
ar
X

iv
:1

80
9.

09
77

6v
1

 [
cs

.D
S]

 2
6

Se
p

20
18

An Algorithm for Reducing Approximate

Nearest Neighbor to Approximate Near
Neighbor with O(log n) Query Time

Hengzhao Ma† and Jianzhong Li‡

Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
† hzma@stu.hit.edu.cn

‡ lijzh@hit.edu.cn

Abstract. This paper proposes a new algorithm for reducing Approxi-
mate Nearest Neighbor problem to Approximate Near Neighbor problem.
The advantage of this algorithm is that it achieves O(log n) query time.
As a reduction problem, the query time complexity is the times of invok-
ing the algorithm for Approximate Near Neighbor problem. All former
algorithms for the same reduction need polylog(n) query time. A box
split method proposed by Vaidya is used in our paper to achieve the
O(log n) query time complexity.

Keywords: Computation Geometry · Approximate Nearest Neighbor ·

Reduction

1 Introduction

The approximate nearest neighbor problem, ǫ-NN for short, can be defined as fol-
lows: given a set P of points in a metric space S equipped with a distance function
D, and a query point q ∈ S, find a point p ∈ P such thatD(p, q) ≤ (1+ǫ)D(p∗, q),
where p∗ has the minimal distance to q in P . ǫ-NN is one of the most impor-
tant proximity problems in computation geometry. Many proximity problems in
computation geometry can be reduced to ǫ-NN [12], such as approximate diam-
eter, approximate furthest neighbor, and so on. ǫ-NN is also important in many
other areas, such as databases, data mining, information retrieval and machine
learning.

Due to its importance, ǫ-NN has been the subject of substantial research
efforts. Many algorithms for solving ǫ-NN have been discovered. These works
can be summarized into four classes.

The first class of the algorithms tries to build data structures that sup-
port solving ǫ-NN efficiently. Arya et. [5] give a such algorithm with query time
1/ǫO(d) · log n, space 1/ǫO(d) ·n and preprocessing time 1/ǫO(d) ·n logn. Another
work [6] gives an algorithm requiring O(dn) space and O(dn log n) preprocessing
time but query time as high as (d/ǫ)O(d) · logn. Kleinberg proposes two algo-
rithms in [16]. The first algorithm is deterministic and achieves query time of
O(d log2 d(d + logn)), using a data structure that requires O((n log d)2d) space

http://arxiv.org/abs/1809.09776v1

andO((n log d)2d) preprocessing time. The second algorithm is a randomized ver-
sion of the first one. By a preprocessing procedure that takesO(d2 log2 d·n log2 n)
time, it reduces the storage requirement to O(dn · log3 n), but raises the query
time up to O(n+ d log3 n).

The second class of the algorithms considers the situation of ǫ = dO(1). One
such algorithm is given in [7]. It can answer O(

√
d)-NN in O(2d logn) time with

O(d8dn logn) preprocessing time and O(d2dn) space. Chan [9] improves this
result by giving an algorithm that can answer O(d3/2)-NN in O(d2 logn) query
time with O(d2n logn) preprocessing time and O(dn log n) space.

The third interesting class of work tries to solve ǫ-NN by inspecting some
intrinsic dimension of the input point set P . An exemplar work is in [17]. The
paper gives an algorithm whose query time is bounded by 2O(dim(P)) log∆ +
(1/ǫ)O(dim(P)), where dim(P) is the intrinsic dimension of the input point set
P , and ∆ is the diameter of P .

Besides these algorithms mentioned above, Indyk et. [15] initiate the work
on the fourth class of algorithms. The key idea is to define an Approximate Near
Neighbor problem, denoted as (c, r)-NN, and reduce ǫ-NN to it. The (c, r)-NN
problem can be viewed as a decisive version of ǫ-NN. The formal definition of
(c, r)-NN is give in Definition 2 in the next section.

To use this method to solve ǫ-NN, two parts of problem must be considered.
One is how to solve (c, r)-NN, and the other is how to reduce ǫ-NN to (c, r)-NN.
Some works about the two parts of problem are discussed below. Our study
focuses on the latter part.

Algorithms to solve (c, r)-NN The existing algorithms for (c, r)-NN mainly
consider the specific situation of d-dimensional Euclidean space with 1-order and
2-order Minkowski distance metrics. Each input point x is given in the form of
(x1, · · · , xd). And q-order Minkowski Lq distance between points x and y is given

by D(x, y) =

(

d
∑

i=1

|xi − yi|q
)

1

q

. The 1-order and 2-order Minkowski distance are

well-known Manhattan distance and Euclidean distance, respectively. Another
simpler situation, which is the (c, r)-NN problem under Hamming cube {0, 1}d
equipped with Hamming distance, is usually considered in theoretical studies.

Table 1 summarizes the complexities of the existing algorithms for (c, r)-
NN under Euclidean space and L1 distance. These papers also give solutions
under L2 distance, but we omit these results due to space limitation. Usually
the complexities under L2 distance is higher than that under L1 distance. It is a
key characteristic of the existing algorithms for (c, r)-NN that they usually have
different complexities for problems under different order of Minkowski distance
metrics.

The listed solutions in Table 1 can be divided into three groups. The first
group includes the one given in [15], which is deterministic, and the other groups
are randomized. The advantage of randomization is that the exponential com-
plexity about d is freed. The second group includes the one given in [18], which
is based on a random projection method proposed in [16]. One distinguished

Table 1. Solutions to (c, r)-NN under Euclidean space and L1 distance.

Source
Data structure building Query

Space
Update
time

Time
Failure

probability
Time

Failure
probability

[15]
(ǫ = c− 1)

O(n · 1
ǫd
) 0 O(1) 0 O(n · 1

ǫd
) O(1

ǫd
)

[18]
(ǫ = c− 1)

O
(

nd3

ǫ2 (n log d)O(1

ǫ2
)
)

O(1) O
(

d
ǫ2 polylog(dn) · log 1

f

)

f O
(

d3

ǫ2 (n log d)O(1

ǫ2
)
)

O(nO(1

ǫ2
))

[19] O(n(c
c−1

)2 logn) 0 O(dno(1)) O(1) O(n(c
c−1

)2) O(n(c
c−1

)2)

[10,3,4] O(dn1+ 1

2c−1 logn) 0 O(dn
1

2c−1) O(1) O(dn + n1+ 1

2c−1) O(dn
1

2c−1
+o(1))

[1] O(dn1+o(1) logn) 0 O(n
2c−1

c2) O(1) O(dn1+o(1)) O(dno(1))

characteristic of the method is that the data structure building stage is also
randomized. The last group includes a long line of research work based on Lo-
cality Sensitive Hashing (LSH), which is first proposed in [15]. These works are
summarized into three terms in Table 1, which can be viewed as the space-time
trade-off under LSH framework.

