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Abstract

A central question in algorithmic game theory is to measure the inefficiency (ratio of costs) of Nash
equilibria (NE) with respect to socially optimal solutions. The two established metrics used for this
purpose are price of anarchy (POA) and price of stability (POS), which respectively provide upper and
lower bounds on this ratio. A deficiency of these metrics, however, is that they are purely existential and
shed no light on which of the equilibrium states are reachable in an actual game, i.e., via natural game
dynamics. This is particularly striking if these metrics differ significantly in value, such as in network
design games where the exponential gap between the best and worst NE states originally prompted the
notion of POS in game theory (Anshelevich et al., FOCS 2002). In this paper, we make progress toward
bridging this gap by studying network design games under natural game dynamics.

First we show that in a completely decentralized setting, where agents arrive, depart, and make
improving moves in an arbitrary order, the inefficiency of NE attained can be polynomially large. To
the best of our knowledge, this is the first demonstration of an NE with polynomial inefficiency that
can actually be attained starting at an empty state. This negative result implies that the game designer
must have some control over the interleaving of these events (arrivals, departures, and moves) in order
to force the game to attain efficient NE. We complement our negative result by showing that if the
game designer is allowed to execute a sequence of improving moves to create an equilibrium state after
every batch of agent arrivals or departures, then the resulting equilibrium states attained by the game are
exponentially more efficient, i.e., the ratio of costs compared to the optimum is only logarithmic. This
result is obtained by a careful dual charging argument where the goal of the improving moves executed
by the game designer is to dissipate the excessive charge accumulated on any region of the network by
the previous phase of agent arrivals or departures. Overall, our two results establish that in network
games, the efficiency of equilibrium states is dictated by whether agents are allowed to join or leave the
game in arbitrary states, an observation that might be useful in analyzing the dynamics of other classes
of games with divergent POS and POA bounds.
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1 Introduction

In multi-agent systems where different agents have competing objectives, it is well-known that selfish behav-
ior can lead to suboptimal system performance. A natural question is to quantify how the system performs
at a stable state or equilibrium that is consistent with selfish interests of users, relative to an optimal solution
designed by a central authority. The Price of Anarchy (POA), that captures the relative performance of the
worst possible equilibrium, and the Price of Stability (POS), that captures the relative performance of the
best possible equilibrium, are two successful and widely applied concepts developed to address this ques-
tion. In a scenario where these two measures are close to each other, they provide a satisfactory resolution
to understanding the quality of stable states the system is expected to reach. On the other hand, when these
two measures differ significantly, the system exhibits multiple equilibria with highly varying performance,
and they do not adequately address whether or not good performance would be achieved. A natural direction
is to understand the quality of equilibria that can be reached organically by the agents via some dynamics.
More generally, what is the minimal guidance put in place by a central authority so as to guarantee that the
relative quality of the equilibrium reached is close to the best possible, that is, the price of stability?

We study these questions on broadcast games which form a subclass of a more general class of con-
gestion games called network design games that were introduced by Anshelevich et al. [1]. In a broadcast
game, we are given a rooted undirected graph with costs on the edges. Every vertex has an agent residing on
it and the goal of the agent is to select a path to connect to the root. The cost of the edges thus selected must
be paid collectively by the agents using those edges. The Shapley cost sharing scheme stipulates that the
cost of each edge is divided equally among all the agents using that edge; an agent’s total shared cost is the
sum of her cost share on the edges along her selected path. A state of the system, i.e., a routing solution, is
defined by a collection of paths, one for each agent. The state is in Nash equilibrium (or NE) if no agent can
lower her shared cost by unilaterally changing her routing path. The existence of NE in broadcast games is
proved through a potential function argument, originally given by Rosenthal [17, 15]. The social cost of a
solution is the sum of the costs of all edges contained in it. Observe that the socially optimal solution is a
minimum spanning tree (MST) of the graph, and thus both the POA and POS are defined relative to its cost.

Anshelevich et al. [1] observed that there exist instances of the broadcast game with equilibria whose
cost differs from the optimum by a factor of Ω(n), where n denotes the size of the graph. In other words,
the POA of the game can be as large as Ω(n). However, examples achieving this lower bound are somewhat
artificial for two reasons. First, there exist alternative NE states in every example that are much more
efficient: following a long line of work [9, 13, 14], Bilo et al. [5] showed that every instance of the game
contains an equilibrium whose cost is within a constant factor of the optimum, i.e., the POS is O(1)1. This
implies that broadcast games display multiple equilibria of widely varying quality. Second, there are no
known natural (e.g., best response) dynamics that lead to these inefficient NE states. Given that we know
of the existence of both efficient and inefficient equilibria, an intriguing question is which of these would
be attained via natural game dynamics. For example, if starting from an empty graph agents are allowed to
enter the game and choose their strategies sequentially, what can we say about the quality of equilibria that
emerge in such situations?

Our Results. We consider the evolution of the state in a broadcast game under the following dynamics.
Starting with an empty graph, we allow the following events to modify the routing solution.

• Arrival: A set of new agents joins the game; each new agent chooses her best response (least shared
cost) path given the current solution.

1Appendix D provides examples illustrating these bounds.
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• Departure: A subset of existing agents leaves the game.

• Move: An agent changes her routing path to decrease her shared cost. We will call this an improving
move (or if there is no scope of confusion, simply a move).

Our goal is to understand whether, and under what assumptions, the system can reach good quality (i.e., low
social cost) equilibrium states. We assume that edge costs satisfy the triangle inequality and compare the
cost of the equilibrium reached to OPT, defined to be the MST of all the vertices in the graph2.

We first show that if the central authority does not place any restrictions on the dynamics by which the
game evolves, then the equilibrium reached can be significantly worse off than the social optimum.

Theorem 1. For any large enough integer n, there exists an instance of the broadcast game with n vertices
and a sequence of arrivals and departures that terminates in an NE of cost Ω(n1/3) times that of the
minimum spanning tree on all the vertices.

A crucial feature of the instances we construct for the proof of Theorem 1 is that the dynamics consists
only of arrivals and departures, with no improving moves in between. Although intermediate states are far
from being in equilibrium (i.e., many agents want to change their paths), no improving moves are allowed
until the sequence of arrivals and departures ends. When all of the arrivals and departures are done, the
resulting final state is in equilibrium with significantly higher cost than the social optimum.

This lower bound shows that the central authority must have some control over the arrival/departure
events in order to ensure good quality equilibrium states. In fact, we show a sharp dependence of the
efficiency of NE states reachable via the above dynamics on the timing of the arrival and departure events.
In particular, we consider the following dynamics: if an arrival or departure event moves the system out
of equilibrium, the central authority is allowed to restore equilibrium through a sequence of improving
moves before the next batch of arrivals/departures happens. The sequence of arrivals and departures is
otherwise allowed to be arbitrary, indeed adversarial, as in the lower bound instance. We call this dynamics
equilibrium-preserving (EQ-P) and show the following result.

Theorem 2. For every instance of the broadcast game using EQ-P dynamics, the system converges to NE of
cost O(log n) times that of the minimum spanning tree on all the vertices.

1.1 Our Techniques

We first outline our techniques for the upper bound (Theorem 2), which is our main technical result. At a
very high level, our argument relies on structural properties of states reachable in EQ-P dynamics that we
prove via induction. We then employ a charging argument for the cost of any such state against a family of
dual solutions for the minimum spanning tree over the underlying graph.

Our main construct for charging the cost of a solution is a family of O(log n) dual solutions3 for the
minimum spanning tree. The jth dual in the family is a partition of the vertices into subsets of diameter
(roughly) 2j whose “centers” are at a distance of (roughly) 2j from one another; each such subset is called a

2Observe that because we allow agents to leave the game, at the end of a sequence of moves, many vertices in the graph may
not have any active agents residing at them. A natural goal then is to argue that the cost of the equilibrium reached at the end
of the sequence is comparable to the cost of the minimum Steiner tree over all vertices with an active agent. However, even in
extremely simple graphs, the gap between the cost of the equilibrium and the minimum Steiner tree can be as large as Ω(k), where
k is the number of terminals active in the end. See Appendix D for an example. A more reasonable comparison, then, is against the
minimum cost tree spanning all vertices that ever contained an active agent.

3Each dual solution serves as a lower bound on the MST.
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level j cut. For any state of the system where the routing paths form a tree, we make every vertex in the tree
“responsible” for the first edge on its unique tree path to the root. We charge the cost of an edge of length
` to a cut of diameter roughly `/4, namely the cut in level blog(`/4)c that contains the vertex responsible
for that edge. Our main goal is to show that for any equilibrium reachable via EQ-P dynamics, each cut in
the dual family is charged at most once; we call such an equilibrium a “balanced equilibrium”. A simple
accounting then bounds the cost of such an equilibrium within O(log n) of the cost of the MST.

To get a feel for how we might maintain such a balanced charging, consider a simple case where we start
from a balanced equilibrium and an agent arrives at a new vertex v. The agent picks a path to connect to the
root that, without loss of generality, consists of a new edge from v to a vertex, say w, in the existing routing
tree, and the tree path from w to the root. The new edge potentially places an extra charge on a cut C that
was already being charged by a different vertex, say u, previously. Thus, our charging is out of balance. We
show that it must be the case that u benefits from changing its current routing path to the path obtained by
using edge (u, v) followed by v’s new path to the root: while u must now pay the cost of unilaterally using
edge (u, v), roughly speaking, this is offset by the savings it obtains by only paying half the cost of v’s new
edge (v, w). Vertex u’s descendants in the routing tree likewise follow u to the new path; we collectively
call this sequence of improving moves a tree-follow move. This fixes the issue of overcharging of the cut C.
Of course, if u moves to this new path, it creates a new edge (u, v), which in turn potentially overcharges a
different cut C ′. We then repeat the above argument for C ′, and so on, till a balanced state is restored.

The key invariant in the above argument is that only one cut is overcharged at a time. If multiple
new arrivals happen all at once, however, this invariant no longer holds. Nevertheless, we can argue that
any overcharging is done by leaf nodes, i.e. nodes that do not have any descendants in the routing tree
because they are freshly arrived. This observation allows us to argue as before that for any cut that is
overcharged, one of the vertices charging it has an improving move that removes this extra charge. We can
now distinguish between states of the routing tree that are “balanced”, and those that are “leaf-unbalanced”,
meaning in the latter case that every cut is charged by at most one non-leaf, but potentially many leaves.
From leaf-unbalanced states we carry out a carefully ordered sequence of improving moves with the goal
of eventually reaching a balanced state. Unfortunately, some of these moves apply to non-leaves, and can
lead to a state where a cut is charged simultaneously by two non-leaf vertices. We show, however, that in
any state reachable within EQ-P dynamics, at most one cut can be charged by multiple non-leaf vertices, and
never by more than two non-leaf vertices. We call such states “non-leaf-unbalanced”.

The departure of one or more agents does not affect the charging of cuts, but may lead to the introduction
of Steiner vertices. We continue to hold Steiner vertices responsible for the first edge on their tree path to
the root. This does not create a problem, as our family of dual solutions covers the entire graph and its total
cost is bounded against the cost of the MST rather than a minimum Steiner tree.

Putting everything together, we argue that EQ-P dynamics cycles through four types of states – non-leaf-
unbalanced, leaf-unbalanced, balanced, and balanced-equilibrium. In states of the first three types, we can
always find an improving move leading to one of the four types of states. Each improving move leads to a
decrease in the standard potential function for the game [17] (discussed in more detail in the following sec-
tion). Therefore, the sequence of moves terminates within a finite number of steps at a balanced-equilibrium
state. The cost of this equilibrium can then be charged against the family of dual solutions described above.

For our lower bound for NON-EQ-P dynamics (Theorem 1), the high level idea is to create a POA type
of instance in which multiple different agents, that are located much closer to each other relative to the root,
nevertheless follow independent paths to the root in the final solution. Such a solution can be made stable
by ensuring that each agent is co-located with a large group of other agents. Call this entire set of agents
the primary agents in the game, and the corresponding vertices the primary vertices. One challenge with
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creating such a state dynamically is that after we have placed an agent at one of the primary vertices in the
graph, when we place an agent at another close-by primary vertex, the best path for this agent is to take the
short-cut to the first agent, and follow the latter’s path to the root, thereby saving on cost via sharing. In
order to get around this, and force every agent to take an independent path to the root, we introduce many
new “auxiliary” agents at intermediate vertices along the desired path so as to make this path look cheap.
We then remove these auxiliary agents so as to continue the process of introducing new primary agents at
close-by vertices. The second challenge that arises is to guarantee that the introduction of auxiliary agents
does not increase the cost of the MST by too much. In other words, while the collection of independent paths
for the primary agents should have a large total cost, there exists an MST covering all intermediate vertices
on all of the independent paths at a much lower cost. We achieve this by interconnecting the independent
paths in such a manner that these paths successively converge and diverge from each other in a zig-zag
fashion from the root to the primary vertices. We present this construction in Appendix A.

1.2 Related Work

Broadcast games form a subclass of a more general class of congestion games called network design games
that were introduced by Anshelevich et al. [1]. The existence of NE in such games is guaranteed by the fact
that all congestion games are also potential games [17, 15]. Substantial research effort in the last decade
has been spent on bounding the price of stability (POS) of broadcast games. The potential function of
Rosenthal [17], originally used to show the existence of NE, was also used to prove that the POS is at
most O(log n) [1], which is already an exponential improvement over the POA bound. The POS bound was
subsequently improved toO(log log n) by Fiat et al. [9], further toO(log log log n) by Lee and Liggett [13],
and eventually to a (large) constant by Bilo et al. [5] (see also Li [14]).

Chekuri et al. [7] initiated the line of inquiry of whether natural game dynamics can lead to efficient
NE states. They considered the following two-phase dynamics: in the first phase, agents arrive in sequence
and choose their best response path upon arrival, and in the second phase, agents can change their routing
path to lower their shared cost (called “moves”). Chekuri et al. [7] showed that the resulting equilibrium
costs at most O(

√
n log2 n) times the cost of the MST, a factor that was later improved to O(log3 n) by

Charikar et al. [6]4. A lower bound of Ω(log n) for this ratio was also given by [6], building on a known
lower bound for the online Steiner tree problem [12]. A different approach was taken by Balcan et al. [3],
who considered the problem of influencing game dynamics in network design games with Shapley sharing,
in order to achieve a socially efficient equilibrium. In their model, players use expert learning, choosing
between a best response expert and a central authority expert suggesting (near-)optimal global behavior. At
a high level, our results are also for these two distinct approaches – we show a lower bound for a natural
game dynamics with arbitrary arrivals and departures of agents, and then show an exponentially better upper
bound if the central authority can suggest moves between successive arrival/departure phases.

The analysis of game dynamics in this paper crucially relies on the construction of a hierarchial family of
multiple dual solutions. This method of analysis has been highly influential in designing online algorithms
for network design problems. Implicit use of this method dates back to the work of Imase and Waxman [12]
on online Steiner trees, and a subsequent line of work of [2, 4, 16]. More recently, this method has been
explicitly employed in solving a range of node and edge-weighted Steiner network design problems in
the online setting [10, 11, 8]. In terms of the exact techniques, perhaps the closest to our work is that of
Umboh [18], who uses hierarchical tree embeddings to analyze greedy-like algorithms for network design
problems. In contrast to these applications in competitive analysis where decisions are irrevocable, our

4This result applies to a more general setting called multicast games, where agents reside at any subset of vertices in the graph.
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application in game dynamics allows temporary overcharging of dual solutions, of which we take advantage
in this work.

