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Abstract. We present a method for metric optimization in the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework, by
treating the induced Riemannian metric on the space of diffeomorphisms
as a kernel in a machine learning context. For simplicity, we choose
the kernel Fischer Linear Discriminant Analysis (KLDA) as the frame-
work. Optimizing the kernel parameters in an Expectation-Maximization
framework, we define model fidelity via the hinge loss of the decision
function. The resulting algorithm optimizes the parameters of the LD-
DMM norm-inducing differential operator as a solution to a group-wise
registration and classification problem. In practice, this may lead to a
biology-aware registration, focusing its attention on the predictive task
at hand such as identifying the effects of disease. We first tested our
algorithm on a synthetic dataset, showing that our parameter selection
improves registration quality and classification accuracy. We then tested
the algorithm on 3D subcortical shapes from the Schizophrenia cohort
Schizconnect. Our Schizpohrenia-Control predictive model showed sig-
nificant improvement in ROC AUC compared to baseline parameters.
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1 Introduction

Image registration, and more generally geometric alignment underlies a large
number of analyses in medical imaging, particularly neuroimaging. As one of
the mainstays of medical image analysis, the problem has been addressed exten-
sively over the last 2+ decades, with several flavors of robust algorithms [1]. A
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number of registration approaches develop an explicit metric space comprised
of the geometric objects of interest — anatomical shapes, diffusion tensors, im-
ages, etc. Prominent among these is the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework [2]. Instead of treating images as objects of in-
terest directly, LDDMM builds a space of image-matching diffeomorphisms using
a Riemannian metric on velocity fields. This metric is induced by a differential
operator which at once controls the nature of the metric space and regularizes
the registration.

The structure of such a space — a manifold of smooth mappings with well-
defined geodesics — enables generalizations of several standard statistical anal-
ysis methods. These methods adapted to the Riemannian setting has been re-
peatedly shown to improve their sensitivity and ability to discern population dy-
namics when compared to projecting the data onto Euclidean domains. Works in
this area include computation of the geometric median and metric optimization
for robust atlas estimation [3,4], time series geodesic regression [5], and principal
geodesic analysis [6].

With the exception of [4], in the works above the metric is assumed to be
fixed. Further, the metricity and Riemannian inner product with which the LD-
DMM space is endowed has not been used explicitly in predictive modeling up
to now. In this work, we strive for two complementary aims: (1) to exploit the
Riemannian metric on registration-defining velocities as a kernel in a classifica-
tion task and (2) to optimize the metric to improve classification. We follow an
Expectation-Maximization (EM) approach similar to [4], alternating between
minimizing image misalignment for kernel estimation, and optimizing model
quality over the kernel parameters. In this work, we choose the kernel Fischer
linear discriminant classifier for simplicity, though other predictive models are
admissible in our framework as well. It is our hope that by explicit tuning the
diffeomorphism metric to questions of biological interest, the carefully crafted
manifold properties of LDDMM will gain greater practical utility.

Our experiments consist of synthetic 2-dimensional shape classification, as
well as classifying hippocampal shapes extracted from brain MRI of the Schiz-
connect schizophrenia study. In both cases, the classification accuracy and ROC
area under the curve (AUC) improved significantly compared to default baseline
kernel parameters.

2 Methods

2.1 Metric on diffeomorphisms

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) was first in-
troduced in [2]. The goal of the registration is to compute a diffeomorphism
φ : Ω → Ω, where the Ω is the image domain. The diffeomorphism φ is gener-
ated by the flow of a time-dependent velocity vector field v, defined as follows:

∂φ(t, x)

∂t
= v(t, φ(t, x)),

φ(0, x) = id,
(1)



where id is the identity transformation: id(x) = x, ∀x ∈ Ω. This equation gives
a path φt : Ω → Ω, t ∈ [0, 1], in the space of diffeomorphisms. Estimation of the
optimal diffeomorphism via the basic variational problem in the space of smooth
velocity fields V on Ω takes the following form, constrained by 1:

v∗ = argmin
v

 1∫
0

‖vt‖2L dt+
1

σ2
‖I0 ◦ φ− I1‖2

 . (2)

The required smoothness is enforced by defining the norm ‖·‖L on the space V
of smooth velocity vector fields through a Riemannian metric L.

