Skip to main content

Robustly Assigning Unstable Items

  • Conference paper
  • First Online:
  • 674 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

We study the Robust Assignment Problem where the goal is to assign items of various types to containers without exceeding container capacity. We seek an assignment that uses the fewest number of containers and is robust, that is, if any item of type \(t_i\) becomes corrupt causing the containers with type \(t_i\) to become unstable, every other item type \(t_j \ne t_i\) is still assigned to a stable container. We begin by presenting an optimal polynomial-time algorithm that finds a robust assignment using the minimum number of containers for the case when the containers have infinite capacity. Then we consider the case where all containers have some fixed capacity and give an optimal polynomial-time algorithm for the special case where each type of item has the same size. When the sizes of the item types are nonuniform, we provide a polynomial-time 2-approximation for the problem. We also prove that the approximation ratio of our algorithm is no lower than 1.813. We conclude with an experimental evaluation of our algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that \(S_i \subseteq S_j\) is the general condition for nonuniform k; for uniform k the condition is \(S_i=S_j\).

References

  1. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: Symposium on Discrete Algorithms (SODA) (2000)

    Google Scholar 

  2. Epstein, L., Levin, A.: On bin packing with conflicts. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 160–173. Springer, Heidelberg (2007). https://doi.org/10.1007/11970125_13

    Chapter  Google Scholar 

  3. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: Proceedings of the Symposium on Discrete Algorithms (2006)

    Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  5. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb. Optim. 3(4), 363–377 (1999)

    Article  MathSciNet  Google Scholar 

  6. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. Inf. Comput. 132(2), 85–108 (1997)

    Article  MathSciNet  Google Scholar 

  7. Korupolu, M., Rajaraman, R.: Robust and probabilistic failure-aware placement. In: Proceedings of the Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 213–224 (2016)

    Google Scholar 

  8. Korupolu, M., Meyerson, A., Rajaraman, R., Tagiku, B.: Robust and probabilistic failure-aware placement. Math. Program. 154(1–2), 493–514 (2015)

    Article  MathSciNet  Google Scholar 

  9. Mills, K., Chandrasekaran, R., Mittal, N.: Algorithms for optimal replica placement under correlated failure in hierarchical failure domains. Theor. Comput. Sci. (2017, pre-print)

    Google Scholar 

  10. Rahman, R., Barker, K., Alhajj, R.: Replica placement strategies in data grid. J. Grid Comput. 6(1), 103–123 (2008)

    Article  Google Scholar 

  11. Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assignment problem. Math. Program. 62(3), 461–474 (1993)

    Article  MathSciNet  Google Scholar 

  12. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift 27(1), 544–548 (1928)

    Article  MathSciNet  Google Scholar 

  13. Stein, C., Zhong, M.: Scheduling when you don’t know the number of machines. In: Proceedings of the Symposium on Discrete Algorithms (SODA) (2018)

    Chapter  Google Scholar 

  14. Stirling, J.: Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium, London (1730)

    Google Scholar 

  15. Urgaonkar, B., Rosenberg, A., Shenoy, P.: Application placement on a cluster of servers. Int. J. Found. Comput. Sci. 18(5), 1023–1041 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ananya Christman or Christine Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Christman, A., Chung, C., Jaczko, N., Westvold, S., Yuen, D.S. (2018). Robustly Assigning Unstable Items. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics