
ar
X

iv
:1

80
8.

03
30

7v
1

 [
cs

.D
S]

 9
 A

ug
 2

01
8

Longest Increasing Subsequence

under Persistent Comparison Errors

Barbara Geissmann

Department of Computer Science

ETH Zurich, Zurich, Switzerland

barbara.geissmann@inf.ethz.ch

August 13, 2018

Abstract

We study the problem of computing a longest increasing subsequence in a sequence
S of n distinct elements in the presence of persistent comparison errors. In this model,1

every comparison between two elements can return the wrong result with some fixed
(small) probability p, and comparisons cannot be repeated. Computing the longest
increasing subsequence exactly is impossible in this model, therefore, the objective
is to identify a subsequence that (i) is indeed increasing and (ii) has a length that
approximates the length of the longest increasing subsequence.

We present asymptotically tight upper and lower bounds on both the approxima-
tion factor and the running time. In particular, we present an algorithm that computes
an O(log n)-approximation in time O(n logn), with high probability. This approxima-
tion relies on the fact that that we can approximately sort2 n elements in O(n log n)
time such that the maximum dislocation of an element is at most O(log n). For the
lower bounds, we prove that (i) there is a set of sequences, such that on a sequence
picked randomly from this set every algorithm must return an Ω(logn)-approximation
with high probability, and (ii) any O(log n)-approximation algorithm for longest in-
creasing subsequence requires Ω(n logn) comparisons, even in the absence of errors.

1 Introduction

When dealing with complex systems and large volumes of information, it is often the case
that at least part of the involved data will be inconsistent. These inconsistencies can be
intrinsic, i.e., they might shed from the fact that the data is obtained from an inherently
noisy source (this is typically the case in human-produced data), or they might be the
result of corruptions caused by random errors (think, for instance, of random memory
faults or communication errors). It is therefore important to understand how the classical
techniques used to solve basic algorithmic problems can cope with such errors.

In this paper, we consider the problem of computing a longest increasing subsequence
LIS(S) in a given sequence S of distinct elements –a fundamental task that appears
naturally in many areas, such as in probability theory and combinatorics [2, 4], scheduling
[3, 18], and computational biology [9, 20]– in presence of random persistent comparison
errors.

1Braverman and Mossel, Noisy sorting without resampling, SODA, 2008
2Geissmann, Leucci, Liu, and Penna, Optimal Sorting with Persistent Comparison Errors, ArXiv e-

prints 1804.07575, 2018

1

http://arxiv.org/abs/1808.03307v1

In this model, every comparison between two elements is wrong with some small fixed
probability p, and correct with probability 1− p. The comparison results are independent
over all pairs of elements, and comparisons cannot be repeated. Note that this is equivalent
to say that repeating the same comparison multiple times yields each time the same result.
Hence, comparison results are persistent: always wrong or always correct. Furthermore,
we assume that we cannot inspect the values of the elements, but only use such element
comparisons. Because of these comparison errors, it is impossible to compute LIS(S)
correctly, instead, we seek to return a sequence that (i) is indeed increasing and that (ii)
has some guaranteed minimum length depending on the length of the longest increasing
sequence l := |LIS(S)|. In particular, we are interested in algorithms that return an
increasing sequence of length at least 1

r · l, where r is the approximation factor.
This error model has been first employed by Braverman and Mossel [6], who studied the

problem of sorting. Other work on sorting followed (see [12, 13, 16]) and the model has been
studied also for finding the minimum, searching, and linear programming in two dimensions
[16]. In this paper, we will present an algorithm that returns an O(log n)-approximation
on the longest increasing subsequence in O(n log n) time, with high probability. Moreover,
we will prove that this approximation factor is the best possible as Ω(log n) is also a
lower bound, regardless of the running time, and that any (log n)-approximation algorithm
requires Ω(n log n) comparisons, even in the absence of comparison errors.

1.1 Related Work

There are several algorithms to compute a longest increasing subsequence of a sequence
S, if no comparison errors happen. Typically, they are based on a common underlying
algorithmic idea: They process the elements one by one and maintain for each length
found so far the increasing subsequence of this length that ends with the smallest possible
element seen so far. We shall call this algorithmic idea the Core-Algorithm to compute a
longest increasing subsequence. The running time of the Core-Algorithm is O(n log n) in
the decision-tree model (see for instance [5, 7, 10]). This time complexity is tight, as shown
in [10]. In the RAM model, where one can also inspect the values, the algorithm can be
implemented to run in O(n log log n) time [8, 19]. All the results can be parameterized
to O(n log l) or O(n log log l), respectively, where l is the length of the longest increasing
subsequence.

The longest increasing subsequence of S is also the longest common subsequence be-
tween S and the sorted sequence of the elements in S. This implies an O(n2) time (or
O(n2/ log n) time if optimized) algorithm to find the longest increasing subsequence when
using the standard dynamic programming technique that is used to find longest common
subsequences [10, 17].

