Skip to main content

Hardness Results and Approximation Schemes for Discrete Packing and Domination Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

The and problems are well-known problems in computer science. In this paper, we consider versions of both of these problems - and . For both problems, the input is a set of geometric objects \(\mathcal {O}\) and a set of points \(\mathcal {P}\) in the plane. In the MDIS problem, the objective is to find a maximum size subset \(\mathcal {O}^\prime \subseteq \mathcal {O}\) of objects such that no two objects in \(\mathcal {O}^\prime \) have a point in common from \(\mathcal {P}\). On the other hand, in the MDDS problem, the objective is to find a minimum size subset \(\mathcal {O}^\prime \subseteq \mathcal {O}\) such that for every object \(O \in \mathcal {O} \setminus \mathcal {O}^\prime \) there exists at least one object \(O^\prime \in \mathcal {O}^\prime \) such that \(O\,\cap \,O^\prime \) contains a point from \(\mathcal {P}\).

In this paper, we present \(\mathsf {PTAS}\)es based on technique for both MDIS and MDDS problems, where the objects are arbitrary radii disks and arbitrary side length axis-parallel squares. Further, we show that the MDDS problem is \(\mathsf {APX}\)-hard for axis-parallel rectangles, ellipses, axis-parallel strips, downward shadows of line segments, etc. in \(\mathbb {R}^2\) and for cubes and spheres in \(\mathbb {R}^3\). Finally, we prove that both MDIS and MDDS problems are \(\mathsf {NP}\)-hard for unit disks intersecting a horizontal line and for axis-parallel unit squares intersecting a straight line with slope \(-1\).

S. Pandit—The author is partially supported by the Indo-US Science & Technology Forum (IUSSTF) under the SERB Indo-US Postdoctoral Fellowship scheme with grant number 2017/94, Department of Science and Technology, Government of India.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A set of axis-parallel rectangles is said to be diagonal-anchored, if given a diagonal with slope \(-1\) then either the lower-left or the upper-right corner of each rectangle is on the diagonal.

References

  1. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of polygons with polylogarithmically many vertices. In: Symposium on Discrete Algorithms SODA, pp. 645–656 (2014)

    Google Scholar 

  2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1), 123–134 (2000)

    Article  MathSciNet  Google Scholar 

  3. Aschner, R., Katz, M.J., Morgenstern, G., Yuditsky, Y.: Approximation schemes for covering and packing. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 89–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36065-7_10

    Chapter  MATH  Google Scholar 

  4. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  5. Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating dominating set on intersection graphs of rectangles and L-frames. In: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Liverpool, UK, 27–31 August 2018, pp. 37:1–37:15 (2018)

    Google Scholar 

  6. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom. 47(2), 112–124 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discret. Comput. Geom. 48(2), 373–392 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chuzhoy, J., Ene, A.: On approximating maximum independent set of rectangles. In: Symposium on Foundations of Computer Science, FOCS, pp. 820–829 (2016)

    Google Scholar 

  9. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1), 165–177 (1990)

    Article  MathSciNet  Google Scholar 

  10. Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–446 (2015)

    Article  MathSciNet  Google Scholar 

  11. Erlebach, T., van Leeuwen, E.J.: Domination in geometric intersection graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 747–758. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_64

    Chapter  Google Scholar 

  12. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  13. Fraser, R., Lòpez-Ortiz, A.: The within-strip discrete unit disk cover problem. Theor. Comput. Sci. 674, 99–115 (2017)

    Article  MathSciNet  Google Scholar 

  14. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)

    Article  MathSciNet  Google Scholar 

  15. Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  16. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the \(\log n\) barrier. In: Algorithms - ESA 2010, pp. 243–254 (2010)

    Chapter  Google Scholar 

  17. Har-Peled, S.: Being fat and friendly is not enough. CoRR abs/0908.2369 (2009)

    Google Scholar 

  18. Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms 26(2), 238–274 (1998)

    Article  MathSciNet  Google Scholar 

  19. Madireddy, R.R., Mudgal, A.: Stabbing line segments with disks and related problems. In: Canadian Conference on Computational Geometry, CCCG, pp. 201–207 (2016)

    Google Scholar 

  20. Madireddy, R.R., Mudgal, A.: Approximability and hardness of geometric hitting set with axis-parallel rectangles. Inf. Process. Lett. 141, 9–15 (2019)

    Article  MathSciNet  Google Scholar 

  21. Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7_16

    Chapter  MATH  Google Scholar 

  22. Mudgal, A., Pandit, S.: Covering, hitting, piercing and packing rectangles intersecting an inclined line. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 126–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_10

    Chapter  MATH  Google Scholar 

  23. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret. Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  24. Nandy, S.C., Pandit, S., Roy, S.: Faster approximation for maximum independent set on unit disk graph. Inf. Process. Lett. 127, 58–61 (2017)

    Article  MathSciNet  Google Scholar 

  25. Pandit, S.: Dominating set of rectangles intersecting a straight line. In: Canadian Conference on Computational Geometry CCCG, pp. 144–149 (2017)

    Google Scholar 

  26. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  27. Wan, P., Xu, X., Wang, Z.: Wireless coverage with disparate ranges. In: Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, p. 11 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raghunath Reddy Madireddy or Supantha Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madireddy, R.R., Mudgal, A., Pandit, S. (2018). Hardness Results and Approximation Schemes for Discrete Packing and Domination Problems. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics