introduces a generalization of Byzantine agreement, where the
input values of the nodes are preference rankings of three or more candidates. We show that con-
sensus on preferences, which is an important question in social choice theory, complements already
known results from Byzantine agreement. In addition preferential voting raises new questions about
how to approximate consensus vectors. We propose a deterministic algorithm to solve Byzantine
agreement on rankings under a generalized validity condition, which we call Pareto -Validity. These
results are then extended by considering a special voting rule which chooses the Kemeny median
as the consensus vector. For this rule, we derive a lower bound on the approximation ratio of the
Kemeny median that can be guaranteed by any deterministic algorithm. We then provide an algo-
rithm matching this lower bound. To our knowledge, this is the first non-trivial multi-dimensional
approach which can tolerate a constant fraction of Byzantine nodes.

Keywords: Social Choice, Byzantine Agreement, Pareto -Validity, Relative Rankings, Arrow Impossi-
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1 Introduction

In the first-past-the-post (FPTP) voting mechanism, each voter indicates his/her candidate of choice
on a ballot, and the candidate that received the most votes wins. This is a popular voting mechanism
that for instance is used in the United States. FPTP voting is related to consensus or Byzantine
agreement in the sense that each voter/node has an input, and the voters need to decide on a single
output. If Byzantine voters are present, it is natural to try to agree on a candidate with many votes
to be robust against Byzantine behavior, e.g., [7, 8, 10]. FPTP does however face a lot of criticism
since it has several issues, in particular the problem of wasted votes to minority parties, but also
tactical voting or gerrymandering [30]. Moreover, one may argue that FPTP will eventually lead to a
two-party system, e.g., [34].

Preferential voting is a powerful alternative: Each voter ranks the candidates first, second, third,
etc. The collection of all rankings forms a preference profile from which a winner (or even a ranking) is
determined. Preferential voting is more expressive, harder to manipulate, and solves many of FPTP’s
problems. In particular there is no problem with wasted votes to minority candidates. If inputs are
not just binary, preferential voting will lead to much better decisions. It is therefore remarkable that
byzantine agreement research has not given preferential voting any attention.

In this paper we want to investigate how robust preferential voting is in a Byzantine environment.
In Section 2, we first focus on some basic properties for voting rules, and see that not all of them can be
satisfied if the nodes should reach agreement. This is because Byzantine voters are manipulators that
modify the result to make it more favorable to themselves. In the main part of the paper (Section 5) we
study how well the voting result intended by the correct (non-Byzantine) voters can be approximated.
For this purpose we introduce the Kemeny rule which picks the most central ranking as the voting
result. We will provide an algorithm that approximates the solution of the Kemeny rule in the
presence of Byzantine voters and prove that this algorithm computes the best possible approximation.
We believe that our paper will help to get a deeper understanding of both fault-tolerant distributed
systems as well as social choice theory.

2 Background and Motivation

In search of a fair rule to elect candidates, philosophers and mathematicians started developing various
voting mechanisms and rules already in the beginning of the 18th century. In the middle of the 20th
century, Kenneth Arrow [2, 3] was one of the first to formalize existing rules and analyze possibility
and impossibility results in an axiomatic fashion, thereby introducing the field of Computational Social
Choice. In this section we use this formalism in order to show how well Byzantine agreement connects
to voting theory.

We start by considering the special case of n voters voting on only two candidates c1 and c2. In
this setting, each voter (node) ranks the two candidates such that its preferred candidate (input value)
is ranked first. A vote for a candidate c1 means that the voter strictly prefers c1 to c2, here denoted
c1 ≻ c2. A central authority then applies a social choice function (SCF) to a given preference profile
in order to determine the winner (decision value), or set of winners in case of a tie. An SCF f can be
qualified based on the following properties:

• f is anonymous if interchanging two voters (swapping their names) does not change the result
• f is neutral if renaming the candidates (changing their names) does not change the result
• f is positively responsive if in a case where the decision is a tie (c1 is among the winners) and a

voter changes its ranking from c2 ≻ c1 to c1 ≻ c2, candidate c1 becomes the unique winner

One example of an SCF is the majority rule. It chooses the candidate that wins most pairwise
comparisons against every other candidate. Note that such a winner always exists in elections with
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two candidates, but not necessarily in the general case with any number of candidates. Social choice
theory shows that the majority rule satisfies all desirable properties for the special case of voting on
two candidates:

Theorem 1 (May’s Theorem [25]). For two candidates and any number of voters, the majority rule
is the unique SCF that satisfies anonymity, neutrality and positive responsiveness.

Interestingly, most known algorithms for binary Byzantine agreement indirectly exploit the prop-
erties of May’s theorem. Some of them make use of leaders who suggest their decision value to all
nodes [8, 9]. The leader in these algorithms temporarily plays what is known as a dictator in voting
theory. Another type of algorithm, e.g., the shared coin algorithm in [10], is biased towards one of the
outcomes and thus violates neutrality. In general we can say that most of the proposed algorithms
try to use the majority value as the decision value if a majority exists, or an arbitrary input value
otherwise, see for example [7, 10]. Such settings may satisfy anonymity and neutrality, but in cases
where the correct nodes are undecided, i.e. there is a tie between the two input values, Byzantine
nodes have a large influence on the majority value. Thus, if a correct node decides to swap two can-
didates in its ranking in order to make one of the candidates win, a Byzantine node can perform an
opposite swap in its own ranking and return the profile to the previous state. This shows that positive
responsiveness cannot be satisfied for these algorithms in the presence of Byzantine nodes.