The model with random persistent comparison errors has been extensively studied for
finding the smallest element, for searching, and for sorting (see for instance [6, 12, 13, 16]).
A common way to measure the quality of an output sequence in terms of sortedness, is
to consider the dislocation of the elements. The dislocation of an element is the absolute
difference between its position in the output sequence and its position in the correctly
sorted sequence (its rank). Typically, one considers the maximum dislocation of any
element in the output sequence and the total dislocation (the sum of the dislocations of all
elements). It has been shown for instance in [14], that there is an algorithm with running
time O(n log n) which achieves simultaneously maximum dislocation O(log n) and total
dislocation O(n) with high probability, and that this is indeed the best one can hope for
(i.e., there exist matching lower bounds that show that no possibly randomized algorithm
can sort such that, with high probability, the maximum dislocation is o(log n) or the total

2

dislocation is o(n)). A maximum dislocation of O(log n) implies the following: on the
positive side, it is possible to derive the correct relative order of two elements whose ranks
differ by at least Ω(log n); on the negative side, this is not possible for two elements whose
ranks differ by less than O(log n). The results on the maximum dislocation of sorting
are of interest for the problem of finding the longest increasing subsequence, because an
increasing subsequence is also a sorted subsequence.

1.2 Our Contribution

We prove asymptotically tight upper and lower bounds on both the approximation fac-
tor and the running time for longest increasing subsequence under persistent comparison
errors. For the upper bounds, we define an Approximation-Algorithm that computes an
O(log n)-approximation to the longest increasing subsequence of S. In fact, it even finds
the longest possible increasing subsequence under the implication that we cannot sort bet-
ter than obtaining an order with maximum dislocation O(log n). Formally, we prove the
following result:

Theorem 1 (Upper Bounds). For any sequence S that contains n distinct elements, our
Approximation-Algorithm computes an O(log n)-approximation to the longest increasing
sequence of S, in O(n log n) time, with probability at least 1− 1

n .

This result on the upper bound can be generalized to other error models. In fact, if
we are given or able to obtain an approximately sorted sequence with maximum disloca-
tion d, then our Approximation-Algorithm will return a 2d-approximation to the longest
increasing subsequence. We discuss this point in the Conclusion (Section 6).

To prove our lower bound on the approximation factor of any algorithm solving LIS(S)
under persistent comparison errors with high probability, we will identify a small collection
of sequences that contain a longest increasing sequence of size Θ(log n) and that are likely
to look the same in our error model. Then, we show for any algorithm that if it succeeds
on one sequence of this collection by returning a constant number of elements of this
increasing sequence it must fail on another sequence. In particular, we will prove the
following theorem:

Theorem 2 (Lower Bound – Approximation Factor). There exists a collection of se-
quences S (permutations of length n) and a probability distribution on S, such that no
algorithm can return an O(log n)-approximation (for s suitable hidden constant that de-
pends on p) of the longest increasing subsequence with probability 1− 1

n .

We prove a lower bound of Ω(n log n) on the number of comparisons (which is a lower
bound on the running time) needed to compute an O(log n)-approximation by considering
the easier case in which all comparisons are correct, and by adapting the techniques used
in [10] for proving a similar lower bound for exact (i.e., 1-approximate) algorithms:

Theorem 3 (Lower Bound – Running Time). Any (log n)-approximation algorithm for
longest increasing subsequence requires Ω(n log n) comparisons, even if no errors occur.

2 Preliminaries

Since we assume that all elements in the input sequence S = 〈s1, s2, . . . , sn〉 are distinct,
we can also assume, for easier analysis and readability, that S is a permutation of the
numbers (elements) {1, . . . , n}. By our error model, the elements in S posses a true

3

linear order , i.e., Ssort := 〈1, . . . , n〉, however, this order can only be observed through
erroneous comparisons.

For two distinct elements x and y, we will write x < y to denote that x is smaller
than y according to the true linear order (resp. x > y to denote that x is larger than
y according to the true linear order), and we will write x ≺ y (resp. x ≻ y) to mean
that x is observed to be smaller (resp. larger) than y in the comparison result. For a
given sequence S and an element x ∈ S, we define rank(x, S) = 1 + |{y ∈ S : y < x}|
to be the true rank of element x in S (note that ranks start from 1), and we define
pos(x, S) ∈ [1, |S|] to be the position of x in S (positions also start from 1). The dislocation
of x in S is then disl(x, S) = |pos(x, S) − rank(x, S)|, and the maximum dislocation of S

is disl(S) = maxx∈S disl(x, S). For a given sequence S, we let C ∈ {≺,≻}(
n

2) denote the
comparison outcomes that we can observe. For C = 〈c1, . . . , c(n2)〉, this means that if

ck = c(i−1)n+j = “ ≺ ” with 1 ≤ i < n and i < j ≤ n, then si ≺ sj (resp. si ≻ sj if
ck = c(i−1)n+j = “ ≻ ”). Finally, for z ∈ R, we write log z for the binary logarithm of z.

We continue the preliminaries with some results on sorting that we will use to prove
our upper bound on the approximation factor.

Theorem 4 (Theorem 3 in [14]). There is an algorithm that approximately sorts, in
O(n log n) worst-case time, n elements subject to random persistent comparison errors so
that the maximum dislocation of the resulting sequence is O(log n), with probability 1− 1

n .