The Riemannian metric L should be naturally defined by the geometric struc-
ture of the domain. The inner product ‖v‖2L = 〈Lv, v〉 can also be thought of as
a metric between images, i.e. the minimal diffeomorphism required to transform
the appearance of I0 to be as similar as possible to I1. Since the diffeomorphism
space is a Lie Group with respect to eq.1, the Riemannian metric defined sug-
gests a right-invariance property. The original LDDMM work [2] defines L as
a smooth differential self-adjoint operator L = (α∆ + βE), where E is iden-
tity operator. Here, we choose to use an L based on the biharmonic operator
L = (α∆ + βE)2, as e.g. in [7]. The parameters (α, β) correspond to convexity
and normalization terms, respectively. These parameters significantly affect the
quality of the registration. It is not obvious how to select α and β, though they
effectively define the geometric structure of the primal domain. Indeed, these are
the parameters we optimize in our EM scheme below.

2.2 Predictive Model

Consider a standard binary classification problem: given a sample
(
xi, y(xi)

)n
i=1

,
where y(xi) ∈ {1,−1} is a class label, find a classification function ŷ approxi-
mating the true one y. One of the standard linear techniques in statistical data
analysis is the Fisher’s linear discriminant analysis (LDA). The kernel Fisher
Discriminant Analysis (KLDA) introduced in [8] is a generalization of the classi-
cal LDA. There are several approaches to derive more general class separability
criteria. KLDA derives a linear classification in the embedding feature space
(RKHS[9]) induced by a kernel k, what corresponds to a non-linear decision
function in the original, or “input” space. The main idea of LDA is to find a one-
dimensional projection w in the feature space that maximizes the between-class
variance while minimizing the within-class variance. KLDA seeks an analogous
projection in the embedding space, where means (Mz) and covariance matrices
(Σz) for each class z ∈ {−1, 1} are computed. The (K)LDA cost function takes
the following quadratic rational form:

J(w) =
wT (M1 −M−1)(M1 −M−1)Tw

wT (Σ−1 +Σ1)w
=
wTMw

wTNw
, (3)



where

(Mz)i =
1

nz

∑
x`:y(x`)=z

k(xi, x`),

(Σz)i,j =
1

nz

∑
x`:y(x`)=z

k(xi, x`)k(xj , x`)− (Mz)i(Mz)j .

Here nz is a number of objects from class z in the sample.
The solution of the problem J(w) → min is known to be ŵ = N−1(M1 −

M−1). The decision function for a new observation x is based on the projected
distance to the training sample means, wT (Mz−x). The M-step in an EM formu-
lation requires a differentiable measure of model quality which in our case is the
accuracy of classification. The more common approach is to formulate a proba-
bilistic model which leads to a log-likelihood optimization. Such an approach is
used e.g. in [4]. In our case, this can be done by modeling the classifier’s output
with a parametric distribution.

However, we found that such a formulation using the sigmoid distribution
function leads to an unstable solution. Instead, we propose to use the hinge loss
defined for KLDA as

h(x′, z) = max{0, 1− z y(x′)}

y(x′) =

n∑
i=1

wi

(
k(xi, x

′)− (M1)i + (M−1)i
2

)
,

(4)

where z ∈ {−1, 1} is a true label for the new observation x′ and k(xi, x
′) is the

inner product (i.e. the kernel) between x′ and the training observation xi. While
both hinge loss and log-likelihood formulations eventually lead to some locally
optimal solutions on simple problems, such as our synthetic dataset, the former
exhibits greater stability. For the hippocampal data, only hinge loss minimization
leads to a stable solution.

2.3 Learning the diffeomorphic metric

The main goal of this work is to use the registration-derived metric to classify
images. Let us denote the Riemannian metric by KL(α, β) = 〈Lv, v〉. In practice,
β plays an insignificant role and can be fixed, as multiplication of the velocity
by a constant does not change the optimization problem in LDDMM. We focus
on optimizing α, fixing β = 1 as a normalization term.

We optimize α in the EM framework as follows.
• E-step:
Register each pair of images in our training sample optimizing equation 2

to derive KL(xi, xj). Define K(xi, xj) = exp{−γKL(xi, xj)} and apply KLDA
using K(xi, xj). The parameter gamma is estimated by grid search to make a
computation easier, but it can be also estimated by gradient descent. Estimate
the hinge loss 4 given a fixed α.



