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Abstract. Denial of service attacks are especially pertinent to the in-
ternet of things as devices have less computing power, memory and se-
curity mechanisms to defend against them. The task of mitigating these
attacks must therefore be redirected from the device onto a network mon-
itor. Network intrusion detection systems can be used as an effective and
efficient technique in internet of things systems to offload computation
from the devices and detect denial of service attacks before they can
cause harm. However the solution of implementing a network intrusion
detection system for internet of things networks is not without challenges
due to the variability of these systems and specifically the difficulty in
collecting data. We propose a model-hybrid approach to model the scale
of the internet of things system and effectively train network intrusion
detection systems. Through bespoke datasets generated by the model,
the IDS is able to predict a wide spectrum of real-world attacks, and as
demonstrated by an experiment construct more predictive datasets at a
fraction of the time of other more standard techniques.

1 Introduction

A Denial of Service (DoS) attack targets the availability of a device or net-
work [16], with the intent of disrupting system usability. The most common
method is referred to as Flooding DoS [16], and may be used as an attempt to
deplete the devices’ resources including memory, bandwidth and/or battery. A
DoS attack against an Internet of Things (IoT) network has the potential to
be significantly more detrimental than one against a standard network, this in-
creased vulnerability is due in part to the low computational power and battery
power characteristic of IoT devices [22].

The extant literature has delineated several potential approaches that may
be effective in the mitigation of a DoS attack [23]. They widely speaking fall into
two categories, host based (e.g. Client Puzzles) which puts the computational
effort on the device and network based (e.g. firewall) which offloads the com-
putational effort to a remote server or more powerful device within the system.
However many of these approaches may not scale well in the IoT as computa-
tional power, heterogeneity and the large scale of these systems are all limiting
factors that deplete the available choices. One approach that sidesteps many of
these standard detriments is a Intrusion Detection System (IDS) bespoke to the
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IoT system to protect. An IDS is a monitor placed on the network that analyses
incoming messages to detect attacks and/or unwanted traffic. They are trained
using system behaviour data and use these patterns to make the detection.

Organizations and researchers alike have widely recognised the advantages of
adapting IDSs as the norm to monitor against DoS attacks on their systems [17].
Standard approaches used to train IDSs include using a database of known at-
tacks (misuse detection) and testing systems to create a “benchmark” behaviour
and flag any anomaly as a potential attack (anomaly detection) [15]. Implement-
ing an IDS within an IoT network however faces multiple challenges: Firstly, it is
usually challenging to establish a benchmark behaviour in dynamic IoT systems
as devices may constantly shift, new devices might join and behaviours might
change [10], which might prevent using anomaly detection; Secondly, protocols
can vary from one network to another, which necessitates data collection to be
bespoke to an individual system [11]; And thirdly, a misuse detection can be
time consuming to enforce, since collecting data unique to a system and for
each attack is time consuming [15] and some system changes can require data
(or part of the data) to be collected from scratch (e.g. interactive smart homes
where devices can change frequently).

To address the second and third challenges, we present a novel modelling
approach. In brief, our model is a Markov Decision Process (MDP), representing
the IoT network, the attackers, and some processes monitoring the security met-
rics under consideration. A trace of the model (corresponding to a sequence of
actions of the MDP) should match a trace of the actual system, and vice versa,
such that it becomes possible to train a IDS for the actual system on the traces of
the model. The main strengths of our approach is the ability to easily represent
various configurations for the IoT network as well as multiple types of attack-
ers. MDPs have some key advantages: they have substantial tool support such
as PRISM Model Checker [13], they rely on probabilities and non-determinism
to recreate systems and they provide the ability to find the optimum paths
through the system using the reward function. Through the reward function we
create traces of behaviour that mimic attacks on systems by assigning rewards
to successful (damaging) behaviour. Our results highlighted that through this
methodology we were able to consistently produce datasets that resulted in ac-
curate IDSs (detecting attacks on real world systems) and that could be trained
in a fraction of the time. The core contributions of this paper are 1) A model of
an IoT system that enables the generation of synthetic data sets of network be-
haviour 2) Modelling of attack behaviour against a system to train a real world
IDS 3) A quantitative analysis and validation of this model against a real world
implementation of the same system to validate our methodology.

The paper is split into the following sections; In section 2 we discuss the
related work; In section 3 the problem overview is discussed; In section 4 we
introduce our IoT system model and attacks model that generates the network
behaviour; In section 5 we highlight our assessment methodology; In section 6
we discuss the setup for the experiment; Section 7 provides an analysis of our
results and section 8 concludes and discusses future work.
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2 Related Work

2.1 DoS Attacks on IoT Systems

DoS attacks have long been one of the most common and dangerous threats
in any internet system. These attacks become even more dangerous as the IoT
spreads across a vast amount of spectra and parts of life including safety critical
and potentially life endangering ones such as IoT Healthcare and Intelligent
Transportation Systems.

The extant literature highlights several new DoS attacks against IoT system
taking advantage of unique qualities and IoT infrastructures [14,19,8]. One such
attack, battery drain attack focuses on exhausting the devices battery power as
replacing it might be costly, difficult and lead to extensive periods of downtime.
These kinds of attack are very subtle as the behaviour of the attacker might not
necessarily mimic more common attacks such as pure flooding, they attempt
to find battery intensive operations (not necessarily malicious) and repeat them
until the device is out of power. This is only one specific example of the literature
cited above, however, what all of the above have in common is that they are
specialised in their intent of disrupting IoT devices and many of the current
detection systems do not account for them [19]. The literature highlights that
there is a constant evolution of attacks, as can be seen using resources such as
ExploitDB [21]. When filtering for IoT attacks we can observe that there is a
huge increase in the spectrum of attacks targeting these systems.

These upwards trends in combination with the expansion of the IoT across
various field makes a good argument for a simple way to observe the impact of
these attacks. A formalised model would allow for intuitive means to observe
and quantify these attacks as well as better defend these systems by generating
network behaviour bespoke to them.

2.2 Intrusion Detection Systems

The growing use of internet services in the past few years have facilitated an
increase in DoS attacks. Despite the best preventative measures, DoS attacks
have been successfully carried out against various companies and organizations
enforcing the need for better prevention/detection mechanisms. This is partially
due to the vast new avenues of attack (often unique to IoT) that signature
based schemes such as SNORT [18] struggle to detect. Further work attempts a
more scalable approach that models behaviour of a network (stationary or non-
stationary) and labels abnormal packets as a potential anomaly [6]. Limitations
of this approach are a large number of false positives as well as lack of informa-
tion regarding the attack (e.g. the specific vulnerability the attack relies on) as
opposed to a signature based IDS that is able to tell you exactly what rule is
broken.

The approach suggested in this paper allows for a mixture of these approaches
tackling the limitations of both works. By modelling behaviour of a system, one
can detect any anomaly similar to the second approach and by modelling various
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attacks it can also provide accurate data of the system behaviour whilst being
targeted, allowing for less false positives. To predict “unknown” attacks, the
modelling approach uses a stochastic attacker that attempts different behaviours
allowed by the system policy. Using this data it can create a wide range of attack
signatures and simulate an attacker probing the system.

2.3 Modelling IoT Systems

Several papers address modelling IoT, adopting various different approaches.
Fruth [9] examines various properties of a wireless network protocol namely con-
nectivity and energy power through PRISM, including quantifying the battery
drainage of certain randomized protocols. In previous work [4] we model basic
flooding DoS attacks through PRISM and look at the effectiveness of different
attack strains and mitigation techniques in defending systems of interconnected
IoT devices.