Lemma 1. Let Sapx = 〈apx1, apx2, . . . , apxn〉. If disl(Sapx) ≤ d, then for 1 ≤ i < n− 2d,
apxi and apxi+2d are in correct relative order: pos(apxi, S

sort) < pos(apxi+2d, S
sort) .

Proof. Since the maximum dislocation in Sapx is at most d, pos(apxi, S
sort) ∈ {i−d, . . . , i+

d} and pos(apxi+2d, S
sort) ∈ {i + d, . . . , i + 3d}. These intervals intersect in at most one

position, and the claim follows since no two elements can appear in the same position.

3 Upper Bound and Approximation-Algorithm

We will modify the so-called Core-Algorithm (as named in Section 1.1, Related work) that
computes a longest increasing subsequence in the absence of comparison errors, such that
it computes an O(log n)-approximation with high probability in our error model. Before
we do so, we first show that it is possible to identify a 2d-approximation by looking at
S and a sequence Sapx with maximum dislocation d. Since we can sort such that the
maximum dislocation is O(log n) (see Theorem 4), this implies an O(log n)-approximation
on LIS(S).

3.1 Upper Bound

The proof of the upper bound is based on the following fact and observation:

• Without any comparison errors, the problem of finding LIS(S) is equivalent to the
problem of finding a longest common subsequence between S and Ssort, where Ssort

is the correctly sorted order of the elements in S.

• This leads to the following observation. Let Sapx be the sequence obtained from
approximately sorting S with comparison errors and consider now Sapx as the total
order over all elements, i.e., for each pair of elements, their comparison result is
redefined as their relative order in Sapx. Furthermore, let A be any algorithm that
solves LIS(S) in the absence of errors. If A uses the redefined comparison results,
it computes the longest common subsequence LCS(S, Sapx) between S and Sapx.

4

The immediate idea of computing LCS(S, Sapx) comprises some difficulties, since this
subsequence is not necessarily increasing and, on top of that, |LCS(S, Sapx)| might be
smaller than |LIS(S)|. However, we can still get a first approximation. Assume that Sapx

has maximum dislocation at most d. Lemma 1 implies that we obtain an increasing subse-
quence when taking every 2d-th element of LCS(S, Sapx). And the maximum dislocation
implies that the elements in the subset containing every 2d-th element of LIS(S) appear
in the same relative order in Sapx, thus |LCS(S, Sapx)| ≥ 1

2d |LIS(S)| . When put together,
we get a 4d2-approximation.

This approximation factor can be improved, and it turns out that considering common
subsequences whose elements lie (at least) 2d positions apart in Sapx is actually a good
start: By Lemma 1, a common subsequence between S and Sapx is increasing if for every
pair of adjacent elements in this subsequence their positions in Sapx differ by at least 2d.
Therefore, we say that a sequence S′ = (s′1, s

′
2, . . . , s

′
m) is 2d-distant in Sapx if

pos(s′i, S
apx) + 2d ≤ pos(s′i+1, S

apx) for 1 ≤ i < m . (1)

Notice that any (increasing) subsequence of S that is 2d-distant in Sapx is automatically
also a common (increasing) subsequence of S and Sapx. This observation suggests the
following easy recipe to obtain a 2d-approximation on longest increasing subsequence:

• First, partition the elements into 2d subsets, such that every 2d-th element in Sapx

gets into the same subset, and obtain 2d input subsequences based on this partition.

• Then, on every input subsequence, run any algorithm that computes a longest in-
creasing subsequence if no comparison errors happen, and return the longest result.

By pigeon hole principle and since every input subsequence is now 2d-distant in Sapx,
the longest result must be a 2d-approximation on |LIS(S)|. This recipe however is not
optimal in the sense that in many cases, we could do better and find a longer subsequence
in S that is still 2d-distant in Sapx. In fact, we lose up to a factor 2d in the case where
LIS(S) is already 2d-distant in Sapx, but these elements are equally distributed among
all input subsequences. For this reason, we will define an approximation algorithm that
finds the longest increasing subsequence in S that is 2d-distant in Sapx. We conclude this
section with the obvious lemma.

Lemma 2. The longest subsequence S∗ of S that is 2d-distant in Sapx has length at least

|S∗| ≥ 1

2d
|LIS(S)| .

3.2 Approximation-Algorithm

Consider the Core-Algorithm described in Algorithm 1 that computes the longest increas-
ing subsequence of the input sequence S in the error-free case. The algorithm processes
the input elements one by one, maintaining the longest increasing subsequence found so
far. In particular, it maintains a parameter k and an array L, such that k is the length of
the longest increasing subsequence found so far and L contains an entry for each length 1
to k, such that L[i] stores the smallest element processed so far that can be at the end of
an increasing subsequence of length i.

• The first element is placed to L[1] and k is set to 1.

• Each subsequent element x is placed to L[j + 1], such that j is the largest position
where y = L[j] is smaller than x.