2 Model and EQ-P Dynamics

In this section and the next we describe and analyze EQ-P dynamics for the broadcast game. We first set
up our notation and terminology, and prove some basic structural properties that are used in the rest of the
paper. Let G = (V,E) be a complete graph, |V | = n, with metric costs c : V × V → R+ defined on the
edges. We assume without loss of generality that every vertex has a unique agent (a.k.a. terminal) residing
at it. The graph G is revealed via an online process that is divided into epochs (indexed by time t). At the
start of epoch t, the set of vertices in G that have already appeared is denoted by Vt. We denote the set of
active terminals among them by At ⊆ Vt, i.e., those vertices whose agents are present in the game at the
current epochs. Each terminal v ∈ At has a current routing path pv connecting it to the common root r. The
cost share of v along this routing path is the sum of v’s cost share over the edges in the path, where the cost
of an edge is equally shared between all terminals currently using the edge. In the EQ-P scenario, we further
enforce the invariant that the set of paths pv are in NE, i.e., no terminal has an incentive to unilaterally
deviate to a different routing path.

The routing at any time t is defined to be the set of routing paths (pv)v∈At . A best response path of
a terminal v with respect to a routing, denoted p∗v, is a path from v to r with the minimum shared cost if
v were to move to this path. If there are multiple such paths, we break ties in favor of paths having fewer
edges with no terminal other than v using them. Note that this may not break all ties, in which case, any of
these paths can be designated as the best response path. A terminal v ∈ A is said to have an improving move
with respect to a routing if by moving from its current path pv to a new path qv strictly decreases v’s cost
share. Given a routing, its potential [17] is defined to be Φ =

∑
e∈E

∑Ne
i=1 ce/i, where Ne is the number

of agents using e. A standard argument shows that any improving move decreases the potential by bound
that is uniformly bounded away from zero resulting in a finite convergence of our dynamics. The following
well-known lemma states that in equilibrium the routing paths always form a tree.

Lemma 3. In equilibrium, the routing paths of a broadcast game form a tree.

Each epoch t is divided into several phases. The first phase consists of an arrival or departure event. In
the former case, a new set of terminals Ut ⊆ V \ Vt arrive, and the cost of all edges incident on terminals
in Ut is revealed. Each new terminal u ∈ Ut chooses a best response routing path pu. In the latter case, a
set of terminals leave, thereby removing the corresponding vertices from the set of terminals At. (Note that
the corresponding vertices remain in Vt.) Lemmas 9 and 10 establish that the structure of the set of routing
paths after arrivals or departures remains a tree.

Both arrival and departure events lead to changes in the cost shares of edges. In the EQ-P scenario, this
might lead to a violation of the equilibrium state that was being previously maintained. In this case, the
system performs a sequence of improving moves, in each of which a terminal changes its routing path in
order to reduce its cost share.

Improving moves may temporarily create cycles in the collection of routing paths {pv}v∈At . We order
and group improving moves into contiguous blocks or phases such that every phase ends with the routing
paths forming a tree. Furthermore, the trees at the beginning and end of the phase differ in a single pair of
edges. The collection of moves in each such phase is called a tree-follow move.

Definition 4 (Tree-follow moves). A tree-follow move from u to v in T is a collection of improving moves
that start with routing tree T and end with routing tree T ′ = T \ (u, parent(u)) ∪ (u, v), where parent(u)
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is the parent vertex of u in T . Observe that each terminal in the subtree rooted at u in T reroutes its path to
the root in the new rerouting T ′. (See Figure 3 and Figure 4 in Appendix E for an example.)

A priori, it is not clear whether improving moves can always be grouped into tree-follow moves. In
Lemma 11, we show that in every routing tree T which is not in equilibrium, there exists a sequence of
improving moves that collectively form the tree-follow move from u to v for some vertices u and v. In
algorithm SELECT TREE MOVE, we use a careful charging scheme to identify the order in which tree-follow
moves should be implemented.

Since every vertex in a tree has a unique path to the root, it suffices to specify the tree itself in lieu of all
of the routing paths. Henceforth, we will use Tt to denote the tree induced by {pv}v∈At without explicitly
specifying the paths themselves.

EQ-P Dynamics

1. Initialization. t = 1, V0 = {r}, T0 = {r}, A0 = ∅.

2. For t = 1, 2, . . .

• (Arrivals.) Let Ut be the set of terminals arriving. Let At ← At−1 ∪ Ut. For each v ∈ Ut,
let pv = p∗v where p∗v the best response path with respect to Tt−1. Let Tt = Tt−1 ∪v∈Ut p

∗
v.

• (Departures.) LetDt be the set of terminals arriving. LetAt = At\Dt. Let Tt = ∪v∈Atpv.

• (Tree Follow Moves.) While Tt is not in equilibrium:
Use algorithm SELECT TREE MOVE to determine a tree-follow move to implement in Tt;
let this be a move from u to v, and let parent(u) denote the parent of u in Tt. Implement
the sequence of improving moves for this tree-follow move to obtain the new routing tree
Tt ← Tt \ (u, parent(u)) ∪ (u, v).

Because of departure events, the routing tree may contain non-terminal vertices as Steiner vertices. It
is convenient to extend the notion of an improving move to vertices that are not terminals. Let w /∈ A be a
non-terminal vertex. We say that w has an improving move if the following properties hold: (1) There exists
a terminal v whose routing path pv includes w; let pw denote the segment of pv between w and r; (2) There
exists a path qw between w and r such that if v were to retain its current routing path from v to w but move
from pw to qw, then the cost share of v would strictly decrease.

2.1 Charging Scheme and Classification of Tree Solutions

In proving the upper bound for EQ-P dynamics, we use a dual charging scheme to bound the cost of the
routing tree. We define the dual and the corresponding lower bound on the optimal cost next. We call a
partition P = (S1, · · · , Sm) of the vertex set V a level-j dual for an integer j if it satisfies the following
properties:

• P is a partition: ∪S∈PS = V , and for any Sa, Sb ∈ P , Sa ∩ Sb = ∅.

• The components have bounded diameter: for any S ∈ P , and any vertices x, y ∈ S, c(x, y) < 2j .

• The components are far from each other: there exists a “center” si in each component Si, such that
for all Sa, Sb ∈ P , c(sa, sb) ≥ 2j−1.
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We use the term cuts to denote the components S of the partition. The lemma below follows immediately
from the observation that any spanning tree over V must connect the centers of all of the cuts in a level-j
dual P .

Lemma 5. For any level-j dual P , the cost of the minimum spanning tree OPT is at least 2j−1(|P | − 1).

In order to bound the cost of an equilibrium resulting from EQ-P, we relate the cost of the edges used in
the solution to a family of duals. Let Π = {Pj}j∈Z denote a family of partitions, where Pj is a level-j dual.

Our charging scheme for routing solutions that form a tree proceeds as follows. Every vertex in the
routing tree is responsible for the cost of its parent edge. Consider an edge e = (v, parent(v)) with length
in [2j+2, 2j+3) for some j ∈ Z. We charge the cost of this edge to the cut in the level-j dual that contains v:
S ∈ Pj such that v ∈ S. Our goal is to show that every cut gets charged a small number of times.

Lemma 6. Suppose that our charging scheme charges each cut in the family Π at most once. Then the cost
of the solution is at most O(log n)OPT.

For much of our analysis, we will assume that the dual family Π is provided to us. In Section C we
discuss how to construct this family algorithmically as terminals arrive online.

Classification of a Tree Routing. We classify the tree routings reachable via EQ-P dynamics into one of
four states depending on the charging structure defined by the solution. We remark that not all tree routings
are reachable via EQ-P dynamics, indeed even the set of equilibria obtained is smaller than the set of all
equilibria. Let T be a routing tree for some set of active terminals A. We say a vertex u is a leaf (non-leaf)
if it is a leaf (non-leaf) in T . Note that all leaves must be terminals, but a non-leaf vertex may or may not be
a terminal.

1. BALANCED-EQUILIBRIUM: In this state, no terminal (and therefore, no non-terminal vertex in T ) has
an improving move. Furthermore, every cut is charged at most once. (Note that not every NE is a
BALANCED-EQUILIBRIUM state.)

2. BALANCED: In this state, some terminals (and potentially non-terminals) may have improving moves,
but every cut is charged at most once.

3. LEAF-UNBALANCED: In this state, every cut is charged by at most one non-leaf vertex (and any
number of leaf terminals). (Recall that leaf vertices in the routing tree are necessarily terminals.)

4. NON-LEAF-UNBALANCED: In this state, all but one of the cuts are charged by at most one non-leaf
vertex (and any number of leaf terminals). The exceptional cut, that we denote by S∗, is charged by
at most two non-leaf vertices, say u and v (and any number of leaf terminals). One of these, u or v,
must be the last vertex to have made a (tree-follow) move.

Note that: BALANCED-EQUILIBRIUM⊆ BALANCED⊆ LEAF-UNBALANCED⊆ NON-LEAF-UNBALANCED,
where A ⊆ B implies that a routing tree in state A is also in state B.

2.2 Selecting a Tree-Follow Move

To define the tree-follow move performed in a non-equilibrium tree state T , we establish a system of priori-
ties among the improving tree moves based on the current state of the routing tree. A tree follow move of u
to v is said to be a leaf move if v is a leaf in T , and a non-leaf move otherwise.

7



Algorithm SELECT TREE MOVE

1. BALANCED-EQUILIBRIUM: No terminal has an improving move. The system can deviate from
an equilibrium state only via arrivals or departure events.

2. BALANCED: In this state, for any vertex u that has an improving tree move, move u to the closest
vertex to which it has an improving move.

3. LEAF-UNBALANCED:

(a) If there exists a leaf terminal u with a non-leaf move, then make any such move for u.

(b) Else, if there exists a non-leaf vertex u with a non-leaf move then move u to the closest such
non-leaf v.

(c) Else, if there exists a non-leaf vertex u and a leaf terminal v such that u and v are charging
the same dual cut, then move u to v. (Claim 7 shows that either u to v or v to u is an
improving move; The latter is covered by case (3a).) If there are multiple such leaf terminals
v, then make any such move.

(d) Else, make any improving move. (This will necessarily be a leaf-to-leaf move by exclusion
of the previous three cases.)

4. NON-LEAF-UNBALANCED: Let u and v be the non-leaf vertices that are charging the special cut
S∗. If u has an improving move to v then move u, else move v, in either case to the closest
vertex to which they have an improving move. (We show in Claim 8 that one of u and v has an
improving move.)

The validity of the algorithm depends on the following two claims that we prove in Appendix B. The
first claim shows that whenever a cut is being charged by a leaf and a non-leaf, at least one of these two
vertices has an improving move to the other. In this case, we can find a valid tree-move for Step (3c) of
SELECT TREE MOVE. The second claim shows that in a NON-LEAF-UNBALANCED state, whenever a cut is
being charged by two non-leaves, at least one of these two vertices has an improving move to the other; we
can then find a valid tree-move for Step (4) of SELECT TREE MOVE.

Claim 7. Let the routing tree T be in NON-LEAF-UNBALANCED state but not in BALANCED state. Let u, v
be a pair of vertices in T charging the same dual cut D at some level i, where at most one of u or v is a
non-leaf vertex in T . Then, at least one of u moving to v and v moving to u is an improving move.

Claim 8. Let T be a routing tree in a NON-LEAF-UNBALANCED but not a LEAF-UNBALANCED state,
arrived at by implementing one of the steps (2)–(4) in algorithm SELECT TREE MOVE. Let u and v be the
non-leaf vertices charging the special cut S∗. Then either u to v or v to u is an improving move.

3 Analysis of the EQ-P Dynamics

In this section we prove Theorem 2. Some proofs from this section are deferred to Appendix B.
Our argument hinges on a closure property: the epoch starts with the routing tree being in the BALANCED-

EQUILIBRIUM state; Lemma 11 argues that whenever the current routing tree is not in equilibrium, at least
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one improving move exists, and we can use algorithm SELECT TREE MOVE to make a move; Lemma 12
then shows that for the moves made by algorithm SELECT TREE MOVE, the routing tree remains in one of
the four states defined above, in particular, it is always in a NON-LEAF-UNBALANCED state. The epoch ends
when the routing tree re-enters a BALANCED-EQUILIBRIUM state. At this point, by definition, each dual cut
is charged at most once, and therefore, by Lemma 6 the cost of the routing tree is bounded, and Theorem 2
follows. We must also argue termination of the sequence of moves, but this follows directly from a standard
potential argument based on the fact that all our moves are improving moves.

The arrival or departure phase. We first consider the situation where the epoch begins with an arrival
event. Every arriving terminal u chooses its best response path p∗u as its current routing path pu. We claim
that the new routing paths {pu}u∈Ut along with the current routing tree T continue to form a tree solution
and we end up in a LEAF-UNBALANCED state.

Lemma 9. Suppose a set of new terminals Ut arrive in epoch t when the routing paths of the existing
terminals are in an equilibrium state. Then, for each new terminal u ∈ Ut, the chosen routing path pu
comprises a single edge (u, v) connecting u to an existing vertex v in the current routing tree T , and then
following the unique path in T from v to r.

We therefore obtain the following lemma.

Lemma 10. After the arrival or departure of a set of terminals in an BALANCED-EQUILIBRIUM state, the
routing tree T remains in a LEAF-UNBALANCED state.

Sequence of tree-follow moves. We now consider improving moves made by the algorithm SELECT TREE

MOVE. We first observe that for any routing tree that is not at equilibrium, there must exist an improving
tree-follow move; see Appendix B for a proof.

Lemma 11. If the routing tree is not in equilibrium, then at least one improving tree-follow move exists.

We therefore have the following simple observation.

Observation 1. In EQ-P dynamics the routing paths at the end of a phase always form a tree.

We are now ready to establish our main technical result of this section, namely that the four states defined
in Section 2.1 are closed under EQ-P dynamics.

Lemma 12. Let T be the routing tree for which we make an improving tree-move in Step (3) of algorithm
EQ-P.

(i) If T is in a BALANCED state but not in a BALANCED-EQUILIBRIUM state, then after the move selected
in Step (2) of SELECT TREE MOVE, the resulting routing tree is in a NON-LEAF-UNBALANCED state.

(ii) If T is in a LEAF-UNBALANCED state, then after the move selected in Step (3) of SELECT TREE MOVE,
the resulting routing tree is in a NON-LEAF-UNBALANCED state.

(iii) If T is in a NON-LEAF-UNBALANCED state, then after the move selected in Step (4) of SELECT TREE

MOVE, the resulting routing tree is in a NON-LEAF-UNBALANCED state.

Proof. We complete the proof by a detailed case analysis.
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(i) Let T be in a BALANCED state but not a BALANCED-EQUILIBRIUM. Therefore, every dual is being
charged at most once in T . After the move, the new tree T ′ contains exactly one edge not in T . The
charging for this edge can introduce at most one dual cut which is charged more than once. Thus the
new routing tree is in a NON-LEAF-UNBALANCED state.

(ii) Let T be a tree in a LEAF-UNBALANCED state. We now consider different cases depending on the
move chosen by algorithm SELECT TREE MOVE.

Step (3a): Suppose the algorithm makes a leaf to non-leaf move in Step (3a), then the only new edge intro-
duced is u’s parent edge. Since u remains a leaf in T and its new parent was already a non-leaf
vertex, no new non-leaf vertex is introduced. Thus, in the new routing tree, every dual is charged
by at most one non-leaf vertex. This implies that the LEAF-UNBALANCED state is preserved.

Step (3b): Suppose there is no improving move in Step (3a), and algorithm makes a non-leaf to non-leaf
move in Step (3b) for vertex u. Let the new edge introduced be (u, v) where v is a non-leaf vertex.
After this move, the only cut that has an additional non-leaf vertex charging to it is the cut being
charged by u (call it S). Prior to this move, S had at most one non-leaf vertex charging it. After
u’s move, it has at most two non-leaves charging it, with one of them (u) having made the last
move. Therefore, T is in a LEAF-UNBALANCED or NON-LEAF-UNBALANCED state.