Our proposed method combines these approaches to recreate an accurate
representation of system behaviour and represent a wide range of DoS attacks.
PRISM has been widely used as a excellent method to evaluate and verify models
of IoT systems and protocols, combining these two models by adapting both the
system models and the attack models we successfully model the behaviour and
general properties of a bespoke IoT system. We then use the inbuilt verification
capabilities to ensure correctness relative to mimicking system behaviour by
establishing benchmarks and tests. PRISM and its inbuilt simulation capabilities
allows to simulate attacks against the verified model.

3 Formulation of Problem

An IDS is in essence an evaluator that can establish whether a set of network
packets entering the system is malicious or not, by using what it has “learned”
from previous data. In order to successfully train an IDS for a bespoke system,
a security professional needs to therefore collect large quantities of data. The
problem with this is that to gather this data there are several options each with
several drawbacks [15]: 1) make use of known attack datasets to train the IDS
2) make use of existing IDS (e.g. Snort - Lightweight Intrusion Detection for
Networks [18]) or 3) make use of an exploit database and simulate attacks on
your own system as a pen testing approach. This latter approach is by far the
most precise [15,7] as it allows to search for bespoke attacks to the IoT network
and construct a dataset which is unique and effective for the specific system.

Whilst this approach produces the best suiting dataset it has some major
drawbacks. Firstly, one must find and implement the attacks, which is a difficult
process that might take a very long time[15]. Secondly, one would need to cause
major disruptions to one’s own network by running the attacks which might
obstruct work and productivity. One of the many difficulties in detecting attacks
on systems through the use of IDS is that one cannot (easily) predict potential
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attacker behaviour, or rather it is very difficult to classify an attack if its behavior
differs from known attacks.

We formulate the problem as the following: Firstly, is it possible to overcome
some of these difficulties and train an IDS for a specific IoT system making use
of a model? The model would need to be able to produce similar results of the
third approach, but would have the advantage that it could run parallel to the
real system without causing downtime (Fig.1) . Secondly, by making use of non-
determinism and probabilistic behavior could the modelling approach recreate
behavior that mimics that of an attacker probing and finding weaknesses in the
system?

Fig. 1. Running model along-side real system to generate further datasets

4 IoT System Model

The intent of the modelled system is in essence to produce traces of behavior
that correspond to the behaviour of real devices. A trace of a model under attack
should be a subset of the full (finite) model trace. The traces are however limited
by the drain of battery either by standard behavior or by attacker behavior, as
devices out of battery stop performing actions. This means that going from a set
of traces one can reconstruct a data file of what has taken place in the system.
The traces can be used by the IDS to observe patterns of behavior and set out
rules to use against real-world attackers.

We model the system as a synchronization of three core components: a set of
devices, a set of monitors (each assigned to a device) and an attacker. The other
aspect was measuring the impact of the actions on the system, specifically their
effect on the devices battery and ability to operate successfully. Whilst several
process calculi are available to represent traces of processes we customize the
trace semantics of standard process calculus, as there are several further features
we need to capture in order to be able to produce descriptive datasets. Several
process calculi achieve the notion of communication however this achieves the
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effect of two processes performing an action simultaneously, we wish to capture
the effect of a device sending an action and the other device receiving it. Looking
at common process algebras such as CSP by Hoare [12], the semantics of the
traces are a set of action of the processes. These kinds of traces allow for a human
reader to understand the way the system operates. However an IDS can draw
very little information from these traces and they fail to capture the concept of
messages through the network. Specifically we need to be able to capture the
intercommunication between devices at each transition within the trace (as per a
log in a real system). This meant that output needed to hold further information
rather than just the action taking place, the rules and the way the system was
constructed was built around making a descriptive dataset.

The system as a whole is a tuple Φ = (D,M, T ) where D = {D1, .., Dn} is a
set of devices, M = {M1, ...,Mn} is a set of monitors calculating properties of
their corresponding device and T = {ti, ..., tn} is a set of times to calculate the
changes over time of the system as a consequence of actions being triggered. We
also introduce means to model an attacker as a malicious device.