5

Algorithm 1: Core-Algorithm(S = 〈s1, . . . , sn〉)
1 L[1]←− s1; k ←− 1;
2 foreach i = 2, . . . , n do

3 x←− si;
4 if x < L[1] then L[1]←− x;
5 else

6 j ←− max{j ≤ k : L[j] < x};
7 if j = k then k ←− k + 1;
8 L[j + 1]←− x; prec[x]←− L[j];

9 lis[1]←− L[k];
10 foreach i = 2, . . . , k do

11 lis[i]←− prec[lis[i− 1]]

12 return lis;

• If x is placed to L[k + 1], then k is updated to k + 1.

• Whenever a new element x is placed, put a pointer prec from x to the element in
y = L[j], that, by construction, has a lower value than x.

• In the end, follow these pointers from the top element of the last pile to recover the
longest increasing subsequence (in reverse order).

An entry L[j] basically represents the increasing sequence of length j that ends with
the smallest possible element processed so far. When an element x is inserted into some
position L[j+1] this means that it is appended to the sequence represented by L[j]. Hence,
x either increases the longest increasing sequence so far (case j = k) or the sequence L[j+1]
gets replaced by this new sequence (case x < L[j + 1]).

Our Approximation-Algorithm, as described in Algorithm 2, is obtained by modifying
the Core-Algorithm such that it works in our error model.

• We first approximately sort (using the algorithm from [14], see also Theorem 4 in
the current paper) the elements of S to obtain Sapx, and we redefine the comparison
outcomes based on this total order, i.e., the result of a comparison between two
elements now corresponds to their relative order in Sapx.

• To compute a suitable subsequence, we change the algorithm so that it remembers
the longest 2d-distant in Sapx subsequences instead of the longest increasing sub-
sequences. This implies that an element x is only appended to an (intermediate)
subsequence that ends with element y, if pos(y, Sapx) + 2d < pos(x, Sapx).

For easier analysis, we introduce some additional notation. We call one execution of the
lines 4 to 11 of Algorithm 2 an iteration, and enumerate them such that element si is consid-
ered in iteration i. We also say that line 3 corresponds to the first iteration. Furthermore,
we denote by Lt and kt the state and the value of L and k after the t-th iteration, respec-
tively, and for any j ≤ kt, we call the subsequence 〈Lt[j], prec[Lt[j]], prec[prec[Lt[j]]], . . . 〉
with length j the implied sequence of Lt[j].

Lemma 3. For every t ≤ n, after the t-th iteration of our Approximation-Algorithm, every
implied sequence is a subsequence of S that is 2d-distant in Sapx. Moreover, 〈Lt[1], . . . , Lt[kt]〉
is also 2d-distant in Sapx.

6

Algorithm 2: Approximation-Algorithm(S = 〈s1, . . . , sn〉)
1 Sapx ←− approximately sort S as shown in [14] ;
2 d←− c · logn // ∃c s.t. w.h.p. disl(s) ≤ c · logn [14];
3 L[1]←− s1; k ←− 1;
4 foreach i = 2, . . . , n do

5 x←− si;
6 if pos(x, Sapx) < pos(L[1], Sapx) then L[1]←− x;
7 else

8 j ←− max{j ≤ k : pos(L[j], Sapx) < pos(x, Sapx)};
9 if pos(L[j], Sapx) + 2d ≤ pos(x, Sapx) then

10 if j = k then k ←− k + 1;
11 L[j + 1]←− x; prec[x]←− L[j];

12 lis[1]←− L[k];
13 foreach i = 2, . . . , k do

14 lis[i]←− prec[lis[i− 1]];

15 return lis;

Proof. For any t and j ≤ kt, let S′ = 〈s′1, . . . , s′m〉 be the implied sequence of Lt[j].
Observe that to every element s′i ∈ S′, such that i > 1, the algorithm has assigned s′i−1 as
its predecessor. Since the predecessor of any element can only have been processed in an
earlier iteration, S′ is a subsequence of S.

It follows by induction, that the condition on line 9 in Algorithm 2 ensures that S′ is
2d-distant in Sapx: It is trivial to see for t = 1, thus, assume that every implied sequence
before the t-th iteration is 2d-distant in Sapx. If st is inserted into L[j] (nothing changes
in the other case), the implied sequence of Lt[j] is equal to st appended to the implied
sequence of Lt−1[j − 1] (if it exists). By hypothesis and the condition on line 9, Lt[j] is
still 2d-distant, and since the other implied sequences do not change, the claim also holds
after iteration t.

That 〈Lt[1], . . . , Lt[kt]〉 is 2d-distant in Sapx also follows by induction: If L[j] changes
(thus L[j′] does not change for all j′ 6= j), then by hypothesis and the conditions in
lines 6, 8, and 9, pos(Lt−1[j − 1], Sapx) + 2d ≤ pos(Lt[j], S

apx) < pos(Lt−1[j], S
apx) ≤

pos(Lt−1[j + 1], Sapx)− 2d (for all those entries that exist).

Lemma 4. Let S′ = 〈s′1, . . . , s′m〉 be the sequence that our Approximation-Algorithm re-
turns. Then, S′ is a longest subsequence of S that is 2d-distant in Sapx.

Proof. Lemma 3 implies that S′ is a subsequence of S and 2d-distant in Sapx. Let S∗ =
〈s∗1, . . . , s∗m∗〉 be a longest subsequence of S that is 2d-distant in Sapx. We now show that
|S′| ≥ |S∗|. In particular, we show by induction that after iteration t∗i , pos(Lt∗i

[i], Sapx) ≤
pos(s∗i , S

apx). For the base case, consider iteration t∗1, where s∗1 is processed. Either s∗1
gets inserted into some position j ≥ 1, i.e., Lt∗1

[j] = s∗1, or not. If it gets inserted, then by
conditions in lines 6 or 8 in Algorithm 2, pos(Lt∗

1
[1], Sapx) ≤ pos(s∗1, S

apx). If not, then it
must hold that Lt∗

1
[1] = Lt∗

1
−1[1] and thus pos(Lt∗

1
[1], Sapx) < pos(s∗1, S

apx) .
For the step case, consider iteration t∗i+1, where s∗i+1 is processed, and observe that

the value of k only increases during the algorithm, and for any t′ < t and j ≤ kt′ it holds
that pos(Lt′ [j], S

apx) ≥ pos(Lt[j], S
apx) . Therefore, and by induction hypothesis and the

assumption that S∗ is 2d-distant in Sapx, pos(Lt∗i+1
−1[i], S

apx)+2d ≤ pos(s∗i+1, S
apx) . And

Lemma 3 implies, pos(Lt∗i+1
−1[i], S

apx) + 2d ≤ pos(Lt∗i+1
−1[i+1], Sapx) . Thus, if s∗i+1 does

not get inserted, it is because pos(Lt∗i+1
−1[i + 1], Sapx) < pos(s∗i+1, S

apx), and if it gets

7

inserted, it will be in some position j ≥ i+1. In any case, the hypothesis also holds after
the iteration iteration t∗i+1, which means that S′ has indeed maximum length.

3.3 Proof of Theorem 1

We now prove the initially stated Theorem 1, which for convenience, we restate here:

Theorem 1 (Upper Bounds). For any sequence S that contains n distinct elements, our
Approximation-Algorithm computes an O(log n)-approximation of the longest increasing
sequence of S, in O(n log n) time, with probability at least 1− 1

n .

Proof. Let d ∈ O(log n) according to Theorem 4, such that with probability 1− 1
n , the max-

imum dislocation in Sapx is at most d. If this is true, by Lemmata 1-4, our Approximation-
Algorithm returns a subsequence S′ of S that is increasing, and that has length at least
LIS(S)

2d ∈ Ω
(LIS(S)

logn

)

.
The running time consists of the initial sorting, which by Theorem 4 takes O(n log n)

time3, and the n iterations of the algorithm, which take O(log n) time each if binary search
is used to implement line 10. The final construction of the output takes O(k) time, where
k ≤ LIS(S) ≤ n is the length of the approximation.

4 Lower Bound on the Approximation Factor

We continue this paper with a lower bound on the approximation factor, that implies that
the upper bound we showed in Theorem 1 is tight up to constant factors. In particular,
we prove Theorem 2, which we restate here:

Theorem 2 (Lower Bound – Approximation Factor). There exists a collection of se-
quences S (permutations of length n) and a probability distribution on S, such that no
algorithm can return an O(log n)-approximation (for some suitable hidden constant that
depends on p) of the longest increasing subsequence with probability 1− 1

n .

Our proof can be seen as a generalization of the lower bound on the maximum disloca-
tion for sorting (see proof of Theorem 9 in [12]), where it is shown that two elements whose
ranks differ by less than O(log n) are likely to be indistinguishable by any algorithm, and
hence to appear in the wrong relative order. Intuitively, the argument there is as follows:
consider the sorted sequence and the sequence obtained by swapping two elements, and
assume that the comparison outcomes on these sequences look identically. It turns out
that the probability of this happening is larger than 1

n , whenever the rank difference is
smaller than O(log n), since only a small number of comparison outcomes must differ.

This is not enough in our case, since an algorithm could simply ignore such two ele-
ments. For instance, consider an increasing sequence of c adjacent elements. If the first
and the last element are swapped, the algorithm could simply return the subsequence
without these two elements and be almost optimal. A first idea to fix this problem could
be to consider the case, where one observes the whole increasing sequence to be reversed.
However, to have this happen with probability larger than 1

n , c needs to be smaller than
O(
√
log n), thus implying a weaker lower bound.
Instead, we shall use a collection of similar sequences (more than two), such that if an

algorithm succeeds on one of these sequences it must fail on another one.

3By modifying this algorithm so that it returns also the mapping from each element in S to its position

in S
apx we can obtain the new comparison results in the same time.

8

Proof. We say that an algorithm succeeds if it returns a (c log n)-approximation for any
constant c < 1

2 log 1−p

p

, otherwise we say it fails. We shall first define our collection S of

similar sequences. Let η := ⌈ logn

2 log 1−p

p

⌉. Let S∗ denote the sequence, in which the largest

η elements appear first in increasing order and then the remaining elements appear in
decreasing order,

S∗ := 〈n − η + 1, . . . , n− 1,n, n− η, . . . , 1〉 .
Furthermore, for 1 ≤ i < η, let S(i) be the sequence obtained from S∗ when the largest
element is moved to position i,

S(i) := 〈n− η + 1, . . . , n− η + (i− 1),n, n− η + i, . . . , n− 1, n− η, . . . , 1〉 .