Step (3c): Suppose there are no improving moves in Steps (3a) and (3b), and the algorithm performs a non-
leaf to leaf move in Step (3c) from u to v. Prior to the move, u and v were charging the same cut,
say S at level i. After u’s move, u’s parent edge, (u, v), is of length < 2i, and therefore, u charges
a cut different from S (call it S′), whereas v continues to charge S.
Therefore, the only cuts that get charged by new non-leaves after u’s move are S and S′. S was
previously being charged by a single non-leaf, namely u; Now it is charged by only one non-leaf,
namely v. S′ was previously being charged by at most one non-leaf (by virtue of the routing tree
being in a LEAF-UNBALANCED state), so now it is being charged by at most two non-leaves, one
of which is u. Therefore, T is in a LEAF-UNBALANCED or NON-LEAF-UNBALANCED state.

Step (3d): Finally, consider the scenario where there are no improving moves in any of Steps (3a), (3b), and
(3c). In this case, the algorithm makes a leaf to leaf move in Step (3d) from u to v. The only new
non-leaf vertex created by the move is v. We first argue that the dual charged by v (say S) does
not have a second non-leaf vertex charging it. Since Step (3c) was not executed, it follows that no
cut was being charged by both a non-leaf and a leaf vertex before the move (although multiple leaf
terminals might be charging the same cut). In particular, v was a leaf vertex charging S before the
move, and so, no other non-leaf vertex was charging S before or after the move.
The only other cut that gets a new charge after the move is the cut charged by u’s new edge. Since
u is a leaf, this cut continues to have at most one non-leaf charging it. Therefore, the routing tree
is in a LEAF-UNBALANCED state.

(iii) Let T be in a NON-LEAF-UNBALANCED state. Recall from the definition of Step (4) that u and v are
the two non-leaf vertices charging the special cut S∗ at some level i, and u has an improving move to
v. Then we have cuv < 2i. Suppose that u made the improving move to w, where w can be v. Since
u chooses the improving move to the closest vertex, we have cuw ≤ cuv < 2i. After the move, u must
charge a cut, say S whose level is strictly less than i. Thus S 6= S∗, and S∗ now has only a single
non-leaf charging it. Moreover, before the move S had at most one non-leaf charging it. Now, along
with u, it can have two non-leaves charging it but one of them, u, has made the last move. Thus, the
new tree is in a NON-LEAF-UNBALANCED state.
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[5] Vittorio Bilò, Michele Flammini, and Luca Moscardelli. The price of stability for undirected broadcast
network design with fair cost allocation is constant. In FOCS, pages 638–647, 2013.

[6] Moses Charikar, Howard J. Karloff, Claire Mathieu, Joseph Naor, and Michael E. Saks. Online multi-
cast with egalitarian cost sharing. In SPAA, pages 70–76, 2008.

[7] Chandra Chekuri, Julia Chuzhoy, Liane Lewin-Eytan, Joseph (Seffi) Naor, and Ariel Orda. Non-
cooperative multicast and facility location games. IEEE Journal on Selected Areas in Communications,
25(6):1193–1206, 2007.

[8] Alina Ene, Deeparnab Chakrabarty, Ravishankar Krishnaswamy, and Debmalya Panigrahi. Online
buy-at-bulk network design. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 545–562, 2015.

[9] Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen Shabo. On the price of stability
for designing undirected networks with fair cost allocations. In ICALP, pages 608–618, 2006.

[10] Mohammad Taghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Online node-weighted steiner
forest and extensions via disk paintings. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 558–567, 2013.

[11] MohammadTaghi Hajiaghayi, Vahid Liaghat, and Debmalya Panigrahi. Near-optimal online algo-
rithms for prize-collecting steiner problems. In Automata, Languages, and Programming - 41st In-
ternational Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
pages 576–587, 2014.

[12] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete Math.,
4(3):369–384, 1991.

[13] Euiwoong Lee and Katrina Ligett. Improved bounds on the price of stability in network cost sharing
games. In EC, pages 607–620, 2013.

[14] Jian Li. An O(log(n)/log(log(n))) upper bound on the price of stability for undirected shapley network
design games. Inf. Process. Lett., 109(15):876–878, 2009.

11



[15] Dov Monderer and Lloyd S. Shapley. Potential games. Games and economic behavior, 14:124–143,
1996.

[16] Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner tree and related
problems. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 210–219, 2011.

[17] Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal
of Game Theory, 2(1):65–67, 1973.

[18] Seeun Umboh. Online network design algorithms via hierarchical decompositions. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1373–1387. SIAM,
2015.

A Lower Bound for NON-EQ-P Dynamics

In this section, we will show that if arrivals and departures are allowed at non equilibrium states, then no
dynamics can lead to a good equilibrium.

Theorem 1. (Restatement) There exists a graph on n vertices with a sequence σ of N = Θ(n2) arrivals
and departures such that if every terminal chooses its best path at its time of arrival, then the state of the
network after the final arrival is an equilibrium and its cost is Ω(N1/6) times the cost of the minimum
spanning tree over all vertices of the underlying graph.

The rest of this section is devoted to proving Theorem 1. In the previous sections, it was convenient
to assume that players arrive at distinct vertices. For this section, we will assume that multiple players can
arrive at the same vertex. Recall that multiple players at a vertex can be modeled in the single player case
using zero cost edges; hence, there is no technical distinction between the two cases.

We construct a family of lower bound instances parameterized by an integer m ≥ 1. The mth instance
uses the metric induced by weighted graph Gm (see Fig 1). The vertex set of this graph consists of a root r
and m+ 1 layers V 0, . . . , V m. For 1 ≤ i ≤ m, layer V i consists of m clusters Ci

1, . . . , C
i
m, each of which

is a clique over m vertices. We use vij,k to denote the k-th vertex of Ci
j ; recall that each of i, j, and k take

on integral values in [m]. Layer V 0 also consists of m2 vertices, which are labeled v0j,k for j, k ∈ [m], but
there are no edges between these vertices. The vertices of V m are called end vertices, and those of V 0 are
called auxiliary vertices. Observe that the graph Gm has n = m2(m+ 1) + 1 vertices in all.

Next, we describe the edges. Each pair of vertices within the same cluster Ci
j is connected by an edge of

length 1/m for all layers except V 0. The remaining edges in the graph connect vertices in neighboring layers
and are all of length 1. Each auxiliary vertex v0j,k in V0 is connected to the root and to its corresponding
vertex v1j,k in layer 1. For 1 ≤ i ≤ m− 1, we have an edge (vij,k, v

i+1
k,j ) for each j, k ∈ [m]. In other words,

the vertices of the j-th cluster in layer i are connected to the k-th vertices of the clusters in layer i + 1; in
particular, the k-th vertex of the j-th cluster in layer i is connected to the j-th vertex of the k-th cluster in
layer i + 1. For example, see the edges leaving the first (top) cluster of V1 in Figure 1. Observe that there
are exactly m2(m+ 1) inter-layer edges, and exactly m3(m− 1)/2 intra-cluster edges.

Observe that each end vertex vmj,k has a unique path Pj,k to the root that consists of only inter-layer edges
(see Figure 1). We call these paths canonical paths. Note that each inter-layer edge belongs to exactly one
canonical path. In other words, the set of inter-layer edges is a disjoint union of all the canonical paths Pj,k.
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r

V 1V 0 V 2 V 3 V 4

Figure 1: Example for m = 4. Auxiliary vertices are in red, end vertices are in blue. Ovals represent
clusters. Intra-cluster edges are shown as dashed edges. The two bold paths starting from the same cluster
successively diverge into different clusters and converge into the same cluster on their way to the root.