May’s theorem does not apply to the general case with more than two candidates. In fact, the
majority rule gives surprisingly bad results for three or more candidates. To illustrate this, let m
denote the number of candidates. Assume that n/2+1 voters rank the candidates as c1 ≻ c2 . . . ≻ cm,
and all other voters rank the candidates as c2 ≻ c3 ≻ . . . ≻ c1. In this case candidate c1 wins every
pairwise comparison according to the majority rule, even though c2 seems to be the candidate that is
approved by more voters.

Moreover, a lot of information is lost when a single winner is sought. When it comes to preferential
voting, social choice theory therefore often wants not only the input to be rankings but also the output.
More formally:

Definition 1 (Social Welfare Function). A Social Welfare Function (SWF) is a map from a preference
profile to a set of consensus rankings.

For an SWF g, the following three properties are usually considered:

• g is dictatorial if there is one distinguished voter whose input ranking is chosen as the single
consensus ranking

• g is independent of irrelevant alternatives (IIA) if the consensus ranking of two candidates ci
and cj only depends on the relative preference of these candidates in each voter’s ranking, and
not on the ranking of some third candidate ck

• g is weakly Paretian if it satisfies the weak Pareto condition [31]: for two candidates ci and cj
which are ranked ci ≻ cj by all voters, consensus ranking has to rank ci ≻ cj as well

In contrast to IIA and weak Pareto, dictatorship is a highly undesirable property in voting theory.
Unfortunately, a corresponding result to May’s theorem for SWF’s on three or more candidates is the
famous impossibility result by Arrow:

Theorem 2 (Arrow’s Impossibility Theorem [2]). If there are at least three candidates which the
members of the society are free to order in any way, then every SWF that is weakly Paretian and IIA
must be dictatorial.

From the viewpoint of Byzantine agreement, an SWF should not be dictatorial since one does not
want a dictator to be a Byzantine node and choosing more than one dictator may also result in different
decision values. Consequently, any reasonable Byzantine agreement protocol must either violate IIA
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or weak Pareto. The IIA condition implies that the consensus ranking should remain the same if the
input of every correct node does not change, no matter what the Byzantine nodes do. However, a
Byzantine node can pretend to be a correct node but change its ranking in two executions in which
the correct nodes have the same inputs. This change may lead to a different consensus ranking which
would violate IIA. For the weak Pareto condition consider the case with two candidates: if every non-
Byzantine voter ranks c1 ≻ c2, the consensus ranking should also rank c1 ≻ c2. This corresponds to
a well-known validity condition in Byzantine agreement – the All-Same-Validity : If all correct nodes
have the same input value, all correct nodes have to decide on this value. We use the weak Pareto
condition to impose a validity rule on Byzantine Agreement with rankings:

Pareto -Validity for any pair of candidates ci and cj : if all correct nodes rank ci ≻ cj , then the
consensus ranking should rank ci ≻ cj as well.

Given m candidates, Pareto -Validity can be viewed as All-Same-Validity applied on each of the
(

m
2

)

pairs of candidates in a ranking. Note that Byzantine agreement on a ranking is at least as hard as
binary Byzantine agreement: Consider a case where the nodes agree on the ranking of the candidates
c3, . . . cm which they rank last, but not on the two first candidates c1 and c2. The Pareto condition
is then satisfied for every binary relation which contains at least one of the candidates c3, . . . cm.
Agreement in this case is reduced to binary Byzantine agreement on the two candidates c1 and c2,
under the All-Same-Validity condition.

Unfortunately, there is no straightforward way to apply a binary Byzantine agreement protocol
to solve Byzantine agreement on rankings. Other than binary relations on two candidates, preference
profiles can form cycles, e.g., they can contain all three relations ci ≻ cj , cj ≻ ck and ck ≻ ci which
are each preferred by a majority of nodes. The smallest preference profile which produces such a cycle
of binary relations is called a Condorcet cycle. It contains three rankings ci ≻ cj ≻ ck, cj ≻ ck ≻ ci
and ck ≻ ci ≻ cj which induce the three relations from above. Simply agreeing on each pair of
candidates can thus lead to a circular decision which does not form a ranking. In order to get rid of
cycles one could think of applying the quicksort algorithm on the candidates sorted with respect to
the majority. This procedure however violates Pareto -Validity: Consider a candidate ci that Pareto
dominates candidate cj . Assume that the quicksort algorithm compares both candidates to some
third candidate ck first. Then cj might win against ck and ci might lose, thus swapping ci and cj in
the consensus ranking. This consideration makes the problem of finding a consensus ranking in the
presence of Byzantine nodes rather an instance of multi-valued agreement, as we discuss in Section 4,
which makes the problem both interesting and challenging.

3 Related Work

Byzantine agreement was first proposed as the Byzantine Generals problem by Pease, Shostak and
Lamport [24, 32]. In these papers the authors showed that three nodes cannot establish agreement in
the presence of one Byzantine node even if the communication system is synchronous. Given n nodes, it
was shown for the synchronous model that at least t+1 rounds are required to establish agreement [18],
where t < n/3 is the number of Byzantine nodes in the system; the corresponding upper bound was
provided in [8, 9]. For the asynchronous model, the FLP impossibility result [19] states that there is no
deterministic agreement protocol which can tolerate even one Byzantine node. The first randomized
algorithm for solving Byzantine agreement proposed in [7] had expected exponential running time
for a constant fraction of Byzantine nodes. This result was recently improved in [23], where the
authors showed that it is possible to establish agreement within expected polynomial running time
using spectral methods.

Byzantine agreement with more than two input values has mostly been considered in approximate
agreement [15, 17], where the input values of the nodes converge towards some value over rounds.
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More recent results seek to establish agreement on a value that makes sense for applications. In [14],
the values converge towards a value at most

√
n log n positions away from the median. In [26, 36]

an exact algorithm to establish agreement on a value that is at most t/2 positions away from the
median or t positions away from a minimum or a maximum was proposed. In [27, 28, 37], Byzantine
agreement was further generalized to several dimensions and the nodes converge to a vector inside
the convex hull of all correct input vectors. While the one-dimensional case has been investigated in
depth, all previous approaches for multiple dimensions struggle to derive an algorithm which either
can tolerate a constant fraction of Byzantine nodes independent on the number of dimensions, or find
a solution that is not trivial.

In social choice theory, Byzantine behavior can be interpreted as manipulation of a ballot in an
election, in which the manipulating party has full knowledge about all votes. Bartholdi et al. [5] defined
manipulation as a preference profile where one single voter can change its ranking such that this voter’s
most preferred candidate wins the election. Groups of voters have also been considered in this context,
but mostly from the perspective of how hard it is for a group of nodes to manipulate the voting result
given a certain voting rule [12, 29]. Other types of Byzantine behavior have been considered with
respect to robustness of proposed voting rules. In [6], the authors investigate robustness of Borda’s
mean and median in the presence of outlier ballots. In [33], robustness of scoring rules is considered
under arbitrary noise which is described in terms of pairwise swaps of candidates in the ranking of
one voter.

In this paper we will consider the Kemeny rule which was first proposed in [20, 21]. The corre-
sponding Kemeny median satisfies additional properties to those presented in Section 2, but it was
shown to be NP-hard to compute for an increasing number of candidates and already for four voters
in [4, 16]. At least three different 2-approximation algorithms for the Kemeny median have been
proposed in [1] and [13] respectively. In [1], the approximation ratio was improved to 4/3 using ran-
domization, and later derandomized in [38]. A good overview over the Kemeny rule and an extended
introduction into social choice theory can be found in [11].

4 A Deterministic Algorithm for Pareto -Validity

This section focuses on Byzantine agreement protocols for rankings that satisfy Pareto -Validity. By
using single transferable voting and a multi-valued Byzantine agreement algorithm, a ranking satisfying
Pareto -Validity can be obtained in (m− 1) · (t+1) rounds: In the first t+1 rounds, we let the voters
apply the King algorithm in order to agree on the top candidate. Then every node removes this
candidate from its ranking. In the next step, they will agree on the top candidate from the reduced
rankings, and so on. While this procedure is simple, the number of rounds depends not only on the
number of nodes, but also on the number of candidates.

In the following we present a deterministic algorithm which solves this problem in only t + 1
rounds using the same number of messages. We do this by modifying the King algorithm to broadcast
rankings instead of single candidates. In the proposed algorithm we select t + 1 different nodes and
assign each of them to one of the t + 1 rounds of the algorithm. Such a node is called a dictator of
the corresponding round. This dictator then suggest its own, possibly adjusted, ranking to all nodes,
which will always be accepted if the dictator is a correct node. This way, dictators decide on the
ranking of all pairs of candidates which do not satisfy the Pareto -Validity. Algorithm 1 presents this
procedure in pseudocode.

Since we are dealing with rankings, it is not trivial to see that the nodes will always be able to
agree on a proper ranking at the end of the algorithm. In the following lemmas we will prove that
the nodes can adjust their rankings in Step 8 of Algorithm 1 in order to guarantee Pareto -Validity
and that the outcome of the algorithm will be a proper ranking. It is easy to see that the algorithm
is correct for t < n/4 Byzantine nodes, since the correct nodes will not be able to propose binary
relations which form a Condorcet cycle in this case. In order to show that the algorithm can tolerate
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Algorithm 1 Byzantine agreement protocol on rankings (for t < n/3)

Every node v executes the following algorithm
1: for round 1 to t+ 1 do

Communication Phase:
2: Broadcast own input ranking rv
3: for all pairs of candidates ci and cj do

4: if ci is ranked above cj in at least n− t rankings then
5: Broadcast “propose ci ≻ cj”
6: end if

7: end for

8: if some “propose ck ≻ cl” received at least t+ 1 times fix ck ≻ cl
9: Adjust own ranking rv such that ck appears before cl

10: end if

Dictator Phase:
11: Let node w be the predefined dictator of the current round
12: The dictator broadcasts its ranking rdictator := rw

Decision Phase:
13: if rdictator agrees with rv in all fixed pairs ci ≻ cj from step 8 then

14: rv := rdictator
15: end if

16: end for

17: Return rv

t < n/3 Byzantine nodes, we need to exploit the fact that no Byzantine node can propose relations
that form a Condorcet cycle at any point of the algorithm.

Lemma 1. There is no Condorcet cycle that can be proposed by the correct nodes if t < n/3.

Proof. Assume by means of contradiction that the three relations ci ≻ cj , cj ≻ ck and ck ≻ ci were
each proposed by at least t+1 nodes in Step 4 of Algorithm 1. Each binary relation was proposed by
at least one correct node who must have seen n− t nodes having a ranking with such a pair.

Let t1 be the number of all Byzantine nodes who proposed ci ≻ cj , t2 the number of those who
proposed cj ≻ ck and t3 those nodes who proposed ck ≻ ci. Further, let t1∩2 denote the number of
Byzantine nodes who proposed ci ≻ cj ≻ ck. The following inequality then holds: t1 + t2 − t1∩2 ≤ t.

The number of correct nodes who proposed ci ≻ cj ≻ ck is then (n− t− t1) + (n− t− t2) + t1∩2 −
(n− t) = n− t− t1− t2+ t1∩2. The number of correct nodes who proposed ck ≻ ci is n− t− t3 ≥ n−2t.
However, the two sets must have a nonempty intersection, since

n− t− t1 − t2 + t1∩2 + n− 2t− (n− t) = n− 2t− t1 − t2 + t1∩2 ≥ n− 3t > 1.

Therefore, there must be at least one correct node who proposed ci ≻ cj ≻ ck and ck ≻ ci simultane-
ously. This is a contradiction.

Note that by the properties of the King algorithm, no two opposite binary relations can be proposed
in Step 4 simultaneously. Lemma 1 additionally shows that a Condorcet cycle cannot be proposed in
Step 4 and thus all proposed pairs can form a ranking. It remains to show that the nodes will always
be able to adjust their rankings to incorporate the proposed pairs.

Lemma 2. In Step 8 a correct node will always be able to incorporate the proposed pairs into its own
ranking.
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Proof. This can be achieved by the following strategy: Divide the candidates into two sets. The first
set contains all candidates which are in at least one of the pairs proposed by the t+1 nodes in Step 8.
This set of nodes will be ranked first. The second set will contain all candidates for which the node
has not received any propose message. The candidates will be ranked second and will be dominated
by all candidates from the first set. Next, we can rank all candidates in the first set according to
the proposed relations, possibly leaving some pairs of the candidates not ranked. In the last step, all
candidates which have not been ranked in each of the sets can be ranked by choosing binary relations
from the local ranking of the node. This strategy outputs a ranking of candidates in which all proposed
binary relations are satisfied.

The next theorem summarizes the correctness results of Algorithm 1 and states that the consensus
ranking will be valid, which can be derived with help of previous lemmas. The corresponding proof
can be found in Appendix A.

Theorem 3. At the end of Algorithm 1 all nodes will have agreed on the same ranking which addi-
tionally satisfies Pareto -Validity.

5 Kemeny Median with Byzantine Nodes

Weakly Paretian voting rules are often not sufficient to pick the most fair ranking from a set of
individual preference rankings. In search of the best possible consensus ranking we have to add
restrictions on the voting rules without violating the known impossibility results of [2]. This leads
us to majoritarian SWFs, one of which is the Kemeny rule. In the following we will introduce the
Kemeny rule and use it to derive a better consensus ranking in the presence of Byzantine nodes. Since
Byzantine nodes have influence on the final ranking, the corresponding solutions can be qualified with
respect to their approximation ratio which we define in Section 5.1. In Section 5.2, we will derive a
lower bound on the approximation ratio of the Kemeny median in the presence of Byzantine nodes
and further provide a matching upper bound in Section 5.3.

Definition 2 (Kendall’s τ distance [22]). The Kendall’s τ distance measures the distance between two
rankings r and p on candidates c1, . . . , cm by counting pairs of candidates on which they disagree:

τ(r, p) , |{(ci, cj) | ci ≻r cj and cj ≻p ci}|.

This metric τ on ballots can be extended to a distance function between a ranking r and a profile P:

τ(r,P) ,
∑

p∈P

τ(r, p).

Definition 3 (Kemeny median). For a given profile P, the Kemeny median is the ranking r which
minimizes τ(r,P).

The Kemeny median satisfies many nice properties and to some extent guarantees that the chosen
ranking is “fair”. The most prominent quality is probably monotonicity : if voters increase a candi-
date’s preference level, the ranking result either does not change or the promoted choice increases in
overall popularity. This quality makes the median solution more robust to Byzantine behavior. The
Kemeny rule is also a so called Condorcet method because if there exists a Condorcet winner, i.e., a
candidate that wins all pairwise majority comparisons, it will always be ranked as the most popular
choice. Besides, it only depends on the number of voters who prefer one alternative over the other
and it is reinforcing, meaning that winners which were chosen independently by two different sets of
voters will also become winners if the two groups are joined.
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5.1 Byzantine Setting

The Kemeny median cannot be computed exactly in the presence of Byzantine nodes since they might
suggest rankings which have a large distance to the Kemeny median of the correct nodes thus moving
the median preference away from the actual median. A notion for approximate median rankings is
therefore introduced as follows:

Definition 4 (α-approximation of Kemeny median). Let m be a Kemeny median of a preference
profile P. An α-approximation of m is a preference ranking mα satisfying

τ(mα,P) ≤ α · τ(m,P)

As an example consider binary agreement (m = 2): Here τ counts the number of correct nodes
who disagree with the consensus value. Any binary Byzantine agreement algorithm that satisfies All-
Same-Validity will also satisfy α < n− t− 1.

Unlike binary agreement, it is not straightforward to see what a Byzantine node would choose
as its ranking when the Kemeny rule determines the consensus ranking. Since the input vectors of
nodes are rankings, each voter has to propose a strict order between candidates and the corresponding
preference relation is transitive. A possible strategy for the Byzantine nodes would then be to choose
exactly the opposite ranking of the Kemeny median of all correct nodes. We show in Appendix B
that this strategy works, but such a solution is not unique for most preference profiles. It is therefore
difficult for the correct nodes to find out which of the rankings might have been Byzantine.

5.2 Lower Bounds on the Approximation Ratio

In this section we discuss preference profiles that are vulnerable to Byzantine nodes. The first case is
based on the reduction of rankings to binary agreement and gives the highest approximation ratio for
t < n/3. Binary agreement does however assume that there are two groups of voters who completely
disagree in their preferences. This is somewhat unlikely in practice when m is sufficiently large. In the
second case we therefore exclude such binary instances and provide a lower bound based on Condorcet
cycles within a preference profile which converges to the same value for large m. The approximation
ratio usually depends on the ratio n/t, which will be denoted k for the sake of simplicity.

For our analysis, we represent the preference profile P as a weighted tournament graph, i.e., a
graph where the nodes represent the candidates and weighted edges represent how many voters prefer
one candidate to the other. The sum of the forward and the backward edge should be equal to
the total number of rankings in the corresponding preference profile. The ranking of a node is a
directed Hamiltonian path following the order of the ranking, and all other edges are derived from
the transitivity. For any two candidates we call the edge between these candidates a majority edge if
its backward edge has a smaller weight. The backward edge we then call a minority edge. A Kemeny
median of a weighted tournament graph is the ranking that minimizes the sum of the weights of all
backward edges of the graph. Note that rankings restrict the power of Byzantine nodes in the sense
that Byzantine nodes can only send transitive tournament graphs where every edge has weight 1.
Using tournament graphs, we can derive a lower bound for the binary case:

Theorem 4. There is a tournament graph corresponding to a preference profile for which the Byzan-
tine nodes may change the edge weights such that the median of the resulting preference profile is
a k

k−2-approximation of the optimal median, where k = n/t. For t close to n/3, this gives a 3-
approximation.

Proof. This tournament graph is equivalent to binary agreement. Consider therefore one pair of
candidates: t Byzantine nodes are only able to change the median, i.e., the majority edge, between
two candidates if they can swap the majority and minority edge by supporting the minority edge with

7



c1

c2

cm

n
2

n
2 − t +

c1

c2

cm

t =

c1

c2

cm

n
2

n
2 =

c1

c2

cm

n
2 − tn

2 +

c1

c2

cm

t

Figure 1: Two indistinguishable views on m candidates for binary relations

Note that the labels of the edges correspond to all edges in the same color. The left tournament graph is reached
if n/2 nodes choose the order c1 ≻ c2 ≻ . . . ≻ cm and n/2 − t nodes choose cm ≻ cm−1 ≻ . . . ≻ c1. The right
profile can be reached from a profile where n/2 nodes choose the order cm ≻ cm−1 ≻ . . . ≻ c1 and n/2− t nodes
choose c1 ≻ c2 ≻ . . . ≻ cm. The Byzantine nodes can make all correct nodes see the tournament graph in the
center by adding t preference vectors cm ≻ cm−1 ≻ . . . ≻ c1 or c1 ≻ c2 ≻ . . . ≻ cm respectively.

their ranking. Assume the worst case, where the forward and the backward edge both have the same
weight n/2 after the Byzantine nodes have added their preferences. In the worst case the tournament
graph of correct nodes had the weight n/2 for the majority edge. Since the correct nodes will not be
able to determine the actual majority edge, they might agree on a minority edge with weight n/2− t

instead. The corresponding approximation ratio is then n/2
n/2−t =

k
k−2 .

Figure 5.2 shows a simple generalization of this argument to m candidates and proves that the
lower bound of k

k−2 holds, for all m.

Now we present another lower bound using Condorcet cycles which can result in ambiguous views
as well. Here we assume that every majority edge has a weight of more than n/2, thus discarding the
possibility to reduce any pair of forward and backward edges in the tournament graph to binary agree-
ment. The main difficulty in finding a good example comes from the fact that not every tournament
graph has an underlying preference profile. In Appendix C we discuss the necessary properties that
preference profiles induce on tournament graphs and show how the best lower bound can be derived.
The next theorem present the best lower bound for cycles and its generalization to m candidates.

Theorem 5. By modifying directed majority cycles in the tournament graph, Byzantine nodes can
increase the approximation ratio by a factor of at most 5/4.

Proof. We start by considering a tournament graph formed by one directed cycle of candidates
c1, c2, c3, i.e., one directed cycle formed by majority edges. Assume all correct nodes receive a
view where n − 2t nodes prefer c1 to c2, i.e., (c1, c2) is a majority edge; n/2 + t nodes prefer c2 to
c3 and n/2 + t nodes prefer c3 to c1. For n > 8f or equivalently k > 8, the edge (c1, c2) is in the
median ranking of all nodes. Since the edges (c2, c3) and (c3, c1) cannot be both in the median rank-
ing, the nodes have to decide for one of the rankings. In the worst case, one of these two edges was
supported by all t Byzantine nodes while the other edge was not supported by any Byzantine node.
This leads to two views which are not distinguishable for the correct nodes, as shown in Figure 5.2.
The approximation ratio for these views is 2t+n/2−t+n/2+t

2t+n/2−2t+n/2 = n+2t
n = k+2

k < 5
4 .