Finally, comparing the five results in Table 1, it can be seen that the query
time grows and the space requirement drops from the first one to the last. The
five results form a general space-time trade-off about the solution to (c, r)-NN.

Reducing ǫ-NN to (c, r)-NN So far there are three different algorithms for
such a reduction. Two of the three algorithms are deterministic [15,13], and the
other one is randomized [14]. The complexities of the three reduction algorithms
are summarized in Table 2. Note that query time in Table 2 is the number of
invocations of (c, r)-NN algorithm. And the preprocessing time about [15] is not
given because there is no such analysis in that paper.

Table 2. Comparison of three reductions.

Source
Approximation

factor
Preprocessing Query

Space
Time

Failure
probability

Time
(# of (c, r)-NN invoked)

Failure
probability

[14]
c(1 + γ)2

(γ ∈ (1n ,
1
2))

(c = 1 + ǫ)
O
(

T (n,c,f)
γ log2 n

+ n logn[Q(n, c, f) +D(n, c, f)]
)

f logn O(logO(1) n) f logn O(S(n,c,f)
γ log2 n

)

[15] 1 + ǫ - - O(log2 n) 0 O(n · polylog(n))
[13] 1 + ǫ O(d · n logn

ǫ log n
ǫ) 0 O(log n

ǫ) 0 O(d · n logn
ǫ log n

ǫ)

Among the three reduction algorithms, the one proposed in [14] need to be
explained in detail. First, the algorithm outputs a point p′ such that D(q, p′) ≤
c(1 + γ)2D(q, p∗), where c = 1 + ǫ and p∗ is the exact NN of q. Second, the
T (n, c, f), Q(n, c, f), D(n, c, f) and S(n, c, f) functions represent the complex-
ity functions of the data structure building time, query time, update time and
storage usage for (c, r)-NN, respectively. Third, the parameter f is the failure
probability of one (c, r)-NN invocation, and is selected so that f log n is a con-
stant less that 1.

The fourth and the most important point about [14] is the O(logO(1) n) query
time. The algorithm given in [14] explicitly invokes O(log n) times of (c, r)-NN,
and each invocation needs T (n, c, f) time. As explained above, the parameter f ,
which is the failure probability of one (c, r)-NN invocation, is set to O(1

logn). Note

that the algorithms for (c, r)-NN given in Table 1 all have constant failure prob-
ability1. In order to satisfy the requirement of O(1

logn) failure probability of one

(c, r)-NN invocation, each time the algorithm in [14] invokes (c, r)-NN, the algo-
rithms for (c, r)-NN with constant failure probability must be executed multiple

times, which is O(logO(1) n) times in expectation. Multiplying O(log n) invoca-

tions of (c, r)-NN and O(logO(1) n) executions of (c, r)-NN algorithm for each

invocation, we obtain that the algorithm in [14] actually invokes O(logO(1) n)
times of (c, r)-NN algorithm. This observation is confirmed in [2].

Our method We propose a new algorithm in this paper for reducing ǫ-NN to
(c, r)-NN. Comparing with the former works [14,15,13], our algorithm has the
following characteristics:

(1) It achieves O(log n) query time, counted in the number of invocations of
(c, r)-NN algorithm. It is superior to all the other three works. This is the most
distinguished contribution of this paper.

(2) Its preprocessing time is O((dǫ)
d · n logn), and the space complexity is

O((dǫ)
d · n). Our method has better complexity than the other three works in

terms of n, so that it is much suitable to big data with low or fixed dimensionality.
This situation is plausible in many applications like road-networks and so on.

(3) In terms of the parameterized complexity treating d as a constant, our
result is the closest to the well recognized optimal complexity claimed in [6],
which requires O(n logn) preprocessing time, O(n) space and O(log n) query
time.

Note that there is an O((d/ǫ)d) factor in our preprocessing and space com-
plexity. This factor originates from a lemma we used in [20]. We point out that
the upper bound O((d/ǫ)d) is actually very loose. There really is possibility to
reduce the upper bound, and thus make our result more close to optimal. In
this sense, our work is more promising than all the other three works. However,
reducing the upper bound O((d/ǫ)d) is out of this paper’s scope, and is left as
our future work.

2 Problem Definitions and Mathematical Preparations

2.1 Problem definitions

We focus on ǫ-NN in euclidean space Rd. The input is a set P of n points
extracted from Rd and a distance metric Lq. Each point x is given as the form

1 The deterministic one has exponential dependence on d, so it it rarely used in theory
and practice.

(x1, · · · , xd). Lq distance metric between points x and y is given by D(x, y) =
(

d
∑

i=1

|xi − yi|q
)

1

q

.

Denote B(p, r) to be the d-dimensional ball centered at p and with radius r.
And let p′ ∈ B(p, r) be equivalent to D(p′, p) ≤ r. We first give the definitions
of ǫ-NN and (c, r)-NN problems.

Definition 1 (ǫ-NN). Given a set P of points extracted from Rd, a query point
q ∈ Rd, and an approximation factor ǫ, find a point p′ ⊆ P such that D(p′, q) ≤
(1 + ǫ)D(p∗, q) where D(p∗, q) = min

p∈P
{D(p, q)}.

Remark 1. p∗ is called the nearest neighbor (NN), or exact NN to q, and p′ is
called an ǫ-NN to q.

Definition 2 ((c, r)-NN). Given a set P of points extracted from Rd, a query
point q ∈ Rd, a query range r, and an approximation factor c > 1, (c, r)-NN
problem is to design an algorithm satisfying these:

1. if there is a point p0 ∈ P satisfying p0 ∈ B(q, r), then return a point p′ ∈ P
such that p′ ∈ B(q, c · r);

2. if D(p, q) > c · r for ∀p ∈ P , then return No.

Remark 2. There are multiple names referring to the same problem defined
above. In the papers related to LSH, it is referred as (c, r)-NN. In [15], it is
called approximate Point Location in Equal Balls, which is denoted as ǫ-PLEB
where ǫ = c − 1. In more recent papers like [13], it is called Approximate Near
Neighbor problem.

Next we give the definition of the reduction problem to be solved in this
paper, i.e., the problem of reducing ǫ-NN to (c, r)-NN.

Definition 3 (Reduction Problem). Given a set P of points extracted from
Rd, a query point q ∈ Rd, an approximation factor ǫ, and an algorithm A for
(c, r)-NN, the reduction problem is to find an ǫ-NN to q by invoking the algorithm
A as an oracle.

Remark 3. To solve the reduction problem, a preprocessing phase is usually
needed, which is to devise a data structure D based on P . Thus the problem of
reducing ǫ-NN to (c, r)-NN is divided into two phases. The first is data structure
building phase, or preprocessing phase. The second is ǫ-NN searching phase, or
query phase. The (c, r)-NN algorithm A is invoked in query phase as an oracle,
which characterizes the algorithm as a Turing reduction from ǫ-NN to (c, r)-NN.

The time complexity of the algorithm for the reduction problem consists of
two parts, namely, preprocessing time complexity and query time complexity. An
important note is that the query time complexity is the number of invocations of
(c, r)-NN algorithm A. This is the well recognized method for analyze the time
complexity of a Turing reduction.

2.2 Mathematical Preparations

In this section we introduce some denotations and lemmas to support the idea
of our algorithm for reducing ǫ-NN to (c, r)-NN.

Denotations Define a box b in Rd to be the product of d intervals, i.e., I1 ×
I2 × · · · × Id where Ii is either open, closed or semi-closed interval, 1 ≤ i ≤ m.
A box is cubical iff all the d intervals defining the box are of the same length.
The side length a cubical box, which is the length of any interval defining the
cubical box, is denoted as len(b). A minimal cubical box (MCB) for a point set
P , denoted as MCB(P), is the cubical box containing all the points in P and
has the minimal side length. Note that MCB(P) may not be unique.

Given a point set P and a box b, let p ∈ b denote that a point p ∈ P falls
inside box b, and let |b ∩ P | denote the number of points in P that falls inside
b. We will use |b| for short, if not causing ambiguity.

Given a collection of MCBs B = {b1, · · · , bm}, define Dmax(b), Dmin(b, b
′),

Dmax(b, b
′) as follows:

Dmax(b) = max
p1,p2∈b

D(p1, p2), ∀b ∈ B

Dmin(b = b′) = min
p∈b,p′∈b′

{D(p, p′)}, Dmax(b, b
′) = max

p∈b,p′∈b′

{D(p, p′)}, ∀b, b′ ∈ B

With the above denotations, define Est(b) as follows:

Est(b) =

{

Dmax(b), if |b ∩ P | ≥ 2

min
b′∈Nbr(b)

{Dmax(b, b
′)}, otherwise (1)

where Nbr(b) = {b′ | Dmin(b, b
′) ≤ r}, and the parameter r should satisfy r ≥

Est(b).2

For an MCB b, we associate a ball with it. Pick an arbitrary point cb ∈ b,
and let rb = Est(b), then we have a ball B(cb, rb). It is easily verified that every
point in b is within a distance of Est(b) from cb, in another way to say, the ball
B(cb, rb) encloses every point in b. We call B(cb, rb) the enclosing ball for box
b.

Next we start to introduce the lemmas while discussing different situations of
ǫ-NN search. In the following discussion, we will assume that we have an MCB b

of the input point set P , an enclosing ball B(cb, rb) of the MCB b, and a query
point q.

Situation 1 The first and an easy situation is that, if q is far enough from cb
then every point in b is an ǫ-NN to q. The following value T1(b) explains the
threshold for far enough, and Lemma 1 depicts the situation discussed above.

2 It can be verified that, as long as r ≥ Est(b) is satisfied, the value of r doesn’t
influence the value of Est(b). The specific value of r will be shown latter.

Definition 4. For an MCB of a point set P , define T1(b) = (1 + 2/ǫ)rb.

Lemma 1. If D(q, cb) ≥ T1(b), then every point in b is an ǫ-NN to q.

Proof. If |b| = 1 then the lemma is trivial. Assume |b| ≥ 2. Starting from the
given condition, we first prove (1 + ǫ)(D(q, cb)− rb) ≥ D(q, cb) + rb as follows:

D(q, cb) ≥ (1 + 2/ǫ)rb ⇒
ǫ ·D(q, cb) ≥ (ǫ+ 2)rb ⇒

(1 + ǫ)D(q, cb) ≥ D(q, cb) + (ǫ + 2)rb ⇒
(1 + ǫ)(D(q, cb)− rb) ≥ D(q, cb) + rb.

Let the minimal distance from the query point q to a point in b be D(q, b).
Clearly, we have D(q, b) ≥ D(q, cb)−rb. Then we have D(q, p) ≤ D(q, cb)+rb ≤
(1+ ǫ)(D(q, cb)− rb) ≤ (1+ ǫ)D(q, b) for ∀p ∈ b. This indicates that every point
p ∈ b is ǫ-NN to q. ⊓⊔

Situation 2 If q is not as far from cb as a distance of T1(b), i.e.,D(q, cb) < T1(b),
then we split b into a set of sub-boxes {b1, · · · , bm}, and calculate the enclosing
balls B(cbi

, rbi
) for each box bi, 1 ≤ i ≤ m. The next situation is that if q is still

far enough from each point in {cb1
, · · · , cbm

}, i.e., the centers of the enclosing
balls, then we can still tell that every point in b is an ǫ-NN to q. We give another
threshold T2(b) based on this idea, and formalize the idea into Lemma 2.This
lemma also discusses the quantitative relationship between T2(b) and T1(b).

Definition 5. For an MCB of a point set P , split b into a set of sub-boxes
{b1, · · · , bm}. Each of these sub-boxes is an MCB of a point set P ′ ⊂ P . Then
let B(cbi

, rbi
) be the enclosing ball of sub-box bi, 1 ≤ i ≤ m. Define rmaxb =

max
i
{rbi
}. In case of |b| = 1, let rmaxb = 0.

Definition 6. Define T2(b) = rb + (1 + 2/ǫ)rmaxb.

Lemma 2. We have the following statements:

1. if D(q, cb) ≥ T2(b), then every point in b is ǫ-NN to q;
2. if rmaxb < 2

2+ǫrb, then T2(b) < T1(b).

Proof. For the first statement, if |b| = 1 then it is trivial. Assume |b| ≥ 2. Since
the center of the enclosing ball of the box b is chosen as any point in b, it is easy to
see that cbi

∈ b for each sub-box bi. This in turn indicates that D(cbi
, cb) ≤ rb.

Thus, ifD(q, cb) ≥ T2(b), we haveD(q, cbi
) ≥ D(q, cb)−D(cb, cbi

) ≥ T2(b)−rb =
(1 + 2/ǫ)rmaxb ≥ (1 + 2/ǫ)rbi

= T1(bi). According to Lemma 1 we know that
every point in bi is ǫ-NN to q. Since the subscript i is arbitrary in [1,m], we
conclude that every point in b is ǫ-NN to q.

The second statement can be easily verified, and the proof is omitted here.
⊓⊔

Situation 3 If q is still not as far from cb as a distance of T2(b), it is time to ask
the algorithm of (c, r)-NN for help. Let A(Q, q, c, r) be any algorithm for solving
(c, r)-NN, where Q is the input point set, q is the query point, r is the query
range, and c is the approximation factor. The meanings of these four parameters
are already given in Definition 2. The goal of invoking A is that, if A answers
No then still every point in b is an ǫ-NN to q. The following lemma shows how
to set the four input parameters to fulfill the goal.

Lemma 3. Let A(Q, q, c, r) be any algorithm for (c, r)-NN. We have the follow-
ing statements:

1. if we set Q = {cb1
, · · · cbm

}, q = q, r = max
i
{T2(bi)}, and let c satisfy

c · r = max
i
{T1(bi)}, and invoke A(Q, q, c, r), then if A returns No, we can

pick any point in b as the answer of ǫ-NN to q;
2. if rmaxbi

< 2
2+ǫrbi

holds for each bi, 1 ≤ i ≤ m, then our settings for c and
r satisfy the requirement of (c, r)-NN problem definition. i.e. c > 1.

Proof. For the first statement, according to Definition 2 of (c, r)-NN problem, if
there exists a point in {cb1

, · · · , cbm
} lying inside B(q, r) where r = max

i
{T2(bi)},

then A will return some point cbj
such that cbj

∈ B(q, cr) where c · r =
max

i
{T1(bi)}. If all points in {cb1

, · · · , cbm
} are outside B(q, cr), then A will re-

turn No. If the minimal distance from q to {cb1
, · · · , cbm

} falls in the undefined
range [r, cr], A will return either No or a point cbj

such that r ≤ D(q, cbj
) ≤ cr.

On the other hand, according to Lemma 1 and 2, if all the points in {cb1
, · · · , cbm

}
satisfy D(q, cbi

) ≥ r = max
i
{T2(bi)} ≥ T2(bi), then all points in all bi are ǫ-NN

to q, 1 ≤ i ≤ m, and these are already all points in b.
Combining the two parts of analysis, we can conclude that if A returns No,

it must be the situation that the minimal distance from q to {cb1
, · · · , cbm

} is
not less than r = max

i
{T2(bi)}. Equivalently, D(q, cbi

) ≥ max
i
{T2(bi)} ≥ T2(bi)

holds for each box bi, 1 ≤ i ≤ m. Then according to Lemma 2, every point in bi
is an ǫ-NN to q. Since the subscript i is arbitrary in [1,m], we conclude that all
points in b are ǫ-NN to q.

For the second statement, if rmaxbi
< 2

2+ǫrbi
, then according to Lemma 2,

T2(bi) < T1(bi), 1 ≤ i ≤ m. Taking maximum on both sides of the inequality,
we have max

i
{T2(bi)} < max

i
{T1(bi)}. Since we set r = max

i
{T2(bi)}, and let c

satisfy c · r = max
i
{T1(bi)}, we have r < cr which induces that c > 1. Then the

proof is done. ⊓⊔

Situation 4 As what is said in Lemma 3, if the algorithm A returns No then
the search of ǫ-NN terminates with returning an arbitrary point in b. According
to Definition 2, A can also return some point cbi

∈ Q other than No. In that
case the search must continues. At first glance, the same procedure should be
recursively carried out, by applying Lemma 1, 2, 3 one by one on box bi, where
the point cbi

returned by A is the center of the enclosing ball of box bi. However,

to guarantee that the algorithm returns a correct ǫ-NN, the box considered by
the algorithm must encloses the exact NN p∗. But the box bi may not enclose p∗,
which would ruin the correctness of the algorithm. Thus, we need to expand the
search range to the boxes near to bi. The following Lemma 4 gives the bounds
of the search range and ensures that p∗ lies in the range.

Definition 7. For a collection of MCBs B = {b1, · · · , bm}, let rmaxbi
be de-

fined as Definition 5 for each bi, 1 ≤ i ≤ m. Then define rmaxB = max
bi∈B
{rmaxbi

}.

Definition 8. Define Nbr(b) as

{

b′ ∈ B | D(cb′ , cb) ≤ (3 + 4ǫ)rmaxBbs

}

where Bbs
= Nbr(bs) and bs is the super box of b.

Remark 4. The definition of Nbr sets is a recursive definition. For a box b, its
Nbr(b) set is defined based on the Nbr(bs) set of its super box bs. It requires
that the boxes are recursively split, which can be represented as a tree structure.
The formal description of the tree structure is given in Section 3.1.

Lemma 4. Given the query point q, and a collection of boxes {b1, · · · , bm}, if
we find a box bi satisfying D(q, cbi

) ≤ max
i
{T1(bi)}, then the nearest neighbor

of q lies in and can only lie in Nbr(bi), i.e., p
∗ ∈ Nbr(bi).

Proof. We have known that D(q, cbi
) ≤ max

i
{T1(bi)}. By the definition of the

enclosing ball of box b, the center of the ball is an arbitrary point picked from b.
Then we have cbi

∈ bi for box bi. Furthermore, since bi is a sub-box of b, then
cbi
∈ b too. Thus D(q, cbi

) can serve as an upper bound of the distance from q
to its nearest neighbor. Let p∗ denote the exact nearest neighbor of q in b, and
we have D(q, p∗) ≤ D(q, cbi

) ≤ max
i
{T1(bi)}. Further we have max

i
{T1(bi)} =

max
i
{(1 + 2/ǫ)rbi

} = (1 + 2/ǫ)rmaxb. Then D(q, p∗) ≤ (1 + 2/ǫ)rmaxb.

If p∗ lies in some box bj , we prove D(cbi
, cbj

) ≤ (3+4/ǫ)rmaxb. If i = j then
this trivially holds. If not, first we have D(p∗, cbj

) ≤ rbj
≤ rmaxb since p∗ ∈ bj .

Thus, D(cbi
, cbj

) ≤ D(cbi
, q) +D(q, p∗) +D(p∗, cbj

) ≤ (1 + 2/ǫ)rmaxb + (1 +
2/ǫ)rmaxb + rmaxb = (3 + 4/ǫ)rmaxb. This indicates that bj ∈ Nbr(bi).

For a box bk out of Nbr(bi), i.e. D(cbk
, cbi

) > (3 + 4/ǫ)rmaxb, suppose in
contrary that the nearest neighbor p∗ ∈ bk, which indicates D(p∗, cbk

) ≤ rbk
.