The cost of the final equilibrium. Our lower bound instance consists of a sequence of arrivals and depar-
tures of terminals. Each terminal/player, upon arrival, chooses its best response path to the root at the time
of its arrival. Terminals are not allowed to change their chosen path until after the sequence ends. We show
that: (1) each terminal chooses its canonical path as its best response path to the root; (2) at the end of the
sequence, these paths collectively form an equilibrium, and therefore, no terminal wants to move; (3) this
equilibrium state is far from optimal in cost.

Before we describe the sequence of arrivals and departures in full detail, we will analyze the final
equilibrium state and its cost relative to the optimal cost. Let OPT denote the cost of the minimum spanning
tree over all vertices in Gm. Observe that this is an upper bound on the cost of any optimal solution at the
end. The final state following our sequence of arrivals and departures, denoted F , consists of m players
situated at every end vertex vmj,k in layer m; each player uses the canonical path Pj,k to route to the root. The
following lemma shows that this is an equilibrium state with a polynomially larger cost relative to OPT.

Lemma 13. State F is an equilibrium and the cost of F is Ω(m) OPT.

Proof. First, we prove that F is an equilibrium. Consider a player at end vertex vmj,k with path Pj,k and an
alternative path p′. For every intra-cluster edge e, we have Ne(F) = 0, and for every inter-layer edge e,
we have Ne(F) = m, where Ne denotes the number of terminals using edge e. So the player’s current cost
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share is m+1
m . Path p′ contains at least one intra-cluster edge and at least m+ 1 inter-layer edges. Thus, the

player’s cost share when it switches to p′ is at least 1
m + m+1

m+1 = m+1
m . Therefore, F is an equilibrium state.

Next, we prove that c(F) = Ω(m) OPT. F consists of all unit-length inter-layer edges, and therefore
its cost is m2(m + 1). On the other hand, one way of constructing a spanning tree for Gm is to select an
arbitrary spanning tree within each of the m2 cliques, all of the edges from layer 0 to the root, as well as one
inter-layer edge per clique connecting it to its preceding layer, say the edge (vij,j , v

i+1
j,j ) to connect Ci+1

j to
Ci
j for all i, j ∈ [m]. The total cost of this solution is

1

m
m3 +m2 +m2 = 3m2.

This concludes the proof.

Sequence of arrivals and departures. The sequence is constructed in m phases, each phase consisting
of m2 rounds, one per end vertex vmj,k, and indexed by (j, k). Informally, the objective of each phase is
to add one more terminal at each of the end vertices vmj,k. Within round (j, k) in a phase, we use a set of
“temporary” terminals whose sole aim is to force the terminal at vmj,k that arrives at the end of the round
to choose the canonical path as its best response. The temporary terminals are introduced at intermediate
vertices along the canonical path during the round, and removed at the end of the round.

Formally, let ≺ be an arbitrary total order on the pairs (j, k). The sequence σ is constructed to maintain
the following invariant: at the end of round (j, k) of phase `, there will be ` players on vmj′,k′ for (j′, k′) ≺
(j, k), and `− 1 players on the remaining end vertices. Furthermore, each player on vmj,k uses the path Pj,k.

We now specify the subsequence for each round. Consider round (j, k) of phase `. For simplicity of
notation, we use vi to denote the vertex of V i on Pj,k. We also use P i to denote the segment of Pj,k starting
at vi and ending at the root. The round consists of m+ 1 iterations. In iteration 0 ≤ i ≤ m− 1, m2 players
arrive at vi. In iteration i = m, one player arrives at vm. Finally, the players on v0, . . . , vm−1 depart.

Using induction over the terminal arrivals, we now show that for every terminal, the best-response path
on arrival is the segment of the canonical path connecting it to the root.

Lemma 14. Consider a terminal arriving at vertex vi in iteration i of round (j, k) in phase `. The best-
response path of the terminal to the root is the segment of its canonical path P i.

Proof. We prove the invariant by induction over the sequence of terminal arrivals, ie, over (`, j, k, i). More-
over, we will only prove the that the inductive hypothesis holds for the first terminal arriving in an iteration;
every subsequent terminal will clearly choose the same path as the first terminal since they are arriving at
the same vertex. The invariant trivially holds prior to the start of round 1 of phase 1.

Now consider the start of iteration i of round (j, k) in phase ` and assume the invariant held in previous
iterations, rounds and phases. Let us count the number of terminals on each edge. So far, on each end vertex,
there are either ` or `− 1 terminals and each of them chose their canonical path on arrival, by the inductive
hypothesis. The inductive hypothesis also tells us that for each i′ < i, there are at least m2 terminals on
vi
′

using the path P i′ . Thus, each inter-layer edge belonging to P i−1 has at least m2 terminals, and each
inter-layer edge that does not belong to P i−1 has at most ` terminals. Moreover, none of the intra-cluster
edges are used by any terminal.

Note that P i consists of the inter-layer edge (vi, vi−1) followed by P i−1. Since |P i−1| ≤ m, the cost
share of the new terminal at vi (call this terminal a) on P i is at most 1/` + m/(m2 + 1) < 1/` + 1/m.
Any other path Q for a contains at least two inter-layer edges that do not belong to P i−1 and at least one
intra-cluster edge, so a’s cost share on Q is at least 2/(`+ 1) + 1/m ≥ 1/`+ 1/m. Thus, player a’s unique
best-response path is P i.
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Lemma 14 shows that the sequence of arrivals and departures described above terminates in the final
state F , which costs Ω(m) OPT by Lemma 13. This completes the proof of Theorem 1.

B Deferred Proofs

We will now present proofs that were skipped in Sections 2 and 3.

Lemma 3. In equilibrium, the routing paths of a broadcast game form a tree.

Proof. The lemma is a direct consequence of the following downward closure property that holds in an
equilibrium state. Suppose w is vertex (not necessarily a terminal) that appears on the routing paths pu and
pv of two terminals u and v respectively. Then, the segment of pu and pv between w and r must be identical.
For the sake of contradiction, suppose this claim is false, and let qu and qv denote the non-identical segments
of pu and pv between w and r. Assume wlog that the current shared cost of qu is at most that of qv. If v
now moves to a new routing path that follows pv until w and then uses qu to reach r, then the change in cost
of v will be the difference of the new shared cost of qu and the current shared cost of qv. This is clearly
non-positive by our assumption on the relative order of current shared costs of qu and qv. In fact, we argue
that this difference is negative. First, note that there is at least one edge that is in qu but not in qv since the
two paths are non-identical. Now, let (x, y) be the closest edge to u in qu that does not appear in qv, where
x is closer to u than y. Then, x must also appear on qv, and therefore, cannot appear in the segment of pv
between v and w. It follows that edge (x, y) does not appear in the segment between v and w in pv, and
hence is absent from the entire path pv. When v moves to its new path, the shared cost on (x, y) decreases
below its current value, and therefore, the shared cost of qu decreases as a whole. This implies that v has an
improving move, which contradicts the premise that the terminals are in an equilibrium state.

Lemma 6. Suppose that our charging scheme charges each cut in the family Π at most once. Then the cost
of the solution is at most O(log n)OPT.

Proof. Let D denote the largest edge length in the graph. Then, we first note that we may ignore edges
in our solution of length at most D/n. This is because there are at most n such edges, and OPT is at
least D by the metric property of edge lengths. For the remainder, we charge duals at levels j for j ∈
(log(D/n)− 3, logD− 2]. There are at most log n+ 1 such duals. The total cost of edges charged to a dual
at level-j is at most 2j+3|P | < 32 2j−1(|P | − 1). Lemma 5 then implies the result.

Claim 7. Let the routing tree T be in NON-LEAF-UNBALANCED state but not in BALANCED state. Let u, v
be a pair of vertices in T charging the same dual cut D at some level i, where at most one of u or v is a
non-leaf vertex in T . Then, at least one of u moving to v and v moving to u is an improving move.

Proof. Let pu and pv be the routing paths of u and v respectively, where u’s parent edge is (u, x) and v’s
parent edge is (v, y). Then, we have cux, cvy ∈ [2i+2, 2i+3). Moreover, since u and v belong to the same
cut at level i, cuv < 2i. Therefore,

cux, cvy > 4cuv. (1)

LetNe be the number of vertices using edge e. Since at most one of u or v is a non-leaf in T , we can assume
wlog that u is a leaf in T (otherwise, the contradiction that we derive below for edge (u, x) can be derived
instead for edge (v, y)). In other words, Nux = 1.
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For the sake of contradiction, let us assume that neither umoving to v, nor v moving to u is an improving
move. Since u moving to v is not an improving move, we have the shared cost on path pu is at most the
shared cost for u if it shifts to the path (u, v) ∪ pv. Formally, we have

cux +
∑

e∈pu\(u,x)

ce
Ne

≤ cuv +
∑

e∈pv\pu

ce
Ne + 1

+
∑

e∈pv∩pu

ce
Ne

i.e., cux +
∑

e∈(pu\(u,x))\pv

ce
Ne

+
∑

e∈pu∩pv

ce
Ne

≤ cuv +
∑

e∈pv\pu

ce
Ne + 1

+
∑

e∈pv∩pu

ce
Ne

i.e., cux +
∑

e∈(pu\(u,x))\pv

ce
Ne

≤ cuv +
∑

e∈pv\pu

ce
Ne + 1

. (2)

Similarly, since v moving to u is not an improving move, we have∑
e∈pv

ce
Ne

≤ cuv +
cux

Nux + 1
+

∑
e∈(pu\(u,x))\pv

ce
Ne + 1

+
∑

e∈pu∩pv

ce
Ne

i.e.,
∑

e∈pv\pu

ce
Ne

+
∑

e∈pv∩pu

ce
Ne

≤ cuv +
cux

Nux + 1
+

∑
e∈(pu\(u,x))\pv

ce
Ne + 1

+
∑

e∈pu∩pv

ce
Ne

i.e.,
∑

e∈pv\pu

ce
Ne

≤ cuv +
cux

Nux + 1
+

∑
e∈(pu\(u,x))\pv

ce
Ne + 1

. (3)

Adding inequalities (2) and (3), and replacing Nux = 1, we get

cux +
∑

e∈(pu\(u,x))\pv

ce
Ne

+
∑

e∈pv\pu

ce
Ne

≤ cuv +
∑

e∈pv\pu

ce
Ne + 1

+ cuv +
cux
2

+
∑

e∈(pu\(u,x))\pv

ce
Ne + 1

i.e., cux ≤ 4cuv,

which contradicts inequality (1). Thus, it must be the case that at least one of u moving to v or v moving to
u is an improving move.

We will prove Claim 8 next. Before we restate and prove that claim, we show a stability property of the
improving moves made by algorithm SELECT TREE MOVE, namely that moving a terminal u does not create
any new improving moves for it.

Claim 15. Suppose that in the current routing tree, vertex u moving to vertex v is not an improving move
for u. Then, after u moves to some other vertex x (using a tree-follow move), u moving to v is still not an
improving move.

Proof. Let pu and pv denote the paths connecting u and v respectively to r in the routing tree T after u’s
move. Let Ne and N ′e be the number of terminals, except u, that are routing through edge e before and after
u’s tree move respectively. For all edges in pu, we have N ′e ≥ Ne; for all other edges in T , N ′e ≤ Ne. Since
u moving to v was not an improving move but moving to x was, the shared cost of u if it moved to v would
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have been more than its shared cost after the tree move to pu. Hence,

cuv +
∑
e∈pv

ce
Ne + 1

>
∑
e∈pu

ce
Ne + 1

i.e., cuv +
∑

e∈pv\pu

ce
Ne + 1

+
∑

e∈pv∩pu

ce
Ne + 1

>
∑

e∈pu\pv

ce
Ne + 1

+
∑

e∈pu∩pv

ce
Ne + 1

i.e., cuv +
∑

e∈pv\pu

ce
Ne + 1

>
∑

e∈pu\pv

ce
Ne + 1

i.e., cuv +
∑

e∈pv\pu

ce
N ′e + 1

>
∑

e∈pu\pv

ce
N ′e + 1

i.e., cuv +
∑

e∈pv\pu

ce
N ′e + 1

+
∑

e∈pv∩pu

ce
N ′e + 1

>
∑

e∈pu\pv

ce
N ′e + 1

+
∑

e∈pu∩pv

ce
N ′e + 1

i.e., cuv +
∑
e∈pv

ce
N ′e + 1

>
∑
e∈pu

ce
N ′e + 1

.

Hence, u moving to v is not an improving move after u’s move to x.

Claim 8. Let T be a routing tree in a NON-LEAF-UNBALANCED but not a LEAF-UNBALANCED state,
arrived at by implementing one of the steps (2)–(4) in algorithm SELECT TREE MOVE. Let u and v be the
non-leaf vertices charging the special cut S∗. Then either u to v or v to u is an improving move.

Proof. By the definition of the NON-LEAF-UNBALANCED state, it must be the case that either u or v was
the last to start a tree-follow move. Without loss of generality, say that u was the last vertex to move. After
u’s move, let pu and pv denote the routing paths of u and v, where (u, x) and (v, y) are respectively the
parent edges of u and v. Then, we have cux, cvy ∈ [2i+2, 2i+3). Moreover, cuv < 2i since u and v both
belong to the cut S∗ at level i. Then, we have

cux, cvy > 4cuv. (4)

We first claim that prior to u’s move to x, u did not have an improving move to v. Suppose, for contradiction,
that u did have an improving move to v. Then, since (u, v) is shorter than (u, x), and u and v are non-leaves,
u’s potential move would have triggered Steps (2), (3b), or (4). In each of these cases, uwould have preferred
the move to the closer vertex v over the move to x. It follows that u to v was not an improving move before
u’s move to x. Claim 15 ensures that u moving to v is not an improving move after u’s move to x either.
We therefore have,

cux +
∑

e∈pu\(u,x)

ce
Ne
≤ cuv +

∑
e∈pv\pu

ce
Ne + 1

+
∑

e∈pv∩pu

ce
Ne

Here Ne denotes the number of terminals using edge e after u’s tree-move.

i.e., cux +
∑

e∈(pu\(u,x))\pv

ce
Ne

+
∑

e∈pv∩pu

ce
Ne
≤ cuv +

∑
e∈pv\pu

ce
Ne + 1

+
∑

e∈pv∩pu

ce
Ne

i.e., cux +
∑

e∈(pu\(u,x))\pv

ce
Ne
≤ cuv +

∑
e∈pv\pu

ce
Ne + 1

. (5)
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The rest of the proof is devoted to showing that v moving to u is an improving move. Let us assume for the
sake of contradiction that v moving to u is not an improving move either. Then, we have∑

e∈pv

ce
Ne

≤ cuv +
∑

e∈pu\pv

ce
Ne + 1

+
∑

e∈pu∩v

ce
Ne

i.e.,
∑

e∈pv\pu

ce
Ne

+
∑

e∈pv∩pu

ce
Ne

≤ cuv +
∑

e∈pu\pv

ce
Ne + 1

+
∑

e∈pu∩v

ce
Ne

i.e.,
∑

e∈pv\pu

ce
Ne

≤ cuv +
∑

e∈pu\pv

ce
Ne + 1

(6)

Adding the inequalities (5) and (6), and observing that Nux ≥ 1, we get

cux +
∑

e∈(pu\(u,x))\pv

ce
Ne

+
∑

e∈pv\pu

ce
Ne

≤ cuv +
∑

e∈pv\pu

ce
Ne + 1

+ cuv +
∑

e∈pu\pv

ce
Ne + 1

i.e., cux +
∑

e∈(pu\(u,x))\pv

ce
Ne

+
∑

e∈pv\pu

ce
Ne

≤ 2cuv +
∑

e∈pv\pu

ce
Ne + 1

+
cux

Nux + 1
+

∑
e∈(pu\pv)\(u,x)

ce
Ne + 1

i.e., cux ≤ 2cuv +
cux
2

i.e., cux ≤ 4cuv,

which contradicts inequality (4). Thus, it must be the case that v moving to u is an improving move.