4.1 Device Model

Given a global set of actions γ, a device D is a pair (A,P ), where A ⊆ γ × [0, 1]
is the set of active actions, where (a, p) ∈ A means the process chooses action a
with probability p, and such that

∑
{p | (a, p) ∈ A} = 1; and P ⊆ γ is the set of

passive actions.
In order to recreate the full spectrum of potential system behaviours we model

the set of actions of the device as the full capabilities of the real world device.
This allows to capture the full set of abilities of its behavior and increases the
accuracy of the benchmarking. This also eases the addition of further devices as
they are simply modelled with the full send and receive action spectrum without
the need to alter the rest of the system. The behavior of a device is in the form
of a guarded communication, which in our model means that the communication
is reliant on a set of conditions being true in order to be triggered. An action
a in the device can only be triggered to begin a communication if it doesn’t
violate the capabilities of the system, such as remaining battery and time per
message. This allows for realistic device behaviour, mimicking the patterns and
constrictions of a real system.

4.2 Monitor Model

A monitor is the part of the system that enables its correct functioning as well as
monitoring dangerous behavior. It calculates the shifts in battery of the various
actions and synchronises with the devices to ensure correctness. A monitor M
controls value λ, where λ is the remaining battery of the device. Given a global
set of battery drains Ω the λ is measured as a quantity that is linearly drained
by a ωa where ωa ∈ Ω is a constant battery drain of an action, the monitor will
update its λ value to λ′ after each corresponding device action. The drain of
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each action is a fixed value calculated from the real world device, as such each
action is associated to a single device only.

Rule 1. Given two devices D1 = (A1, P1) and D2 = (A2, P2), a communication
initiated by device D1 on an active action a, triggering corresponding receive
action ā in D2, with an associated probability p takes the form:

(a, p) ∈ A1 ā ∈ P2 p > 0

(A1, P1)||(A2, P2)
(a,p)−−−→ (A1, P1)||(A2, P2)

Rule 2. Given monitors M1 and M2 holding battery values λ1 and λ2, devices
D1 and D2 are controlled by their respective monitors. The monitors calculate
the drain in battery caused by action a and ā from constant drain values ωa and
ωā in the form:

D1||D2
(a,p)−−−→ D1||D2 λ1 > ωa λ2 > ωā

λ1 B D1||λ2 B D2
(a,p)−−−→ (λ1 − ωa) B D1||(λ2 − ωā) B D2

These measurements can further aid the IDS in making informed decisions
regarding the impact of the various actions in the system and were used to quan-
tify the effectiveness of the attacker. Through this synthetic data the IDS will
get a wide range of attacker behaviour that will lead to system failure, including
potentially unknown attacker behaviour. Doing a similar approach without the
model would require attacking one’s own system and implementing an attack to
collect data as per a penetration test (these approaches were compared in the
experiments in section 5).

4.3 Traces of the system

We differentiate each transition as a network packet running through the system,
checked by the monitor of the device. Therefore they must be unique and fit all
the possible behaviours of the device. As each action belongs to a single device
it enables the corresponding devices to be uniquely identified.

Rule 3. Given two devices controlled by their monitors in the form: M1 B D1

as CD1 and M2 B D2 as CD2, and taking the total set of devices X, then the
transition between CD1, CD2, taking system time t and being performed with
probability p takes the form:

CD1||CD2
(a,p)−−−→ CD′1||CD′2

(t, CD1||CD2||X)
(a,p,t)−−−−→ (t+ (ta + tā), CD′1||CD′2||X)

In the computational view we compose a trace of the system inductively as
a set of transitions in between states, where prefix is the prior transitions and
the diagram describes a single transition in the form:
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prefix︷︸︸︷
{}

state︷︸︸︷
•

transition︷ ︸︸ ︷
[a, p, t′]

state’︷︸︸︷
•

↓ m ↓
M1 D1 T1

...
...

...
Mn Dn Tn

∃ Di 3 bi > ωa

∧ ∃ Dj 3 bj > ωā

∧ (a,p) ∈ Di ∧ ā ∈ Dj

M ′
1 T ′

1

...
...