Then we have D(q, p∗) ≥ D(cbk
, cbi

)−D(cbi
, q)−D(cbk

, p∗) > (3+4/ǫ)rmaxb−
(1 + 2/ǫ)rmaxb − rbk

> (1 + 2/ǫ)rmaxb. This conflicts with the conclusion we
get above.

So far both the sufficient and necessary conditions are proved, and the proof
is done. ⊓⊔

We are done introducing the mathematical preparations. In the next section
we will propose our algorithm based on the lemmas given above.

3 Algorithms

In this section we propose our algorithm for reducing ǫ-NN to (c, r)-NN, including
the preprocessing and query algorithm.

3.1 Preprocessing

Our preprocessing algorithm mainly consists of two sub-procedures. One is to
build the box split tree T , and the other is to construct the Nbr sets.

Building the box split tree We first give the definition of the box split tree.

Definition 9 (Box split tree). Given a point set P and its MCB bP , a tree
T is a box split tree iff:

1. the root of T is bP ;
2. each non-root node of T is an MCB of a point set P ′ ⊂ P ;
3. if box b′ is a sub-box of b, then there is an edge between the node for b and

the node for b′ in T ;
4. each node has at least 2 child nodes, and at most |P | child nodes;
5. rmaxb < 2

2+ǫrb holds for each box b in T .

Further, T is fully built iff each box at the leaf nodes of T contains only one
point.

Remark 5. The fifth term is required by the second statement of Lemma 3.

We use a box split method to build the box split tree. This method is origi-
nally proposed in [20], and also used in several other papers [11,8]. It starts from
the MCB bP of the point set P , then continuously splits bP into a collection B
of cubical boxes until each box in B contains only one point. The whole produce
of the method takes O(dn logn) time where n = |P |. The method proceeds in a
series of split steps. In each split step, the box bL with the largest side length in
the current collection B is chosen and split. Define hi(b) to be the hyperplane
orthogonal to the i-th coordinate axis and passing through the center of b. One
split step will split bL into at most 2d sub-boxes using all hi(bL), each of which
is an MCB. The set of non-empty sub-boxes generated by conducting one split
step on b is denoted as Succ(b). The details of the box splitting method can be
found in [20].

Next we describe how to use this method to build the box split tree T . The
main obstacle is to satisfy the fifth term in Definition 9, i.e., rmaxb < 2

2+ǫrb for
each box b in T . We use the following techniques to solve this problem.

When a split step is executed and a box b is split, we temporarily store the
sub-boxes of b in a max-heap Hb, which is ordered on the side length of the
boxes in the heap. Recall the definitions in Section 2.2, the side length of a box
b is denoted as len(b). When box b is split fine enough so that rmaxb < 2

2+ǫrb
is satisfied, the algorithm will create a node for each b′ ∈ Hb, and hang it under

the node for box b in the box split tree T . Then for each b′ at these newly
created leaf nodes, a max-heap is created to store its sub-boxes. In an overview,
a max-heap is maintained for each box at the leaf nodes of the box split tree.

In each split step, the box with the largest volume is split. To efficiently pick
out this box, a secondary heapH2 is maintained. The heaps for the leaf nodes are
called the primary heaps in contrast. The elements in H2 is just the top elements
in each primary heap, together with a pointer to its corresponding primary heap.
Apparently the top element btop in H2 is the box with largest volume. When
btop is picked, the primary and secondary heap will pop it out simultaneously.
Then btop is split by conducting one split step on it, generating Succ(b). These
sub-boxes in Succ(b) will be added into the primary heap where btop formerly
resides. When this primary heap finishes maintaining, its top element is inserted
into the secondary heap. And then the iteration continues.

We point out the last problem to solve in order to satisfy the fifth term in
Definition 9. The heaps, including the primary heaps and the secondary heap, are
organized according to the len value of the boxes, in order to retrieve the box with
the largest volume. On the other hand, the condition of rmaxb < 2

2+ǫrb is based
on the Est value of the boxes, because here we have rmaxb = max

b′∈Hb

{Est(b′)}.
Notice that the top element btop in the primary heap have the largest len value,
but may not has the largest Est value. So we can not directly check rbtop

< 2
2+ǫrb

to decide whether b is split fine enough. Fortunately, the len and Est value of
a box have certain quantity relationships, which is formalized into the following
lemma.

Lemma 5. For the MCB b of any point set P where |b| ≥ 2, we have len(b) ≤
Est(b) ≤ d · len(b). In the situation that |b| = 1, we redefine len(b) as len(b) =
Est(b) to make this inequality consistent.

Proof. The lemma already fixes the situation of |b| = 1, and thus the proof
focuses on when |b| ≥ 2.

If len(b) > Est(b), then b can be shrunk and still contain all points in
b, which conflicts with that b is the Minimal Cubical Box (MCB) of P . Thus
len(b) ≤ Est(b).

Recalling Equation 1, when |b| ≥ 2, Est(b) is defined to be Dmax(b). Note
that the Lq distance between two points in d-dimensional space is bounded by
d times of the L∞ distance between them. Since the points are enclosed by box
b whose side length is len(b), we conclude that Est(b) ≤ d · len(b).

Both sides of the inequality is proved. ⊓⊔

With the help of Lemma 5, we have the following Lemma 6 about the criteria
for deciding whether a box is split fine enough.

Lemma 6. For box b and its primary heap Hb, if the top element btop satisfies
len(btop) <

2
(2+ǫ)d len(b), then rmaxb < 2

2+ǫrb.

Proof. It’s sufficient to prove ∀b′ ∈ Hb, Est(b′) < 2
2+ǫEst(b).

Based on Lemma 5, we have Est(b′) ≤ d · len(b′) ≤ d · len(btop) for any box
b′ ∈ Hb. Combining with the condition given in the lemma, we have Est(b′) <
d 2
(2+ǫ)d len(b) = 2

2+ǫ len(b). And further combining with len(b) ≤ Est(b), we

finally have Est(b′) < 2
2+ǫEst(b), which proves the lemma. ⊓⊔

The pseudo codes for building the box split tree are given in Algorithm 1.
The algorithm also includes the invocation of Algorithm 2, aimed to maintain
the Nbr sets, which will be introduced in the next section.

Algorithm 1: Preprocessing

Input: a point set P , and an approximation factor ǫ
Output: a box split tree T

// Initialization

1 Compute b0 = MCB(P);
2 Compute the enclosing ball B(cb0

, rb0
) of b0;

3 Set b0 to be the root of T ;
4 Initialize the primary heap for b0 with one key-value pair (len(b0), b0);
5 Initialize the secondary heap H2 with one key-value pair (len(b0), b0);

// Main loop

6 while |B| < n do
7 Pop out the top element btop from H2 and its corresponding primary

heap Hbs
;

8 Split btop by conducting one split step on b, generating Succ(btop);
9 foreach b ∈ Succ(btop) do

10 Add b into Hbs
, and maintain the heap;

11 end
12 Let the current top element of Hbs

to be bt;
13 Let Flag = false;

14 if len(bt) <
2

(2+ǫ)d len(bs) then // Applying Lemma 6

15 Let Flag = true;
16 foreach b ∈ Hbs

do
17 Create a node and hang it under the node of bs;
18 Initialize the primary heap for b with one key-value pair

(len(b), b);

19 end

20 else
21 Add bt into H2.
22 end
23 Invoke Algorithm 2, taking b, Succ(b), rmaxBbs

, and the boolean
value Flag as the input of this invocation;

24 end

Nbr sets maintaining Algorithm 2 for maintaining Nbr(b) is given below. It
is invoked each time the main loop of Algorithm 1 is executed, as shown above.

Algorithm 2: Maintaining Nbr(b)

Input: box b, Succ(b), the neighbor range parameter rmaxBbs
, and a

boolean value Flag.
1 foreach b′ ∈ Succ(b) do
2 Nbr(b′)← Nbr(b) ∪ Succ(b)− {b};
3 Set Est(b′) according to Equation 1;
4 Update rmaxbs

;

5 end
6 foreach b′ ∈ Nbr(b) do
7 if Flag = ture and b′ is in a higher level that b then
8 Nbr(b′)← Nbr(b′) ∪ Succ(b)
9 else

10 Nbr(b′)← Nbr(b′) ∪ Succ(b)− {b}
11 end

12 end
13 foreach b′ ∈ Succ(b) do
14 foreach b′′ ∈ Nbr(b′) do
15 if D(cb′′ , cb′) > (3 + 4/ǫ)rmaxBbs

then
16 Delete b′′ from Nbr(b′);
17 Delete b′ from Nbr(b′′);

18 end

19 end

20 end

There are two parts of Algorithm 2 that need to be explained in detail.
The first is Line 4. From Definition 8 for Nbr(b), we can see that the main-

taining ofNbr(b) is based on the value rmaxBbs
passed down by its super-box bs.

In Algorithm 2, Line 4 is aimed for updating rmaxbs
when the set of sub-boxes

of bs is changed. If Nbr(b) is implemented as a heap, then whenever any sub-box
of bs needs rmaxBbs

, this value can be retrieved from the heap in constant time.
The other part is the second foreach loop in Algorithm 2. The functionality

of the loop is explained in the following Lemma 7.

Lemma 7. The second foreach loop ensures that for all box b in the box split
tree T , each b′ ∈ Nbr(b) is either in the same level with b, or a degenerated box
containing only one point.

Proof. From Algorithm 1, we know that the boolean value Flag indicates whether
splitting b causes the box split tree T to grow. If Flag = true, b becomes a inner
node. In that case, if there is a box b′ ∈ Nbr(b) where b′ is in a higher level than
b, b will remain in Nbr(b′) according to the second foreach loop in Algorithm 2.
First we claim that b′ is not an inner node. If so, b′ must have been split before,
and Algorithm 2 was invoked at the time b′ was split. In this invocation, the
else-branch of the second foreach loop was executed, and b′ was already deleted

from Nbr(b). This conflicts with b′ ∈ Nbr(b). Thus, we get the conclusion that
b′ is not an inner node and never has been split.

We count on the next several invocations of Algorithm 2 to delete b′ from
Nbr(b). After b is split, b′ may be split but the boxes in Succ(b′) may be in the
same level with b′, which only introduces more higher-level boxes into Nbr(b).
The critical time is when Succ(b′) is in the next level of b′. In that case, While
Algorithm 2 is invoked by splitting b′, the else-branch of the second foreach
loop will delete b′ from Nbr(b). Of course, if b′ contains only one point and can
not be split, it will remain in Nbr(b) until Algorithm 1 terminates.

So far we have eliminated a box inNbr(b) containing more than one point and
in a higher level than b. Repeatedly applying the same proof, we will eliminate
all such box in b. Then the claim is proved. ⊓⊔

3.2 Query

The query algorithm goes down the tree T returned by Algorithm 1 level by
level. At each level of T , the algorithm A for (c, r)-NN will be invoked, and the
input parameters of A are set according to Lemma 3. The pseudo codes are given
in Algorithm 3.

We should spend some efforts to explain the termination condition in Algo-
rithm 3. First we introduce a lemma about Nbr(b) when |b| = 1.

Lemma 8. For a box b satisfying |b| = 1, all the boxes b′ ∈ Nbr(b) contain
only one point, i.e., |b′| = 1.

Proof. According to Algorithm 2, if a box b satisfies |b| = 1, the algorithm will
keep updating Nbr(b) until Algorithm 2 is not invoked any more. And that is
when Algorithm 1 terminates and when all the boxes degenerate and contain
only one point. It implies that any box b′ ∈ Nbr(b) satisfies |b′| = 1. ⊓⊔

According to the above lemma, when the WHILE loop breaks, all boxes in
bc ∪Nbr(bc) contains only one point. The brute-force search takes O(|Nbr(bc)|)
time. We will bound this complexity in the next section.

4 Analysis

4.1 Correctness

First we prove the correctness of our query algorithm by introduce the following
lemma 9.

Lemma 9. In every execution of the loop body, Algorithm 3 ensures that the
exact nearest neighbor p∗ ∈ Pc after the assignment of Pc(Line 8).

Proof. The proof proceeds by induction. At the beginning of Algorithm 3, appar-
ently we have Pc = P , and p∗ ∈ Pc holds trivially. As inductive hypothesis, we
assume p∗ ∈ Pc after Line 8 in one execution of the loop body. Consider the rest of

Algorithm 3: Query

Input: query point q, data set P , box split tree T , and algorithm A for
(c, r)-NN

Output: ǫ-NN of q in P
1 set bc = root(T);
2 if D(q, cbc

≥ T2(b)) then
3 pick any point p′ ∈ bc ∩ P ;
4 return p′;

5 end
6 while |bc| > 1 do
7 Bc ← Nbr(bc);
8 Pc ←

⋃

b∈Bc

b ∩ P ;

9 invoke A, where the input of A is set according to Lemma 3;
10 if the query returns NO then
11 pick any point p′ ∈ Pc;
12 return p′;

13 else // the query returns the center cb′ of box b′

14 set bc = b′;
15 continue;

16 end

17 end
18 Pc ← Nbr(bc) ∩ P ;
19 Conduct brute-force search in Pc to find the exact NN;

the loop body. If Line 12 is executed, the algorithm will return, and the induction
finishes. If Line 14 is executed, Lemma 4 ensures that p∗ ∈ Nbr(b′) = Nbr(bc).
Thus, in the next execution of the loop body, the reassignment of Pc at Line 8
makes p∗ ∈ Pc to hold again. Then by mathematical induction, the lemma is
proved. ⊓⊔

Theorem 1 (Correctness). The point p′ returned by Algorithm 3 is an ǫ-NN
to q in P , i.e., if p∗ is the exact NN to q in P , then D(q, p′) ≤ (1 + ǫ)D(q, p∗).

Proof. Considering Algorithm 3, if it returns at 4, Lemma 2 ensures that the
picked point p′ is an ǫ-NN to q; if it returns at Line 12, Lemma 3 ensures that
the point p′ returned here is an ǫ-NN to q; and if the algorithm finally goes out
of the WHILE loop and executes brute force search in the final Pc assigned at
Line 18, Lemma 9 ensures that the exact nearest neighbor lies in Pc, and thus
the brute-force search returns the exact nearest neighbor to q for sure. ⊓⊔

4.2 Complexities

Before we bound the complexity of our algorithm, we should first bound the size
of Nbr(b) for any box b by introducing a lemma from [20].

Lemma 10 ([20]). Let r be a positive number. During the execution of the split
method described in Section 3.1, at each time before splitting a box, let B be the
current box collection, and let bL be the box with the largest volume in B. For
any box b ∈ B, the size of the set {b′ ∈ B | Dmin(b, b

′) ≤ r ·Est(bL)} is at most
2d(2d⌈r⌉+ 3)d.

Based on the lemma above, we can bound the size of Nbr(b) for any box b

in the box split tree T constructed in Algorithm 1.

Lemma 11. The size of Nbr(b) defined in Definition 8 and constructed in Al-
gorithm 2 is O((dǫ)

d).

Proof. We prove this by using Lemma 10.
By Definition 8, Nbr(b) =

{

b′ | D(cb′ , cb) ≤ (3 + 4ǫ)rmaxBbs

}

, where Bbs
=

Nbr(bs) and bs is the super box of b. On the other hand, Lemma 10 concerns
the set {b′ ∈ B | Dmin(b

′, b) ≤ r ·Est(bL)}, where bL is the box with the largest
volume in the box collection B. We should fill the gap between Nbr(b) and
{b ∈ B′ | Dmin(b

′, b) ≤ r · Est(bL)} by considering two relationships: 1)D(cb′ , cb)
and Dmin(b

′, b), and 2) rmaxBbs
and Est(bL).

1) Since the center of the enclosing ball of box b is one arbitrary point inside
b, we have Dmin(b, b

′) ≤ D(cb, cb′). Thus, it can be easily verified that:

∀K > 0, {b′ | D(cb, cb′) ≤ K} ⊆
{

b′ | Dmin(b,b′) ≤ K
}

.
2) Recall Definition 7, rmaxBbs

= max
b′∈Bbs

rmaxb′ = max
b′∈Bbs

max
b′′∈Chd(b′)

Est(b′′)

where Chd(b′) is the set of sub-boxes of b′. Let B′ =
⋃

b′∈Bbs

Chd(b′), and

B′ is clearly a subset of the whole box collection B. On the other hand, bL is
the box with the largest volume in B. Based on Fact 5, we have rmaxBbs

=
max
b′∈B′

{Est(b′)} ≤ max
b′∈B′

{d · len(b′)} ≤ d · len(bL) ≤ d ·Est(bL). Thus we have

∀α > 0,
{

b′ | Dmin(b, b
′) ≤ α · rmaxBbs

}

⊆ {b′ | Dmin(b, b
′) ≤ α · d ·Est(bL)}

Combining 1) and 2), we have:

{

b′ | D(cb, cb′) ≤ (3 + 4/ǫ)rmaxBbs

}

⊆ {b′ | Dmin(b, b
′) ≤ (3 + 4/ǫ)d · Est(bL)}

Then according to Lemma 10, we have

|{b′ | Dmin(b, b
′) ≤ (3 + 4/ǫ)d ·Est(bL)}| ≤ 2d (2d⌈(3 + 4/ǫ)d⌉+ 3)

d
= O((

d

ǫ
)d)

Note that Nbr(bs) may be updated and the value of rmaxBbs
may be changed

while Nbr(b) is being maintained based on an older value of rmaxBbs
. But it

does not influent the result in this lemma, because Lemma 10 ensures that the
size of the set considered in the lemma is bounded every time before a box is
split. Thus, even though Nbr(b) may be maintained based on an older value of
rmaxBbs

, |Nbr(b)| = O((dǫ)
d) still holds. ⊓⊔

We introduce and prove another lemma which is about the property of the
box split tree T constructed in preprocessing phase.

Lemma 12. For a point set P where |P | = n, the fully built split tree T con-
structed based on P has the following properties:

1. There are at most 2n nodes in T .
2. The total time to build T is O(dn log n).

Proof. For the first statement, the proof starts from the following two observa-
tions.

1) There are exactly n leaf nodes in T . Because T is fully built, each box at
leaf node contains only one point.

2) Each node has at least 2 child nodes and at most |P | = n child nodes.
This comes from the definition of box split tree.

Combining the two observations, if T is a full binary tree, then T has at
most 2n nodes, which can be easily verified. As long as one node has three child
nodes or more, the total number of nodes would be less than 2n. The extreme
situation is that the root has n child nodes and there are totally n+ 1 nodes in
T . So we can conclude that there are at most 2n nodes in T .

For the second statement, we can divide the time to build T into two parts.
One is the total time to conduct all the split steps. The other is the total time to
manipulate the primary and secondary heaps. We analyze the time complexity
of the two parts as follows.

1) The total time to conduct the split steps is O(dn logn). This is already
proved in [20]. We omit the proof and refer the readers to [20] for the details.

2) We have proved that there are at most 2n boxes in the fully built split
tree T . Considering the manipulation of the primary and secondary heaps, it is
easily verified that each box b may exist in at most two heaps, i.e., one primary
and one secondary. For each heap, b can only be pushed into it only once, and be
popped out of it only once. The number of the boxes in the heap is at most 2n,
so for each box b, the heap manipulation time incurred by b is O(log n). Thus,
the total time to manipulate the primary and secondary heaps is O(n logn).