Now, let S := {S∗, S(1), S(2), . . . , S(η−1)} (note that basically S∗ = S(η)) and let P be the
uniform distribution over S. We will show (proof by contradiction) that no algorithm
succeeds on this pair (S,P) with probability at least 1− 1

n .
Assume towards a contradiction that algorithm A succeeds with high probability on a

sequence S′ chosen uniformly at random from S, i.e.,

Pr(A(S′) succeeds) =
η

∑

i=1

Pr(A(S(i)) succeeds) · Pr(S′ = S(i)) ≥ 1− 1

n
.

This implies that

P := Pr(A(S∗) succeeds) ≥ 1− η

n
, (2)

since by hypothesis and assuming the case where the algorithm succeeds on all the other
input sequences (i.e., best case for the algorithm, worst case for the proof), P

η +
η−1
η ≥ 1− 1

n
resolves to (2).

Let C ∈ {≺,≻}(
n

2), then A(S,C) means that algorithm A runs on sequence S and
observes comparison outcomes C. Now, consider the set of all comparison outcomes that

the algorithm can observe and let C := {C ∈ {≺,≻}(
n

2) : A(S∗, C) succeeds} denote the
set of all possible comparison outcomes for which A succeeds on input S∗. We define

R(S) ∈ {≺,≻}(
n

2) to be the random variable corresponding to the comparison outcomes
as they would be observed by the algorithm when the input sequence is S. Then, the
probability that A(S∗) succeeds is expressed by the total probabilities of the events that
A observes comparison outcomes in C,

P = Pr(A(S∗) succeeds) =
∑

C∈C
Pr(R(S∗) = C) . (3)

Before we continue the proof, we shall first show the following lemma.

Lemma 5. ∀S ∈ S \{S∗} and C ∈ {≺,≻}(
n

2), Pr(R(S) = C) > Pr(R(S∗) = C) ·
(

p
1−p

)η
.

Proof. Consider S∗ = 〈s∗1, . . . , s∗n〉 and C and let E(S∗, C) be the set of wrong comparison
results, i.e., the set of pairs (s∗i , s

∗
j) with i < j such that either s∗i < s∗j and c(i−1)n+j = “ ≻ ”

(i.e., s∗i ≻ s∗j) or s
∗
i > s∗j and c(i−1)n+j = “ ≺ ”. Thus,

Pr(R(S∗) = C) = (1− p)(
n

2)−|E(S∗,C)| · p|E(S∗,C)| = (1− p)(
n

2) ·
(

p

1− p

)|E(S∗,C)|
.

Now consider S = S(k) = 〈s1, . . . , sn〉 and observe that only the relative order of the pairs
(sk, sj) with k < j ≤ η, changed compared to S∗. This implies that there can be at most

9

η−k < η additional wrong comparison results, i.e., |E(S,C)| < |E(S∗, C)|+η. Therefore,
and since p

1−p ≤ 1,

Pr(R(S) = C) = (1− p)(
n

2) ·
(

p

1− p

)|E(S,C)|

> (1− p)(
n

2) ·
(

p

1− p

)|E(S∗,C)|+η

= Pr(R(S∗) = C) ·
(

p

1− p

)η

.

Continuation of the Proof of Theorem 2. Now notice that in order to succeed, A needs
to return at least two of the first η elements in S∗. Therefore, we can map every C ∈ C to
a (not necessarily unique) sequence of S as follows: for each C ∈ C, let iC be the position
of the first element that A(S∗, C) returns and let S(C) := S(iC). (Note that iC < η as
otherwise A does not return at least two elements of the first η elements in S∗.) For each
S ∈ S \ {S∗},

Pr(A(S) fails) ≥
∑

C∈C : S=S(C)

Pr(R(S) = C) >
∑

C∈C : S=S(C)

Pr(R(S∗) = C) ·
(

p

1− p

)η

And as a consequence, for S′ ∈ S chosen uniformly at random,

Pr(A(S′) fails) ≥
∑

S∈S\{S∗}
Pr(S′ = S) · Pr(A(S) fails)

>
∑

S∈S\{S∗}

1

η

∑

C∈C : S=S(C)

Pr(R(S∗) = C) ·
(

p

1− p

)η

=
1

η

(

p

1− p

)η
∑

S∈S\{S∗}

∑

C∈C : S=S(C)

Pr(R(S∗) = C)

≥ 1

η

(

p

1− p

)η
∑

C∈C
Pr(R(S∗) = C) ≥ 1

η

(

p

1− p

)η
(

1− η

n

)

,

where from line 3 to line 4 we use that every instance of comparison results is mapped to
exactly one sequence, and on the last line we use Equations (2) and (3). Now, observe that

for n large enough,
(

1− η
n

)

> 1
2 and that, by our choice of η,

(

p
1−p

)η
≥ 1√

n
. Therefore,

Pr(A(S′) fails) >
2 log 1−p

p

log n
· 1√

n
· 1
2
>

1

n
.

However, this contradicts our assumption that A succeeds with high probability.

The lower bound shown in Theorem 2 holds for all deterministic algorithms, but can
be expanded to also hold for probabilistic algorithms as explained in the following remark.

Remark 1. To make the lower bound on the approximation factor work also for any
randomized algorithm A, we can turn A into a deterministic version by fixing a sequence
λ ∈ {0, 1}t random bits that can be used by the algorithm. Thus, for the resulting deter-
ministic algorithm Aλ, the lower bound holds. Let pλ be the probability to generate the
sequence λ of random bits. To lower bound the probability that A(S′) fails, where S′ is
chosen uniformly at random from S, one simply needs to sum over all λ the probabili-
ties that Aλ fails multiplied by pλ, i.e., Pr(A(S

′) fails) =
∑

λ∈{0,1}t Pr(Aλ(S
′) fails) · pλ ≥

1
n

∑

λ∈{0,1}t pλ = 1
n .

10

5 Lower Bound on the Running Time

We complement this paper by showing that the running time of our Approximation-
Algorithm is asymptotically optimal. In [10], it is shown that (in the error-free model)
computing the longest increasing subsequence is at least as hard as sorting. We will use
this proof to informally show Theorem 3 which we restate here (we postpone a formal
proof to the full version of the paper):

Theorem 3 (Lower Bound – Running Time). Any log n-approximation algorithm for
longest increasing subsequence requires Ω(n log n) comparisons, even if no errors occur.

The proof techniques of the lower bound in [10] are as follows: Assume that we are in
the error-free case. Consider the easier problem of deciding on a given sequence S of n
distinct elements whether |LIS(S)| < k, and consider the comparison tree of an algorithm
A with leaves that tell as an answer to this question either “yes” or “no”. Without loss
of generality, assume that no useless comparisons are made on a root to a leaf path (i.e.,
no comparison twice and no comparisons whose outcome is predictable by the outcomes
of previous comparisons).

Every leaf ℓ can be associated with a partial order implied by a set of linear orderings
on S that are consistent with the transitive closure of the comparisons performed on the
path from the root to ℓ. If the answer in a leaf is “yes”, this implies that there are no
k elements of S that are pairwise incomparable in this partial order (i.e., the relative
order of every pair is neither tested in any comparison on the path, nor implied by other
comparisons), as otherwise, these elements could possibly form an increasing sequence
of length k. Such a subset of elements is called antichain, while a chain is a subset of
elements that are linearly ordered. An important property of chains and antichains used
in the proof is, that in a “yes”-leaf, the elements can be partitioned into less than k chains,
since in any partial order, the elements can be partitioned into m chains, where m is the
size of the largest antichain. Furthermore, given such a partition into (less than) k chains,
the elements can be sorted with n log k+O(n) comparisons (think for instance of natural
merge sort).

In order to lower bound the number of comparisons needed to end in a “yes”-leaf,
algorithm A can be extended to A∗ as follows: whenever A concludes to be in a “yes”-
leaf, A∗ continues to completely sort the elements of S (which requires no more than
n log k+O(n) further comparisons). Let S(n, k) denote the number of linear orderings of
the elements in S that end in a “yes”-leaf. Then, S(n, k) ≥ n!(1−

(n
k+1

)

/(k)!) , since there

are n! different linear orderings and
(n
k

)

possible subsequences of size k each increasing with
probability 1/k!. The comparison tree corresponding to A∗ has thus at least S(n, k) leaves,
and therefore must perform at least logS(n, k) comparisons in its worst case. Therefore,
A must perform at least log S(n, k)− n log k −O(n) comparisons in its worst case to end
up in a “yes”-leaf, which is Ω(n log n) when choosing k = 3 · √n.

We can use the above proof techniques to show that every algorithm, that computes
a log n-approximation on longest increasing subsequence must perform at least Ω(n log n)
comparisons. Let B be an log n-approximation algorithm for LIS(S) under our error
model (i.e., we can always simulate our error model in the error-free case) and consider
a relaxation of the problem of determining whether |LIS(S)| is smaller than k log n. In
this relaxation we require the answer to be “yes” (resp. “no”) if |LIS(S)| < k (resp.
|LIS(S)| ≥ k log n), while we do not impose any restriction on the range k ≤ |LIS(S)| <
k log n. It is clear that algorithm B can be used to solve this relaxed problem without
increasing the number of needed comparisons. Therefore, the associated comparison tree

11

must reach a leaf corresponding to answer “yes” for all linear orderings on the elements
in S that contain no increasing subsequence of length k, while the largest antichain in
any such an ordering is smaller than k log n. This implies that B∗ (still in the error-free
case) needs at least n log(k log n)+O(n) further comparisons in the worst case to sort the
elements in S, and B needs at least log S(n, k)− n log(k log n)−O(n) comparisons in the
worst case to end in a “yes”-leaf, which is in Ω(n log n) if we set k = n2/3.

Finally, we can conclude that our Approximation-Algorithm performs in asymptoti-
cally optimal time, since we can always simulate our error model in the error-free case.