M ′
n T ′

n

∀ k if k∈{Di,Dj}
λ′
k−= (ωa+ωā)

∧ t′ += (ta + tā)

if k 6∈{Di,Dj} M ′
k=Mk

The output of the system is a set of transitions following the semantics de-
scribed. By generating the outputs of the system as the full behavior spectrum,
the model can describe everything that can take place in the system. By up-
dating the probabilities we can cater to the specifics of the underlying system
behavior and make use of this to find unusual or potentially malicious behavior.
The rules can expand to include a wide array of behaviours and specifics to regu-
late devices actions and when they can be activated. These can include complex
policies on whether actions can be activated at a specific time or whether some
actions have higher priority allowing for very specific behaviour to be modelled.

Running Example: We show an example composed of: devices Dx,Dy and
Dz, corresponding monitors Mx,My and Mz, and global time t. Each device has
different actions that are synchronized with some other devices. The monitors
have battery values for the devices and each device has a set Ωi ∈ Ω of action
drains. Transitions follow the described rules to construct the traces. Note that
they do not represent the full possible set of traces but rather two simulations
of the system until devices are drained.

Table 1. Example system model and its outputs

Devices : Dx = (Ax, Px) where

Ax = {(readxy, 0.3), (writexy, 0.5), (readxz, 0.2)} and Px = {readzx}
Dy = (Ay, Py) where

Ay = {(writeyz, 0.8), (readyz, 0.2)} and Py = {readxy, writexy, readzy}
Dz = (Az, Pz) where

Az = {(readzx, 0.1), (readzy, 0.9)} and Pz = {readxz, writeyz, readyz}
Monitors Mx 3 λx = 5 and Drainsx 3 ΩAx = (1, 3, 1) ∧ ΩPx = (1)
& Drains: My 3 λy = 8 and Drainsy 3 ΩAy = (2, 4) ∧ ΩPy = (1, 2, 1)

Mz 3 λz = 2 and Drainsz 3 ΩAz = (1, 1) ∧ ΩPz = (1, 2, 1)

Trace 1: [writeyz, .8, 30] [writexy, .5, 50] [readxy, .3, 65]
Trace 2: [readxz, .2, 8] [readxz, .2, 16] [readxy, .3, 31] [readxy, .3, 46] [readxy, .3, 61]

4.4 Attacker Model

An attacker synchronizes with a subset of actions of the device. When an at-
tacker synchronizes on the device the monitor will synchronize on that action
and calculate the respective drainage. The monitor keeps track of all these mea-
surements for its respective device. Implementing the model in a tool like PRISM
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allows us to make use of Probabilistic Computation Tree Logic (PCTL) [5] to
calculate various conditions of pertinence to the system, to compute the optimal
attack path, and to simulate traces of the model.

An attacker’s intent is to behave in a manner that shortens the traces of
the system by draining the value of battery in the monitor in the most efficient
way possible. To model the attacker we made use of non-deterministic behavior
in order to allow for anything to take place at any point. The advantage of
non-determinism is that it allows for a system to arrive to an outcome using
various routes. This can be manipulated to find optimal routes through the
system and simulate varied behaviour. Unlike devices that are restricted by
time and batteries of the devices they model, we allow for the attacker to have
different levels of power to simulate various attacker strengths. An attacker, like
the devices, has a set of unique actions AA a, however unlike other devices does
not have a set of passive actions as it sits outside the connectivity of devices
and cannot receive messages. An Attacker may synchronise with any device in
the system, and the set of actions aAi ∈ AA each correspond to different types
of attacks in the real system. To expand further on the actions of the attacker,
these should be very flexible and we make allowance for any action that can take
place in the system (only restricted by the setup and protocols).

Each action label will correspond to an attack message from the real attacker
and can be converted for the log file. For our specific example, each action in
the attacker corresponds to the attacker in our experiment sending different
packets/targeting different parts of the system as per the attacker experiment
in section 5. Beyond actions it is important for us to be able to monitor the
behaviour of attackers looking at how many actions an attacking device can
perform at a time T (whether by assuming a real attacker device or by simulating
different powers of attack). This is highlighted by measurements of the system we
implemented that were then modelled in the monitor of each device. The other
information to keep track of is: the choices the attacker makes to take down
the devices, as these are important behavioural patterns for the IDS to use
and can give us insight on potential vulnerabilities as well as unknown attacker
behaviours.

Unlike with the devices (whose intention is to cover the full spectrum of
possible behaviours with the attacker), we are particularly interested in tar-
geted behaviour. The attack actions therefore encompasses behaviours which
are particularly damaging to the system (e.g. causes large drain of battery to
the devices). As opposed to probabilistic behaviour we use non-determinism to
find paths of behaviour that are particularly rewarding in terms of time taken
to take down the system and in terms on lowering system usability (e.g. mes-
sage throughput). To model non-determinism we remove the probabilities from
the attacker action. This differs from probabilistic behavior because the non-
deterministic choice between process A and Dx is resolved at the moment the
first action takes place. Conversely in the case of a probabilistic choice is done
before the actions takes place [3], so if there is a conflict in the system where
both probabilistic actions and non-deterministic actions exist the probabilistic

9



action is resolved first. By not associating a probability to an action we allow
for the strategy of the attacker device to vary depending on what we are looking
for in the system. Given a policy regulating the behaviour (corresponding to the
available attack types) we allow for any action to take place at any point. This
can be combined with a set of rules to find the trace of behaviour that allows to
follow all the rules and yet still drain the battery as quickly as possible within
these restrictions. Instead of a probability each action has an associated reward,
and one can use this to find the path of most reward (or the best strategy to
take down the system).

The non-determinism in combination with the reward structure time is used
to find the optimum attacker strategy, or the most rewarding trace through
the system. In PCTL it is written as R{“time”}min =?[ F power = 0 ] or the
minimum time for the variable power (referring to battery levels) to reach 0. The
value “time” is a variable calculated by the time for a single message to be sent by
the attacker and cumulated for each message sent before the power reaches zero
calculated in microseconds and the power drain is calculated by the formulas in
section 5. These reward structures allow for simulated attack strategies that an
hypothetical attacker might make to take down the modelled IoT system. Not
all attacks rely on speed and intensity to take down the system, as highlighted
by the running example in 4.3 where the longer trace (Trace 2) is faster, so we
model different rewards and observe different attacker behaviours. We can find
generate traces of less detectable attack by associating an predictability score
to an action and therefore keeping the behavior varied and realistic whilst still
optimizing time. This can scale to several scenarios. We use these “optimized”
traces to create a large dataset that mimics different kinds of attackers.

5 Experiment Methodology

To evaluate the effectiveness of the models we tested and compared the mod-
elled system in 4.1 with the more standard approach described previously. Both
the approaches output was used to train an IDS. The IDSs were then used to
predict attack behavior. The verification was on the following basis: 1) Accuracy
on unknown attack detection; 2) Ability to mimic devices behavior and smart
attackers. The setup of the experiment was the following:

Experiment - Device Setup : We set up a small IoT network in the lab
and then modelled it to compare the results and to test out the effectiveness of
our model in creating synthetic dataset. For the sake of testing we kept the setup
simple to display the tool as the thing that needs to scale and not the system.
Once the simple model is created it is trivial to add more (similar) devices, whilst
implementing a new system in the real world can be very time consuming. We
implemented a sensor network consisting of two devices. Each device had the
following actions; they took sensor readings and then could send it to the other
device at any time; they could also request the sensor data from the other device
at any point. The devices used simple HTTP protocol for communication, and
the behaviour was stored in Apache log format. To accurately represent the
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devices and to create smart attackers, several measures needed to be obtained.
Both devices were equipped with a Mh3500 battery. We made a basic assumption
that the devices are on constantly. We argue this is a correct assumption as due to
our attack the device is constantly in log mode and therefore never in sleep mode.
Beyond this assumption we calculated time to send a message/log a message,
baseline battery usage, percentage increase in battery usage under different DoS
strains (taken this value and dividing it by messages processed for second) and
battery drain per message.