Adding the two parts of complexity, we conclude that the total time to build
T is O(dn log n). ⊓⊔

Now we start to prove the complexities of our algorithm, including prepro-
cessing time, space and query time complexities.

Theorem 2 (Preprocessing Time Complexity). The complexity of Algo-
rithm 1 for preprocessing is O(O((dǫ)

d · n logn)).

Proof. The complexity of Algorithm 1 can be divided into two parts, namely, (1)
the total time to build the box split tree T , and (2) the total time to maintain
Nbr data structures and Est value for all boxes. The first part of complexity is
already proved in Lemma 12. Here we prove the second part.

Our Algorithm 2 is very similar to an algorithm for maintaining the Nbr set
in [20]. We prove the complexity of Algorithm 1 by similar techniques in [20]. If

the Nbr(b) sets is implemented by a heap, which allows insertion and deletion
in O(log n) time, and allow access to largest value of Dmin(b, b

′), b′ ∈ Nbr(b) in
O(log n) time, then we can use the similar analysis in [20] and bound the time to
maintain Nbr sets and Est values by O((dǫ)

d · n logn). The details are omitted.
In summary, we have proved the desired preprocessing complexity. ⊓⊔

Theorem 3 (Space Complexity). The space complexity of Algorithm 1 is
O((dǫ)

d · n).

Proof. The space complexity of the algorithm is bounded by the number of
boxes in the tree T multiplying the size of Nbr(b) sets maintained for each box.
According to Lemma 12, there are at most 2n boxes in T . And according to
Lemma 11, |Nbr(b)| = O((dǫ)

d. Multiplying the two factors, we get the desired
result. ⊓⊔

Theorem 4 (Query Time Complexity). Algorithm 3 invokes O(log n) times
of the algorithm A for (c, r)-NN problem.

Proof. Considering the box split tree returned by Algorithm 1, its fan-out, i.e.,
the number of child nodes of a node, is at least 2. This comes from the definition
of box split tree. And the number of leaf nodes is n, so that the height of the
tree is O(logn). Further, by Lemma 7 we know that all boxes in any box b in T
are in the same level with b. Thus, Algorithm 3 invokes at most one (c, r)-NN
query at each level of the tree. Hence, the number of invoked (c, r)-NN queries
is O(log n). ⊓⊔

5 Conclusion

In this paper we proposed a new algorithm for reducing ǫ-NN problem to (c, r)-
NN problem. Compared to the former works for the same reduction problem, our
algorithm achieves the lowest query time complexity, which is O(log n) times of
invocations of the algorithm for (c, r)-NN problem. We elaborately designed the
input parameters of each of the invocation, and built a dedicated data structure
in preprocessing phase to support the query procedure. A box split method pro-
posed in [20] is used as a building block for the algorithm of preprocessing phase.
Our paper also raises a problem which is to reduce the exponential complexity
on d introduced by the box split method. This is left as our future work.

References

1. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. In: 2006 47th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’06). vol. 51, pp. 459–468. IEEE (2006)

2. Andoni, A., Indyk, P.: Nearest Neighbors In High-Dimensional Spaces. In: Hand-
book of Discrete and Computational Geometry, chap. 43, pp. 1135–1155. CRC
Press, Inc, 3rd edn. (2017)

3. Andoni, A., Indyk, P., Nguyn, H.L., Razenshteyn, I.: Beyond Locality-Sensitive
Hashing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1018–1028. No. 1, Society for Industrial and Applied
Mathematics, Philadelphia, PA (jan 2014)

4. Andoni, A., Razenshteyn, I.: Optimal Data-Dependent Hashing for Approximate
Near Neighbors. In: Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing - STOC ’15. pp. 793–801. ACM Press, New York, New
York, USA (2015)

5. Arya, S., Mount, D.M.: Approximate Nearest Neighbor Queries in Fixed Dimen-
sions. In: Proceedings of the Fourth Annual {ACM/SIGACT-SIAM} Symposium
on Discrete Algorithms. pp. 271–280 (dec 1993)

6. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM 45(6), 891–923 (nov 1998)

7. Bern, M.W.: Approximate Closest-Point Queries in High Dimensions. Inf. Process.
Lett. 45(2), 95–99 (1993)

8. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of
the ACM 42(1), 67–90 (jan 1995)

9. Chan, T.M.: Approximate nearest neighbor queries revisited. In: Proceedings of
the thirteenth annual symposium on Computational geometry - SCG ’97. vol. 20,
pp. 352–358. ACM Press, New York, New York, USA (1997)

10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the twentieth annual
symposium on Computational geometry - SCG ’04. p. 253. ACM Press, New York,
New York, USA (2004)

11. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the twentieth annual ACM symposium on Theory of computing - STOC
’88. pp. 434–444. ACM Press, New York, New York, USA (1988)

12. Goel, A., Indyk, P., Varadarajan, K.: Reductions Among High Dimensional Prox-
imity Problems. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms. pp. 769–778. Society for Industrial and Applied Mathematics
(2001)

13. Har-Peled, S.: A replacement for Voronoi diagrams of near linear size. In: Proceed-
ings 2001 IEEE International Conference on Cluster Computing. pp. 94–103. IEEE
Comput. Soc (2001)

14. Har-Peled, S., Indyk, P., Motwani, R.: Approximate Nearest Neighbor: Towards
Removing the Curse of Dimensionality. Theory of Computing 8(1), 321–350 (2012)

15. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Proceedings of the thirtieth annual ACM symposium
on Theory of computing - STOC ’98. pp. 604–613. ACM Press, New York, New
York, USA (1998)

16. Kleinberg, J.M.: Two algorithms for nearest-neighbor search in high dimensions. In:
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing
- STOC ’97. pp. 599–608. ACM Press, New York, New York, USA (1997)

17. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Dis-
crete algorithms. pp. 798–807 (2004)

18. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient Search for Approximate Near-
est Neighbor in High Dimensional Spaces. SIAM Journal on Computing 30(2),
457–474 (jan 2000)

19. Panigrahy, R.: Entropy based nearest neighbor search in high dimensions. In: Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm
- SODA ’06. pp. 1186–1195. ACM Press, New York, New York, USA (2006)

20. Vaidya, P.M.: An optimal algorithm for the all-nearest-neighbors problem. In: In-
tergovernmental Panel on Climate Change (ed.) 27th Annual Symposium on Foun-
dations of Computer Science (sfcs 1986). pp. 117–122. IEEE, Cambridge (oct 1986)

	An Algorithm for Reducing Approximate Nearest Neighbor to Approximate Near Neighbor with O(logn) Query Time