6 Conclusion

Although a logarithmic approximation ratio might not seem very exciting at first glance,
it turns out that this is the best one that can be obtained in the presence of persistent
comparison errors. In this respect, it is interesting to see that there exist such a simple
recipe to compute a logarithmic approximation. A recipe that can use as a black box any
algorithm that computes a longest increasing sequence if no comparison errors happen:

• First, obtain an approximately sorted sequence Sapx of the elements such that the
maximum dislocation is d and redefine the comparisons according to this order.
Then, partition the elements into 2d subsets, such that every 2d-th element in Sapx

gets into the same partition, and obtain 2d input subsequences based on this parti-
tion. Finally, run the algorithm on every input subsequence and return the longest
result.

As indicated earlier, our Approximation-Algorithm has the advantage, that it performs
much better than O(log n)-approximate on many input sequences and is even optimal in
the case where the longest increasing subsequence is already 2d-distant in Sapx, whereas
this is not necessarily true when using the simple recipe. Moreover, it is easy to observe
that the Approximation-Algorithm is never worse than the recipe.

Finally, we would like to explain how the upper bound on the approximation factor can
be generalized. Our Approximation-Algorithm actually succeeds whenever the approxi-
mately sorted sequence has maximum dislocation at most d. This implies that the result
can be parametrized and also used in other models with comparison comparison errors.

• Whenever one can obtain a total order with maximum dislocation d, the Approximation-
Algorithm is 2d-approximative.

Consider for instance the so-called threshold-model [1, 11, 15], where comparisons be-
tween numbers that differ by more than some threshold τ are always correct, while those
between numbers that differ by less than τ can fail persistently (with some probability
possibly depending on the difference or even adversarially). If the input sequence S is
a permutation of the numbers {1 . . . , n}, running Quicksort in this error model yields a
sequence with maximum dislocation 2τ (see [15]). Thus, our Approximation-Algorithm
finds a 4τ -approximation of the longest increasing subsequence in S.

References

[1] Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting and
selection with imprecise comparisons. ACM Transactions on Algorithms, 12(2):19,
2016.

12

[2] David Aldous and Persi Diaconis. Longest increasing subsequences: from patience
sorting to the baik-deift-johansson theorem. Bulletin of the American Mathematical
Society, 36(4):413–432, 1999.

[3] Eitan Bachmat, Daniel Berend, Luba Sapir, Steven Skiena, and Natan Stolyarov.
Analysis of aeroplane boarding via spacetime geometry and random matrix theory.
Journal of Physics A: Mathematical and General, 39(29):L453, 2006.

[4] Jinho Baik, Percy Deift, and Kurt Johansson. On the distribution of the length of
the longest increasing subsequence of random permutations. Journal of the American
Mathematical Society, 12(4):1119–1178, 1999.

[5] Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subse-
quences and patience sorting. Inf. Process. Lett., 76(1-2):7–11, 2000.

[6] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Pro-
ceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 268–276,
2008.

[7] Badrish Chandramouli and Jonathan Goldstein. Patience is a virtue: revisiting merge
and sort on modern processors. In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 731–742, 2014.

[8] Maxime Crochemore and Ely Porat. Fast computation of a longest increasing subse-
quence and application. Inf. Comput., 208(9):1054–1059, 2010.

[9] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen
White, and Steven L. Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27(11):2369–2376, 1999.

[10] Michael L. Fredman. On computing the length of longest increasing subsequences.
Discrete Mathematics, 11(1):29–35, 1975.

[11] Stefan Funke, Kurt Mehlhorn, and Stefan Näher. Structural filtering: a paradigm for
efficient and exact geometric programs. Comput. Geom., 31(3):179–194, 2005.

[12] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with
recurrent comparison errors. In 28th International Symposium on Algorithms and
Computation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand, pages 38:1–
38:12, 2017.

[13] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal dislo-
cation with persistent errors in subquadratic time. In 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, pages 36:1–36:13, 2018.

[14] Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal
Sorting with Persistent Comparison Errors. ArXiv e-prints, April 2018.

[15] Barbara Geissmann and Paolo Penna. Inversions from sorting with distance-based
errors. In SOFSEM 2018: Theory and Practice of Computer Science - 44th Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science,
Krems, Austria, January 29 - February 2, 2018, Proceedings, pages 508–522, 2018.

13

[16] Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant algo-
rithms. In Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbrücken,
Germany, September 5-9, 2011. Proceedings, pages 736–747, 2011.

[17] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18 – 31, 1980.

[18] Chris N. Potts, David B. Shmoys, and David P. Williamson. Permutation vs. non-
permutation flow shop schedules. Operations Research Letters, 10(5):281–284, 1991.

[19] I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing
a longest common increasing subsequence. Inf. Process. Lett., 93(5):249–253, 2005.

[20] Hongyu Zhang. Alignment of BLAST high-scoring segment pairs based on the longest
increasing subsequence algorithm. Bioinformatics, 19(11):1391–1396, 2003.

14

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Upper Bound and Approximation-Algorithm
	3.1 Upper Bound
	3.2 Approximation-Algorithm
	3.3 Proof of Theorem ??

	4 Lower Bound on the Approximation Factor
	5 Lower Bound on the Running Time
	6 Conclusion