• M-step:
Minimize the hinge loss 4 with respect to α.
The primary computational challenge above is in the M-step. Though the

decision function is non-convex with respect to α, we seek a local minimum via
gradient descent. We give the gradient direction with respect to θ = (α, β) below,
keeping in mind that β is fixed.

dh(x′, z)

dθ
=

{
−z dy(x

′)
dθ , if zy(x′) < 1,

0, otherwise.
(5)

Using the matrix notation y(x′) = wT
(
k(x′)− (M1 +M−1)/2

)
with ki(x

′) =
K(xi, x

′) one can obtain

dy(x′)

dθ
=

(
k(x′)− M1 +M−1

2

)T
dw

dθ
+ wT

(
dk(x′)

dθ
− 1

2

d(M1 +M−1)

dθ

)
,

dw = −N−1(dN)N−1(M1 −M−1) +N−1(dM1 − dM−1),

dK(xi, x
′)

dθ
= −γK(xi, x

′)
dKL(xi, x

′)

dθ
dKL(xi, x

′)

dθ
=

(
2
〈
(α∆2 + β∆)vx,x′ , vx,x′

〉
,

2
〈
(α∆+ βE)vx,x′ , vx,x′

〉
.

)
(6)

The resulting algorithm requires n × (n − 1) registrations at each EM step
to train, and n registrations to a new image from each of n images in training
sample to apply.

3 Experiments

To derive a baseline set of metrics between pairs of images, we selected α to
maximize mutual information between registered images. This metric was then
used to define the kernel in the KLDA classifier, the results of which we used as
a baseline accuracy for our proposed method.

Our initial experiments were based on 100 images of rectangles, and 100
images of ellipses, each generated with a random locally affine deformation suffi-
ciently noisy to obscure the original class of the image to the naked eye (Figure
1). Using 50 deformed ellipses and 50 deformed rectangles as a training dataset,
we optimized α until hinge loss convergence. Figure 2) (left) shows that EM
converges stably after several iterations based on ROC AUC. The final model,
chosen based on the best training ROC AUC, performed nearly as well on the
synthetic test dataset: ROC AUC = 0.84.

Our 3D hippocampal shape sample was derived from the SchizConnect brain
MRI dataset [10]. We used right hippocampal segmentations extracted with
FreeSurfer [11] from 227 Schizophrenia (SCZ) patients and 496 controls (CTL).
All shapes were affinely registered to the ENIGMA hippocampal shape atlas
[12], and their binary mask was computed from the transformed mesh model.



Fig. 1: Synthetic data generation
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Fig. 2: ROC area under the curve vs. EM iterations on (left) synthetic data
and (right) hippocampal shape

.

We again used 100 training examples (50 CTL, 50 SCZ) in all our experi-
ments below, using the remaining sample as a test dataset. To derive baseline
results to compare with our algorithm’s performance on hippocampal shapes,
we constructed two additional discriminative models.

(1) A logistic regression model simply using the vectorized binary mask. No
spatial information is used in this model.

(2) A KLDA model constructed using LDDMM metrics optimized for regis-
tration quality.

ROC AUC scores for the three models are shown in 1.

As expected, ignoring spatial information leads to significant drop in perfor-
mance. It is also encouraging to see improvement in the classification accuracy



Logistic Regression Maximum MI Optimized LDDMM-kernel

ROC AUC 0.36±0.02 0.72 ± 0.06 0.75 ± 0.06

Table 1: ROC AUC scores for three models

when the LDDMM metric is optimized for this explicitly. The stability of the
EM algorithm trained on hippocampal shapes is comparable to stability when
synthetic data, as seen in Figure 2) (right). To visualize the difference in the
kernel-based models, we project the mean difference between SCZ subjects and
controls in the scalar momenta defining the registration velocity fields [7], as
seen in Figure 3.

4 Conclusion

We have presented a method to optimize registration parameters for improved
classification performance. Method exploits the geodesic distance on the space of
diffeomorphisms as an image similarity measure to be learned in the fashion of
traditional metric learning [13]. Our aim in this work was twofold: 1. to show that
the metricity of a high dimensional space of geometric objects can be successfully
used to improve predictive modeling, and (2) to suggest a means of making the
sophisticated mathematical machinery of constructions such a LDDMM more
useful in medical imaging practice. As a first attempt, we believe this work shows
progress towards both goals. A stable LDDMM metric optimization is devised,
and classification accuracy in our real-world application is indeed improved.
The main drawback is the significant computational burden, as N ×N training
registrations are required. One approach to alleviate this problem is to lift the
classification problem onto the tangent space at identity, thus requiring only N
training registrations to an atlas, similar to [4]. Other generalizations of the idea
presented here are possible both in LDDMM and other metric frameworks. We
hope our work will inspire these generalizations to be developed.
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