Experiment - Attacker: To validate the model we implemented a common
DoS attack both in the real world and in the model. Our attack of choice was
HULK, a DoS attacking tool which relies on several obfuscation techniques. In
order to not be spotted whilst still outputting intense strain enough to take down
systems very quickly [2]. The attack specifies it has the following properties: 1)
obfuscation of source client - this is achieved by using a list of known user agents,
and for every request that is constructed, the user agent is a random value out
of the known list, 2) reference forgery - the referrer that points at the request is
obfuscated and points into either the host itself or some major pre-listed websites,
3) stickiness - using some standard Http command to try and ask the server to
maintain open connections by using Keep-Alive with variable time window and
4) unique transformation of URL - to eliminate caching and other optimization
tools, they crafted custom parameter names and values and they are randomized
and attached to each request. The tool was able to take down a web server within
minutes from just a single host. Seeing as IoT devices will have less capabilities
than any web server we hypothesized that this would be a good attack to use as
its properties make for a good dataset that is not straightforward to detect. These
properties and obfuscations led to different combinations of message structure
that we used in the non-deterministic attacker.

To measure the time it takes per message we measure how many messages
can be sent within a time period. This helps evaluate the accuracy in respect to
the real world of our test attacker. In order to measure voltage usage across the
different IoT devices, we attached an extra component in between the battery
supply and the device to take the readings required. To measure battery drainage
we utilized IoT battery lifespan estimator tool by Farnell [1]. This was used in
combination with a variance we introduced on top of the calculator, to represent
attack intensity and change to current. Through this we were able to estimate
the different drains of the devices as an outcome of the actions they performed.
We created datasets utilising three approaches and compared each dataset in
two different experiments.

The first dataset (RWD) was constructed from data from the real system.
We implemented the system of devices and the real-world attack and moni-
tored the behavior of the system. The data was logged across a period of twelve
hours and used to train the first IDS. The second approach was a naive ap-
proach, we constructed a synthetic dataset (ND) without attacking the system
but rather attempting random behavior. This gave a comparison of the model
with a different synthetic dataset this will help evaluate the effectiveness of the
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IDS predictions as they effectively should be random guesses. And finally, we
followed our proposed approach (MD) following section 4.

5.1 Experiment 1

As our dataset relies on stochastic events and actions, we created three datasets
from the approach and evaluated each one to benchmark its effectiveness, a
mean score was taken. Whilst our model is able to recreate very large datasets
quickly we choose to keep the dataset size uniform across the initial experiment
to get a fair comparison against the other two datasets. The comparison was
based on accuracy of prediction against unknown attacks given IDSs trained
with each of the datasets. The unknown dataset consisted of real world data of
the systems behavior whilst being targeted by attacks that we had not modelled
nor contained in the RWD. To measure accuracy we made use of the F score.
The F score is a measure of a predictors accuracy, it is a measure of its precision
over recall (a measure which takes in consideration both false positives and false
negatives).

5.2 Experiment 2

The second experiment we ran was to test the effectiveness of the model in
creating large quantities of behavior and the ability to readjust in case of network
reconfiguration. We used deep learning classifiers catered to large datasets and
created a much more efficient IDS purely through synthetic data. One of the
core strengths of our approach is that once the model is setup the datasets are
very easy to generate and we wanted to test whether this, in combination with
our smart attackers, will lead to the ability to train better performing IDS.

6 Experiment Setup

To perform experiments described in section 5 we implement a Python frame-
work that runs through the various steps required to test the IDSs: data gen-
eration, data processing, standardization and setting up of the IDS’s classifiers.
This automatic framework prepares the datasets and trains the IDSs so that
we may perform Experiment 1 and 2. It is implemented using the scikit-learn
machine learning libraries.