An extension to m candidates gives an approximation ratio of 2t+(m−2)·(n/2−t)+(m−2)·(n/2+t)
2t+(m−2)·n/2+(m−2)·(n/2−2t) =

2t+(m−2)·n
2t+(m−2)·(n−2t) = 2+(m−2)k

2+(m−2)·(k−2) ≈ k
k−2 for large m.

The received approximation ratio converges to the same approximation ratio as in the binary case
for large m.
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Figure 2: Two indistinguishable views on m candidates for directed cycles

We have two views which show the profiles of correct nodes only. The left tournament graph results from a
profile where n/2 − t nodes choose c1 ≻ c2 ≻ cm ≻ . . . ≻ c3, n/2 − 2t nodes choose cm ≻ . . . ≻ c3 ≻ c1 ≻ c2
and 2t nodes choose c2 ≻ cm ≻ . . . ≻ c3 ≻ c1. The right tournament graph results from n/2 − 2t nodes
choosing c1 ≻ c2 ≻ cm ≻ . . . ≻ c3, n/2 − t nodes choosing cm ≻ . . . ≻ c3 ≻ c1 ≻ c2 and 2t nodes choosing
c2 ≻ cm ≻ . . . ≻ c3 ≻ c1. If the Byzantine nodes add t profiles cm ≻ . . . ≻ c3 ≻ c1 ≻ c2 to the left view, and t
profiles c1 ≻ c2 ≻ cm ≻ . . . ≻ c3 to the right view, the resulting profiles become indistinguishable to the correct
nodes.

5.3 Algorithm for Kemeny Median Approximation

In this section we present a synchronous algorithm for computing a consensus median which matches
the lower bound on the approximation ratio presented in the previous section. A simple idea is to
use interactive consistency [10, 35]: For t + 1 rounds, the nodes exchange all information they have
received until that round and after the (t+ 1)-st round they compute the Kemeny median from a set
of rankings which they have received often enough. This algorithm guarantees that the set of rankings
will be the same for each node and therefore all nodes will decide on the same ranking. The main
drawback of interactive consistency is that it has a large message complexity. Since each of the correct
rankings will be forwarded by each of the correct nodes, this message complexity is in Θ(mnt).

Instead of exchanging large amounts of information, we can directly exploit the fact that the
Byzantine nodes cannot change a Kemeny median of the preference profile of the correct nodes by
more than a transitive tournament graph with edge weights t. The corresponding strategy is presented
in Algorithm 2.

Algorithm 2 Byzantine agreement protocol for the Kemeny median (for t < n/3)

Every node v executes the following algorithm
1: broadcast own ranking rv
2: compute the Kemeny median of the received preference profile, call it mv

3: apply Algorithm 1 with mv as an input value

The presented algorithm has the same order of round and message complexity as Algorithm 1.

Theorem 6. Algorithm 2 terminates within t + 3 rounds exchanging O(tn2m logm) messages. The
computed consensus ranking satisfies the lower bounds from Section 5.2 and Pareto -Validity.

In the following we give two lemmas proving the correctness of this algorithm. A full proof of
Theorem 6 is provided in Appendix D.
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Lemma 3. In Step 2 of Algorithm 2, every correct node chooses a median ranking that matches the
bounds from Section 5.2.

Proof. Instead of all nodes in the previous section, we can consider that the Byzantine nodes change
just one node’s view. Since the number of Byzantine nodes remains the same and the rankings of
all correct nodes are received by every node in the synchronous communication model, the Byzantine
nodes can in the worst case only reach the lower bound for any correct node, but not exceed it.

Lemma 4. The computed median ranking by Step 3 of the algorithm satisfies the approximation ratios
from Section 5.2.

Proof. Observe that the consensus ranking is derived from a preference profile formed by the medians
mv. Unless some correct node disagrees on an edge in this profile, the edge will be inside the consensus
median since Algorithm 1 satisfies Pareto -Validity. This edge may not be inside the median ranking
of all correct nodes, but the approximation ratio still satisfies the bounds due to Lemma 3.

If the correct nodes disagree on an edge in the preference profile of medians, there was at least one
correct node who either chose the opposite edge (binary case) for its median ranking or a different
edge in a directed cycle (non-binary case). Consider the binary case first. There, the forward and
the backward edge chosen as the Kemeny median mv will both satisfy the lower bound, since there
is a correct node choosing either of the cases. For the non-binary case we need to consider directed
cycles formed by the median rankings. Every directed cycle in a tournament graph implies that there
is a directed sub-cycle formed by three candidates ci, cj , ck. The corresponding preference profile of
correct median rankings must contain the three opposite rankings ci ≻ cj ≻ ck, cj ≻ ck ≻ ci and
ck ≻ ci ≻ cj . This, however, implies that all three median rankings could have been derived from the
preference profile of the rankings rv by modifying edge weights by t. The only case from which such
a situation can result is when the forward and backward edge weights of each of the three pairs of
candidates differed by at most t in the preference profile of rankings rv. This case, again, is equivalent
to the binary case and satisfies the lower bound.

