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Abstract

The perirhinal cortex (PRC) is a site of early neurofibrillary tangle (NFT) pathology in 

Alzheimer’s disease (AD). Subtle morphological changes in the PRC have been reported in MRI 

studies of early AD, which has significance for clinical trials targeting preclinical AD. However, 

the PRC exhibits considerable anatomical variability with multiple discrete variants described in 

the neuroanatomy literature. We hypothesize that different anatomical variants are associated with 

different patterns of AD-related effects in the PRC. Single-template approaches conventionally 

used for automated image-based brain morphometry are ill-equipped to test this hypothesis. This 

study uses graph-based groupwise registration and diffeomorphic landmark matching with 

geodesic shooting to build statistical shape models of discrete PRC variants and examine variant-

specific effects of AD on PRC shape and thickness. Experimental results demonstrate that the 

statistical models recover the folding patterns of the known PRC variants and capture the expected 

shape variability within the population. By applying the proposed pipeline to a large dataset with 

subjects from different stages in the AD spectrum, we find 1) a pattern of cortical thinning 

consistent with the NFT pathology progression, 2) different patterns of the initial spatial 

distribution of cortical thinning between anatomical variants, and 3) an effect of AD on medial 

temporal lobe shape. As such, the proposed pipeline could have important utility in the early 

detection and monitoring of AD.

1 Introduction

The human brain is highly variable in terms of its folding pattern and cytoarchitectural 

boundaries. Current leading paradigms in population studies using brain structural MRI are 

primarily based on normalization techniques that use a single template to capture variability 

between all subjects in a population, even when one to one correspondence between 
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anatomies might not exist. Failing to account for the anatomical variability in the analysis 

degrades our ability to reliably localize and accurately quantify brain regions in individual 

subjects. Although characterizing anatomical variability of the brain “on a whole” is 

desirable, it might not be feasible given an almost infinite number of anatomical 

configurations. However, when focusing on specific local brain regions, regional anatomical 

variability can often be described by a few anatomical variants. A recent study by Ding and 

Van Hoesen [1] found that in the human perirhinal cortex (PRC), two major anatomical 

variants account for 97% of the cases. The PRC, consisting of Brodmann areas 35 and 36 

(BA35/36), plays an important role in memory and is a site of early neurofibrillary tangle 

(NFT) pathology, which is linked to synaptic loss and cell death in Alzheimer’s disease 

(AD). The two variants are characterized by the morphology of the collateral sulcus (CS) 

(continuous vs. discontinuous CS). Given the early involvement of the PRC in AD, there is 

considerable interest in using MRI-based measures of its atrophy as biomarkers, e.g., for 

tracking the effectiveness of future drugs targeting NFT pathology in preclinical AD stages. 

However, it is important to ensure that such biomarkers take into account the anatomical 

variability of the PRC, since the extents of AD-related pathology in the PRC are likely to 

differ between the different anatomical variants due to the sheet-like organization of the 

cerebral cortex. For example, for subjects with deeper CS, early NFT deposition may occur 

more medially than for subjects with a shallow CS.

In our prior work [2], [3], we showed that graph-based multi-template analysis better 

accounts for the existence of discrete PRC variants and improves the quality of template 

fitting and sensitivity to AD effects. The current paper goes further to show that, by coupling 

with geodesic shooting for diffeomorphic shape matching [4], [5], the graph-based multi-

template analysis is able to characterize PRC anatomical variability that is more meaningful 

than a conventional single-template approach. Furthermore, our paper compares patterns of 

AD-related change between PRC anatomical variants. Disambiguating these patterns using 

multi-template analysis may lead to more sensitive MRI-based measurements of early AD-

related changes in the PRC, which may in turn provide more effective biomarkers for 

monitoring change in preclinical AD research and clinical trials.

2 Materials and Method

2.1 Dataset

This paper uses two MRI datasets. A publicly available dataset described in [6] (referred to 

as T1-atlas) with manual segmentations of BA35, BA36, entorhinal cortex (ERC), CS and 

meninges is used for multi-atlas segmentation and to define shape models of anatomical 

variants of the PRC. It consists of 29 [14 mild cognitive impairment (MCI), 15 normal 

control (NC)] 1.0 mm3 MPRAGE T1-weighted MRI scans (T1w) upsampled to 0.5×0.5×1 

mm3 using a super-resolution technique [7] (SR-T1w).

Shape models derived from the T1-atlas are used to analyze a large dataset of baseline T1w 

MRIs from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI subjects (n = 

603, see Table 1) were grouped into five severity categories based on diagnosis, cognitive 

symptoms and PET evidence of amyloid pathology: amyloid negative controls (AN-CN, n = 

180) and amyloid positive controls, (AP-NC, n = 94), early MCI (AP-EMCI, n = 130), late 
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MCI (AP-LMCI, n = 109), and AD (AP-AD, n = 81). These categories reflect the continuum 

from cognitively normal to mild AD.

2.2 Construction of Statistical Models of Anatomical Variants of the PRC

To boost the size of the T1-atlas, images were flipped across the midsagittal plane, yielding 

a total of 58 samples. Manual segmentations were assigned by visual inspection to one of 

two variants (1: continuous CS vs. 2: discontinuous CS, [1]). Then, a statistical model for 

each variant was constructed using the following steps.

2.2.1 Template Construction Using Graph-Based Groupwise Registration—A 

graph-based groupwise registration method similar to [8] is used to construct a population 

template of each anatomical variant (variant-template). First, we construct an undirected 

complete graph with the samples as vertices and edge weights indicative of dissimilarity 

between pairs of samples. To obtain the weights, affine and coarse-scale deformable 

diffeomorphic registration is performed between each pair of multi-label manual 

segmentations in the atlas. This uses a fast greedy diffeomorphic implementation adapted 

from [9], [10]b, with the sum of normalized cross correlation computed separately for each 

label as the image similarity metric. Importantly, a large spatial regularization term (the 

smoothing Gaussian kernel size is set to a 2.0 mm, which is a large value considering the 

PRC is a small structure) is applied during diffeomorphic registration to limit the amount of 

deformation that is allowed. Then, the weight of each pair of segmentations is measured as 

the one minus the generalized Dice similarity coefficient (GDSC) [11] of labels BA35, 

BA36 and CS between the warped moving segmentation and the segmentation of the target 

sample. Due to strong regularization, deformable registration can only correct for coarse-

scale differences in shape, which makes the residual disagreement measured by one minus 

GDSC indicative of anatomical dissimilarity. Once the graph is generated, we construct a 

minimum spanning tree that includes all the nodes in the graph [12] and mark as its “root” 

the sample that has the shortest path along the tree to all the nodes. The shortest path from 

each sample to the MST root corresponds to a sequence of affine and deformable 

registrations that involves the least amount of deformation at each step. A unique path from 

each sample to the root is then identified. For each sample, a second set of finer-scale 

deformable registrations (with the smoothing kernel size set to 0.8 mm) are performed 

between each pair of samples along the unique path. Then, we compose the sequence of 

affine transforms and finer-scale deformations (rather than the coarse deformations) along 

these unique paths and warp the segmentations of all the samples to the space of the root 

sample. In order to further align all the samples, at the end of this step, a population template 

is built from the warped multi-label segmentations in the space of the root sample using the 

same metric as in the pairwise coarse registration by applying the iterative unbiased template 

building algorithm [9].

2.2.2 Quantifying Shape Variability Using Pointset Geodesic Shooting—
Subsequent shape analysis uses a large deformation diffeomorphic metric mapping 

(LDDMM) on point landmarks via geodesic shooting [4], [5], [13]. This provides several 

b“Greedy” tool (https://github.com/pyushkevich/greedy)
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benefits: (1) diffeomorphic transformations of the template shape toward each of the subject 

shapes can be represented compactly using the initial momentum vector field; (2) linear 

statistics such as PCA can be applied to the initial momenta to characterize variability and to 

generate statistically plausible shapes; (3) landmark matching is simpler and more efficient 

than image-based geodesic shooting, and makes particular sense for matching multi-label 

images; (4) landmark correspondences can be easily interpolated to yield diffeomorphic 

transformations of the entire image domain. Using geodesic shooting in Section 2.2.1 will 

make the pipeline more consistent. However, performing N2 registrations in the pairwise 

registration step using geodesic shooting is not efficient and impractical. Since we aim to 

develop an efficient pipeline for our application, we choose to use a fast implementation of 

the greedy registration approach instead.

For each variant-template, we first generate a dense surface mesh (MT, 104 vertices) for the 

union of ERC, BA35 and BA36 labels, on which we uniformly sample a sparse set of L 

point landmarks XT = {X1
T, …, XL

T} (about 2500 landmarks are sampled.) using Poisson Disk 

Sampling [14]. The landmarks are then warped to the space of each sample i of the N 
samples using the deformation field generated in Section 2.2.1, denoted as 

Xi = {Xi, 1, …, Xi, L}. The Procrustes algorithm [15] is applied to rigidly align Xi to XT, 

denoted as Xi. Then geodesic shooting is performed between Xi and XT to generate the 

initial momenta of all the subjects. We follow the notation of the geodesic shooting method 

in [4]. Let α be a L × 3 matrix of the landmarks’ initial momenta. Let q(t; α) = {q1(t; α), …, 

qL (t; α)} describe the evolution of landmark positions over time t ∈ [0,1]and let p(t; α) = 

{p1 (t; α), …, pL (t; α)} be the corresponding evolving momenta at time point t, with q(0; α) 

= XT, p(0; α) = α. The Hamiltonian H(p, q) = ∑ j ∑k e
− ∣ q j − qk ∣2 ∕ 2σ2

p j
T pk describes the 

kinetic energy of the evolving landmark system and is constant over time; evolution is given 

by the system of equations dq
dt = ∂H(q, p)

∂ p , dp
dt = − ∂H(q, p)

∂q  [16]. With this notation, the 

landmark-matching process can be formulated as an optimization problem for each sample i

αi
∗ = arg min

α ∈ ℝ3L
H(XT, α) + λ ⋅ ‖q(1; α) − Xi‖ (1)

where λ is the weight of the fidelity term. The optimization problem is solved using a 

gradient-descent method as described in [4]. After optimization, a smooth time-varying 

velocity field over the entire spatial domain can be obtained from the optimal landmark 

trajectories q(t; αi
∗) and the corresponding momenta p(t; αi

∗) using eqn 2 and the 

diffeomorphic transformation over the image domain ϕi(x, t) can be derived by integrating 

the corresponding time points of the velocity field.

dϕi(x, t)
dt = vi(x, t) = ∑l = 1

L Gσ(‖ql(t; αi
∗) − x‖) ⋅ pl(t; αi

∗), xϵℝ3 (2)
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A drawback of the graph-based groupwise registration approach (Sec 2.2.1) is that the 

template is very similar in shape to the root sample and may not be a good representation of 

the groupwise mean. We use an iterative approach to perform shape correction. Let XT, 0 be 

the landmark locations in the root template. At iteration k, we perform the following steps: 

(1) for each sample i, we rigidly align Xi to XT,k to generate Xi
k, and αi

k is obtained by 

geodesic shooting from XT,k to Xi
k (eqn 1), (2) we compute the average initial momentum 

α‒k = 1
N ∑i = 1

N αi
k, (3) the template landmarks XT,k are deformed by geodesic shooting in the 

direction of α‒k to generate XT , k + 1, (4) to avoid expansion or shrinkage of the landmark 

configurations due to global scaling, XT,k are rigidly aligned to XT , k + 1 to generate the 

updated template landmarks positions XT,k+1 and the template surface mesh MT,k is updated 

to MT,k+1 using the same rigid transformation. This process is repeated until the template 

becomes stable yielding the final template landmarks XT,K and the final template surface 

mesh MT,K.

PCA is applied to the initial velocity fields, computed from the corresponding initial 

momenta generated in the last iteration, to quantify anatomical variability. Principal modes 

are visualized by applying geodesic shooting to MT,K along the principal eigenvectors in 

both the positive and negative directions.

2.3 Fitting the Templates to A New Target Image

(1) Automatic segmentation and template assignment.—A multi-atlas 

segmentation method [17] is used to generate automatic segmentations of bilateral MTL 

substructures in ADNI T1w MRI scans, using the T1-atlas as the atlas set. For a given target 

T1w MRI scan, let Stg denote its segmentation. To automatically determine the anatomical 

variant of Stg, similar to the pairwise registration step in Section 2.2.1, Stg is coarsely 

registered to all the 58 samples in the T1-atlas and the GDSCs of labels BA35, BA36 and CS 

are computed. The six samples with the highest GDSCs are used to perform weighted (by 

GDSC) voting and the variant that gets the highest vote is assigned to the target sample.

(2) Template fitting.—The sample in the atlas set that belongs to the same anatomical 

variant with Stg and yields the highest GDSC is identified, referred to as Sbdg. Then, the 

landmarks in the corresponding variant-template space, i.e. XT,K, are warped to the space of 

the target sample, referred to as Xtg, using the deformation field generated by composing the 

deformations from the variant-template to Sbdg (obtained in Section 2.2.1) and from Sbdg to 

Stg [generated in step (1) above]. Similar to that in Section 2.2.2, we (1) rigidly align Xtg to 

XT,K using Procrustes algorithm [15] to generate Xtg, (2) compute the optimal αtg by 

matching XT,K to Xtg and (3) deform MT,K to the space of each subject by applying the 

velocity field derived from αtg using eqn 2.
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3 Experiments and Results

3.1 Statistical Shape Models

In the T1-atlas, 24 cases were assigned to variant 1 and 34 samples to variant 2. Figure 1 

shows the smooth variant-template meshes (first two rows, middle column) and the principal 

mode of variations of the two statistical models (Supplementary Videos S1). As expected, 

the two variant-templates resemble anatomical variants with continuous and discontinuous 

CS, respectively, and appear to be consistent with the anatomical subtypes described in [1]. 

The first PCA mode of variant 2 captures variation in the relative length of anterior and 

posterior CS. This variability makes anatomical sense, as variant 2 has been further 

dichotomized in anatomy literature into two subtypes based on the relative length of anterior 

and posterior CS [1]. This shows that the graph-based template-building approach is able to 

align subjects with discontinuous CS. The first PCA mode of variant 1 captures variation in 

the depth of the CS, which is also a recognized source of variability in this region [1].

To compare our multi-template pipeline with the conventional approach, we also build a 

statistical shape model for all the samples without grouping by anatomical variants (the third 

row in Figure 1, Supplementary Video S2). This single-template approach has two major 

limitations: (1) An anatomically implausible shape is observed in the middle of the CS 

(white arrow in Figure 1); (2) The first PCA mode appears to be less meaningful 

anatomically, capturing a combination of variability in depth of the CS and the relative 

length of anterior and posterior CS.

3.2 AD-Related Cortical Thinning

In the ADNI dataset, the number of subjects assigned to different anatomical variants by 

group is shown in Figure 2. Across all groups and both hemispheres, 558 (46%) samples 

were classified into variant 1 and 648 (54%) into variant 2. The proportion of variants 

between left and right is not significantly different (χ2 = 2.6, p > 0.1).

To evaluate the patterns of cortical thinning, regional thickness analyses were performed 

between the control group (AN-CN) and the 4 patient groups separately. Regional thickness 

is measured by first extracting the pruned Voronoi skeleton [18] of the fitted template mesh 

and computing the distance between each vertex and the closest point on the skeleton. A 

general linear model is fit at each vertex with thickness as the dependent variable, group 

membership as the factor of interest, and age, education as covariates. To account for 

multiple statistical comparisons, cluster-level familywise error rate correction is used [19] 

(empirical threshold: uncorrected p = 0.05). Permutation testing with 1000 iterations is used 

to assign a corrected p-value to each cluster. Analysis is performed separately for each 

variant of each hemisphere.

As shown in Figure 2, we observed a consistent pattern of disease progression across 

variant-templates of both hemispheres: initiating largely in BA35 as early as in the AP-

EMCI stage and progressing to ERC and BA36 in later stages. This is consistent with 

neuropathological staging of NFT progression [20]. Cluster size, spatial distribution, and 

magnitude of significance increase along with disease severity. Also, significant clusters at 

later stages almost always cover the ones in the corresponding previous stages. No 
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significant effects are observed in AP-CN. Being able to replicate the patterns of disease 

progression in the MTL observed in ex vivo pathology studies using in vivo MRI (Figure 2) 

has great potential significance for tracking the early neurodegenerative stages of disease 

critical for measurement of intervention effects in clinical trials.

A novel aspect in this study is that we examine the relationship between the spread of AD-

related atrophy and PRC variants. The first site of cortical thinning in variant 1 appears to be 

located at the fundus of the CS (gray arrows in Figure 2), whereas in variant 2, it is located 

more medially, at the boundary of ERC and BA35 (yellow arrows in Figure 2). There is not 

much difference between anatomical variants in later stages, probably because the majority 

of the MTL cortex is affected by the disease.

3.3 Effect of AD on MTL Shape

To investigate the effect of AD on MTL shape, for each variant, the initial momenta of 

subjects from the opposite ends of the AD spectrum, i.e. AN-CN and AP-AD (excluded 

cases from the other groups), are converted to initial velocity fields and projected to the first 

m PCA modes that account for 95% of the total variance of the corresponding statistical 

model (m = 19/26 for variant 1/2 respectively) and a support vector machine (SVM) with a 

linear kernel [21] is trained on the PCA loadings to discriminate the two groups. The vector 

orthogonal to the SVM hyperplane, which is assumed to be the direction that best 

discriminates the two groups, is shown in Figure 3 (Supplementary Videos S3). The result 

shows that AD is associated with decrease in overall size of the MTL, cortical thinning and 

widening of the CS. It will be interesting to investigate in future studies whether these shape 

features provide complementary information in identifying disease groups.

4 Conclusion

In this study, we propose a novel analysis pipeline to quantify shape variability of 

anatomical variants of the PRC. Experimental results demonstrate that the statistical models 

recover the folding patterns of the known anatomical variants of the PRC defined in the 

neuroanatomy literature and capture the expected shape variability within the population. In 

addition, when applied to a large dataset with subjects from different stages in the AD 

spectrum, the novel shape analysis reveals a progression of cortical thinning and shape that 

is consistent with known progression of NFT pathology within the MTL cortex related to 

AD. Also, different patterns of the spatial distribution of cortical thinning are observed 

between anatomical variants. Summary thickness measurements extracted from the 

significant clusters (Figure 2) and the features associated with shape changes may be useful 

markers for early detection and tracking disease progression. As such, we believe the 

proposed method may have important utility in the early detection and monitoring of AD 

and the findings in this study may help us better understand the effect of AD on the shape of 

MTL substructures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The variant-templates (the first and second rows) and single-template (the third row), and 

their corresponding principal modes of variability. Yellow dashed circles highlight the 

regions with the most variability. White arrow indicates the anatomically implausible 

structure in the single-template. Videos are available in Supplementary Videos S1 (variant 

templates 1 and 2) and S2 (single template).
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Figure 2. 
t-statistical maps of the contrast between AN-CN and four disease groups. Black contours 

outline significant clusters and the corrected p-values are indicated by the white arrow and 

text. The corresponding anatomical labels are shown in the first column.
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Figure 3. 
The effect of AD on medial temporal lobe cortex shape of the anatomical variants. Videos 

are available in Supplementary Videos S3.
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Table 1.

Demographics of the ADNI dataset

AN-CN AP-CN AP-EMCI AP-LMCI AP-AD

N 180 94 130 109 81

Age (yrs.) 72.0 (6.0) 74.5 (5.7) *** 73.0 (6.9) 71.7 (6.8) 74.9 (7.8) ***

Gender (M/F) 94 / 86 32 / 62 ** 80 / 59 57 / 52 47 / 34

Education (yrs.) 16.9 (2.4) 16.1 (2.7) * 15.7 (2.9) *** 16.6 (2.6) 15.4 (2.6) **

MMSE 29.0 (1.3) 29.0 (1.1) 28.0 (1.7) *** 27.2 (1.9) *** 23.2 (2.1) ***

Note: All statistics are in comparison to AN-CN. Two-sample t-test (age, education and MMSE) and χ2 test (gender) are used.

*
p < 0.05

**
p < 0.01

***
p < 0.001. MMSE = mini-mental state examination.
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