Lemma 9. Suppose a set of new terminals Ut arrive in epoch t when the routing paths of the existing
terminals are in an equilibrium state. Then, for each new terminal u ∈ Ut, the chosen routing path pu
comprises a single edge (u, v) connecting u to an existing vertex v in the current routing tree T , and then
following the unique path in T from v to r.

Proof. The lemma has two parts:

• pu has a single edge (u, v) connecting u to v, and

• the path pu does not deviate from T between v and r.

The first statement is a direct consequence of our tie-breaking rule for best response paths: u is the only
terminal using the portion of pu from u to T ; if this segment consists of a multi-hop path from u to some
vertex v ∈ T , short-cutting this segment and using the direct (u, v) edge instead is potentially cheaper and
has fewer edges with only u using them.

For the sake of contradiction, suppose the second statement is false. Then we claim that the vertex v
has an improving move. This contradicts the fact that the routing paths are in equilibrium when terminal u
arrives. To prove the claim, suppose first that v is a terminal. Let pv denote the path along T from v to the
root, and let qv denote the segment of pu from v to the root. Let Ev be the set of edges in pv \ qv, and Eu

the set of edges in qv \ pv. Let Ne denote the number of terminals using edge e prior to any arrivals in this
epoch. Since u follows its best response path, we have that∑

e∈Eu

ce
Ne + 1

≤
∑
e∈Ev

ce
Ne + 1

.
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The cost share of v over edges in Ev is
∑

e∈Ev

ce
Ne

, whereas over edges in Eu if v were to switch to taking
the path qv would be

∑
e∈Eu

ce
Ne+1 . From the above inequality, it follows that∑

e∈Eu

ce
Ne + 1

<
∑
e∈Ev

ce
Ne

,

which implies that v’s cost share would improve strictly by switching from pv to qv. When v is not a
terminal, but is on the current path of some other terminal w, an identical argument shows that w (and
therefore v) has an improving move.

Lemma 10. After the arrival or departure of a set of terminals in an BALANCED-EQUILIBRIUM state, the
routing tree T remains in a LEAF-UNBALANCED state.

Proof. For an arrival event, this is a direct consequence of Lemma 9. Since every new terminal is a leaf,
there is at most one non-leaf vertex charging every cut. After a set of terminal departures, the routing tree
clearly remains in a BALANCED state since charges to dual cuts can only decrease.

Lemma 11. If the routing tree is not in equilibrium, then at least one improving tree-follow move exists.

Proof. Let the current routing path of every terminal x be denoted px and the union of these paths be tree
T . For notational convenience, we also denote the path in the routing tree from a non-terminal vertex x to
r by px. We first identify a vertex w which has an improving path qw that contains exactly one arc not in
T . Since T is not an equilibrium, there exists a terminal x whose best response path p∗x differs from px. Let
(u, v) be the edge that is closest to r on p∗x and is not in T , with v closer to r than u. Let w be any terminal
in the subtree of T rooted at u. We claim the path qw formed by taking the subpath in T from w to u and
then the subpath of p∗x from u to r is an improving path for w. Indeed, if its shared cost is at least the shared
cost of pw, we can find a path for x whose shared cost is at most the shared cost of p∗x. Consider the path qx
for x formed by taking the subpath p∗x from x to u and then taking the subpath from u to r. The difference
in shared cost for x between qx and p∗x equals the difference in shared cost for w in pw and qw. Due to our
tie-breaking rule, the best response path p∗x must be strictly better than qx since qx has fewer new edges.
Thus qw must be strictly better than pw as desired.

Now let T ′ = T \ (u, parent(u)) ∪ (u, v) where parent(u) is the parent of u in T . We now give a series
of improving moves which give us the routing tree T ′. Order the terminals in subtree of T rooted at u. For
each such terminal w change its path from pw to qw as defined above. It is clear that the union of all routing
paths is exactly T ′. It remains to show that they are all improving paths for their respective terminals. From
the above argument, for the first terminal w1, qw1 is clearly an improving path over pw1 in T . For any
latter terminal w in the sequence, the shared cost of qw has only reduced as compared to its shared cost in
the solution T since more terminals are using the edges on the subpath from u to x. Moreover, the shared
cost of pw has only increased as compared to its shared in T as fewer terminals are using the subpath of w
from u to r. The subpath from w to u remains identical and same number of terminals keep using it and
therefore, qw remains an improving path in the intermediate solution as well for each of the terminals in the
sequence.

C Constructing the Dual in an Online Fashion

The classification of tree routings described in Section 2.1 as well as the description of algorithm SELECT

TREE MOVE relies on the knowledge of the dual family Π defined in Section 2.1 to which we charge the
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Figure 2: Bad Examples for Price of Anarchy and comparison with Minimum Steiner Tree

cost of our solution. If the underlying graph G is known in advance, there are standard techniques for
constructing a family of duals with the desired properties. In our setting, the underlying graph may not be
known in advance, and may instead be revealed over time as terminals arrive. We now describe a simple
greedy procedure for constructing the dual family in an online fashion.

Recall that the graph G is complete and edge lengths form a metric, i.e. they satisfy the triangle inequal-
ity. We use c(u, v) to denote the length of the edge between vertices u and v. The graph is revealed vertex
by vertex, and every time a vertex is added, all edges between that vertex and previously added vertices are
revealed. The level j dual for any integer j is constructed as follows. At any point of time, we have some
number of components S1, · · · , Sm in the dual, with centers s1, · · · , sm, respectively. At the beginning
when the graph contains a single vertex, we have a single component with that vertex as its center. When
the next vertex, say v, arrives, if there exists a center si with c(si, v) < 2j−1, we add v to the ith component
Si. Otherwise, we create a new component Sm+1 with center sm+1 = v. By construction, it holds that
every vertex in component Si is at a distance less than 2j−1 from its center si, and therefore, the diameter of
the component is less than 2j . Also, by construction, the distance between any two centers is at least 2j−1.
Therefore, the constructed dual satisfies the properties listed in Section 2.1.

D Bad Examples

In Figure 2(a) we give an instance from [1] where the price of anarchy is arbitrary large. In the above
example, there are n+ 1 agents at u. If the solution picks the edge of weight n instead of the edge of weight
1, a simple check shows that it is still in equilibrium. Since the optimal solution picks the edge of weight 1
instead of weight n, the price of anarchy is n.

In Figure 2(b), we give an instance where the natural dynamics leads to solution that is much more
expensive than the minimum Steiner tree. Consider the following sequence of arrivals where each agent
picks the best response path on arrival. First n agents arrive on vn−1, then n agents arrive on vn−2, and
so on. Finally n agents arrive on u. Observe that in each phase of n arrivals, the best response dynamics
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introduces the edge (vi, vi+1) and thus the solution at the end is the long path from u to r. Now, all the
agents, except the n agents at u, depart. Observe that the solution is still in equilibrium since it is identical
to the price of anarchy solution in Figure 2. But the weight of minimum Steiner tree is 1 for the agents which
survive. This shows that the dynamics can lead to a much costlier solution as compared to the minimum
Steiner tree. A more apt comparison is to the cost of the minimum spanning tree over all of the arriving
clients. In this case, the minimum spanning tree costs n which is exactly our solution.
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E Illustration of a Tree-Follow Move
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(b) Solution B

Figure 3: Tree Move from u to v changes the solution from A to B.
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(c) Solution Int2
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Figure 4: Implementing the tree-follow move by individual moves. In Solution A, the current paths for u
and its children w1 and w2 are shown. In Solution Int1, u changes its path and introduces a new edge (u, v).
Vertices w1 and w2 follow u’s path in Solution Int2 and D, respectively.
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