Note that the computed median can have a larger Kendall’s τ distance to the preference ranking
of all correct nodes than any mv has in the algorithm, since the Byzantine nodes can propose their
own rankings as dictators in Algorithm 1. Such a ranking would still satisfy the lower bound.

6 Discussion and Future Work

In this paper we introduced a new Byzantine agreement problem which extends binary Byzantine
agreement to rankings. We showed that rules for choosing a consensus ranking in voting theory fit
well with requirements from Byzantine agreement. We further considered a special voting rule, the
Kemeny median, for which we provided an optimal Byzantine agreement protocol that can tolerate
up to t < n/3 Byzantine nodes. We do not claim to have chosen the best voting rule at this point,
since such a rule simply does not exist due to impossibility results in voting theory. Instead, we think
of our results as an inspiration to consider a larger pool of voting rules, such as approval voting, the
Godgson’s rule, and many others.

Byzantine agreement on rankings can also be of interest in several applications. Consider dis-
tributed machine learning as an example. Training data is usually collected by different (potentially
Byzantine) parties and is stored in different places. When the amount of data is very large or the data
is too sensitive to share, it is impossible to transmit the data and then train a global model. Instead,
these parties could train their own models locally and then vote to predict the labels for new data
points. A data point could be a picture, and every trained model outputs a ranking on the possible
labels (panda ≻ gibbon ≻ . . . ≻ cat). The different parties could then use our Byzantine preferential
voting protocols to find the best ranking.

10



References

[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating Inconsistent Information: Ranking and
Clustering. Journal of the ACM, 55(5):23:1–23:27, November 2008.

[2] Kenneth J. Arrow. Social Choice and Individual Values. CT: Cowles Foundation, New Haven, 1st edition,
1951.

[3] Kenneth J. Arrow. Social Choice and Individual Values. John Wiley, New York, 2nd edition, 1963.

[4] J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting Schemes for which It Can Be Difficult to Tell Who
Won the Election. Social Choice and Welfare, 6(2):157–165, April 1989.

[5] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The Computational Difficulty of Manipulating an Election.
Social Choice and Welfare, 6(3):227–241, July 1989.

[6] Gilbert W. Bassett and Joseph Persky. Robust voting. Public Choice, 990(3):299–310, June 1999.

[7] Michael Ben-Or. Another Advantage of Free Choice (Extended Abstract): Completely Asynchronous
Agreement Protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing, PODC ’83, pages 27–30. ACM, 1983.

[8] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed consensus. In Automata, Languages
and Programming: 16th International Colloquium, ICALP, July 1989.

[9] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Optimal Distributed Consensus. In 30th
Annual Symposium on Foundations of Computer Science, FOCS, October 1989.

[10] Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Information and Computation, 75(2):130–
143, 1987.

[11] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia. Handbook of Compu-
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A Proof of Theorem 3

We will divide the proof of Theorem 3 into two parts:

Lemma 5. Algorithm 1 satisfies Pareto -Validity.

Proof. Assume that all correct nodes agree on a binary relation between two candidates, e.g. ci ≻ cj.
Then all n− t correct nodes will propose ci ≻ cj in Step 4 and every correct node will receive at least
n− t propose messages for the same pair. Thus, no correct node will change its ranking until a round
in which the current dictator agrees on this binary relation ci ≻ cj in Step 13. This holds for any pair
of binary relations.

Lemma 6. At the end of the algorithm all nodes will have agreed on the same ranking.

Proof. We will show that all correct nodes will always adjust their ranking to the ranking of a correct
dictator. For this we need to verify that every correct node will enter the if-clause in Step 13 if the
dictator is a correct node. Note that any propose message that a correct node has received n − t
times in Step 8, will be received at least n − 2t > t + 1 times by every other correct node who will
incorporate this relation into its own ranking. This way every correct dictator will agree on all binary
relations that any correct node has received in Step 8 of the algorithm.

At latest in a round with a correct dictator all nodes will adjust their ranking to the ranking of
the dictator and, by Lemma 5, will receive the same ranking at the end of the algorithm.

B Opposite Ranking to the Kemeny Median

First we show that the opposite ranking of the Kemeny median always gives the worst possible solution
which a Byzantine nodes can pick. Note that the sum of the weights of all edges in a tournament
graph produced by the rankings of correct nodes only is (n−t) ·

(m
2

)

. The tournament graph formed by
a ranking r and the tournament graph formed by the opposite ranking r̄ are complementary graphs
with respect to the tournament graph of all correct rankings. Consider the weights of all possible
rankings. Each ranking that minimizes the Kendall’s τ distance must have an opposite ranking that
maximizes the same distance, i.e., τ(r,P) + τ(r̄,P) = (n − t) ·

(

m
2

)

. This shows that the opposite
ranking of the Kemeny median is also the ranking furthest away from it and can always be chosen as
a Byzantine value.

The opposite ranking is however not the only ranking that the Byzantine nodes can choose. Assume
all correct nodes agree on the preference ci ≻ cj such that this pair will always belong to the Kemeny
median of the correct rankings. Then, the Byzantine nodes can pick either ci ≻ cj or cj ≻ ci for
their ranking, since this strategy does not have any influence on the Kemeny median of all rankings.
One example for such a case is depicted in Figure 5.2, where the Byzantine rankings are deliberately
chosen not to be the opposite rankings of the Kemeny median of all correct nodes, although such a
strategy would give equivalent results. The number of possible solutions which the Byzantine nodes
can choose increases with the number of binary relations on which all correct nodes agree.

C Proof of the Lower Bound for Cycles

Consider a cycle on the three candidates c1, c2, c3 with majority edges (c1, c2), (c2, c3) and (c3, c1). Let
the weights on majority edges (c1, c2), (c2, c3) and (c3, c1) be x, y, z and the weights on corresponding
minority edges n − t − x, n − t − y, n − t − z respectively. In order to show that a cycle with such
weights is the worst case we need to consider additional properties of a tournament graph:
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• The weights of the forward and the backward edge between any two candidates sum up to the
number of rankings which is n − t without counting Byzantine rankings and n if we count all
rankings.

• Consider the tournament graph of correct nodes. Since we exclude cases which reduce to binary
agreement and due to the definition of majority edges, we can assume x ≥ y ≥ z ≥ n/2.

• All weights satisfy the triangle inequality on directed edges, which states that for any triplet
i, j, k holds

wi,j + wj,k ≥ wi,k,

where wi,j denotes the weight on the directed edge (ci, cj). According to the triangle inequality,
it holds that

n− t ≤ x+ y + z ≤ 2(n − t).

• Byzantine nodes can change the tournament graph by only adding new edges which also satisfy
the triangle inequality.

Based on the above conditions, the correct ranking should be c1 ≻ c2 ≻ c3 and the total Kendall’s
distance is 2(n− t)−x− y+ z. In order to see which case leads us to the largest approximation ratio,
we examine all other five possible rankings after considering Byzantine rankings. Since we exclude the
binary case, we are able to reduce the five cases to only two which do not reduce to binary agreement:
c2 ≻ c3 ≻ c1 and c3 ≻ c1 ≻ c2.

For the case c2 ≻ c3 ≻ c1, the total Kendall’s distance is 2(n−t)+x−y−z. In order for this ranking
to be chosen as the Kemeny median after adding Byzantine rankings, the inequality x − z ≤ t has
to be satisfied. Finding the worst case for the correct nodes is equivalent to solving the optimization
problem

max
2(n− t) + x− y − z

2(n− t)− x− y + z

s.t. x− z ≤ t

n− t ≤ x+ y + z ≤ 2(n − t)

n/2 ≤ z ≤ y ≤ x

This optimization problem has a solution when k = n/t ≥ 4.

• When k ∈ [4, 6], the maximum ratio is obtained by letting x = n− 2t and y = z = n/2. In this
case, the maximum ratio is 2− 4/k.

• When k ∈ (6, 8], the maximum ratio is obtained by letting x = n/2+ t, y = n− 3t and z = n/2.
In this case, the maximum ratio is 1 + 2/k.

• When k ∈ (8,∞), the maximum ratio is obtained by letting x = y = (2n − t)/3 and z =
(2n− 4t)/3. In this case, the maximum ratio is (2k − 1)/(2k − 4).

For the second case c3 ≻ c1 ≻ c2, the total Kendall’s distance is 2(n− t)−x+ y− z. The condition
for this ranking to be the median ranking after adding Byzantine rankings is y − z ≤ t. Finding the
worst case is then equivalent to solving

max
2(n− t)− x+ y − z

2(n− t)− x− y + z

s.t. y − z ≤ t

n− t ≤ x+ y + z ≤ 2(n − t)

n/2 ≤ z ≤ y ≤ x

This optimization problem also only has a solution when k = n/t ≥ 4.
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• When k ∈ [4, 8], the maximum ratio is obtained by letting x = y = 3n/4 − t, z = n/2. In this
case, the maximum ratio is 3/2− 2/k.

• When k ∈ (8,∞), the maximum ratio is obtained by letting x = n−3t, y = n/2+ t and z = n/2.
In this case, the maximum ratio is 1 + 2/k.

D Proof of Theorem 6

In Lemma 3 and 4 we proved that the computed solution in Step 3 of Algorithm 2 satisfies the
bounds from Section 5.2. In the following lemma we will show that the computed median also satisfies
Pareto -Validity.

Lemma 7. Algorithm 2 satisfies Pareto -Validity.

Proof. Assume, all nodes agree on a preference profile ci ≻ cj . Then, there is a directed edge between
ci and cj of weight n − t. Such an edge always belongs to a Kemeny median, since there cannot be
any directed cycle formed by correct nodes only with weights n− 2t > (n− t)/2 on all three majority
edges due to the triangle inequality. This way, all correct nodes will have the preference ci ≻ cj in
their median ranking mv. Since Algorithm 1 satisfies Pareto -Validity, the consensus median ranking
will also satisfy ci ≻ cj .

It remains to show that Algorithm 2 terminates and has the same order of message complexity as
Algorithm 1.

Lemma 8. Algorithm 2 terminates within t+ 3 rounds exchanging O(tn2m logm) messages.

Proof. Note that Algorithm 1 terminates after t+ 1 rounds. Algorithm 2 has two additional rounds
in which the messages are exchanged. This way, our algorithm terminates within t + 3 rounds. The
message complexity of Algorithm 1 is O(tn2m logm), since in every round, each of the n nodes
sends a messages of size m logm to n other nodes. In the additional two steps of Algorithm 2
2n2m logm messages are exchanged which gives the same message complexity O(tn2m logm) for the
second algorithm.
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