6.1 Data Generation

Achieving a rich descriptive dataset was paramount in training an effective IDS.
Through the outputted model traces we were able to generate a dataset of dif-
ferent transitions through the modelled system. These traces were descriptive
enough for a machine learning algorithms to construct rules about negative be-
havior through supervised learning. The traces of the model correspond to the
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real system behavior and each transition was labelled as either normal or ab-
normal behavior, therefore they can be used to make informed decisions about
the system. For instance, if the model traces of the attacker continuously target
a device, the IDS can interpret this as a weak point and set a rule to limit this
behavior, as this could correspond to the behavior of a real world attacker.

6.2 Data Processing & Standardization

To allow for data to be interpreted by machine learning algorithms it needs
to go through a process of standardization. This is often due to categorical
non-numeric features or continuous features. The data provided by most if not
all internet protocols is categorical (e.g. agent names and method calls). As
such, in order to evaluate it we first needed to go through an initial phase
of pre-processing. The intent of pre-processing is to render the data machine
readable whilst preserving patterns. The process we adapted was the process of
binarisation. Binarisation allocates a numeric value to each unique feature for
example if dealing with HTTP codes GET would become 0001, POST 0010,
DELETE 0100 and PUT 1000. This allows for the features to maintain their
patterns and their predictive power and be used normally. This initial step was
applied to both the real world dataset and the naive synthetic dataset. This step
was however not required for the model dataset as it already produced numeric
features rather than categorical ones for efficiency.

6.3 Classifiers

The classifiers we implemented represented the IDSs. We choose to use two
separate classifiers to get a better evaluation of the results. Each dataset was
used to train two IDSs and then all the IDSs were tested against a new dataset
of attack to establish their predictive power and the strength of the datasets.

The first classifier we implemented was Multi Layer Perceptron (MLP) Neu-
ral Network. An MLP consists of at least three layers of nodes. Except for the
input nodes, each node is a neuron that uses a non-linear activation function [24].
MLP utilizes a supervised learning technique called back propagation for train-
ing. Its multiple layers and non-linear activation distinguish MLP from a linear
perceptron. A linear perceptron is a function that can decide whether an input,
represented by a vector of numbers, belongs to some specific class or not. Com-
bining several together in an MLP and adjusting the functions and weights you
build a statistically accurate classifier. The result is a non-linear perceptron that
is able to classify non-linear classes.

The second classifier used was a Decision Tree Classifier. A decision tree is
a decision support tool that uses a tree-like graph or model of decisions and
their possible consequences, including chance event outcomes, resource costs,
and utility. It is one way to display an algorithm that only contains conditional
control statements [20]. Decision tree learning uses a decision tree (as a predictive
model) to go from observations about an item (represented in the branches) to
conclusions about the item’s target value (represented in the leaves). The rules
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in the branches are automatically constructed from the training data which is
labelled. Using these rules it will be able to take in the test data and run it until
it reaches an end node corresponding to a class (either DoS attack or normal
behaviour).

7 Results

Following the evaluation criteria in section 5 and recreating the model described
in section 4, we generated and tested three model datasets against our bench-
marks of the naive dataset and the real world dataset. Beyond the accuracy of
the results, we make an argument for feasibility and re usability of our approach.
The results were acquired by initially training two classifiers for each dataset,
these were trained with 20,000 samples of which 10% were attacks. The classi-
fiers were then evaluated on an unknown and unlabelled real world dataset of
100,000 samples of which 20% were attacks (of two different unknown types).
The classifiers then attempted to label the new dataset to predict which ones
were attacks.

7.1 Experiment 1 - Results

The neural network trained on the real world dataset proved to be very accurate
with a 85.5% prediction accuracy. On the other hand the model dataset trained
predictor whilst still high, suffered from some degree of variance (79.7± 6.3%).
What was of most interest however was the predictions outputted by the naive
dataset of 0.9%. This combined with the relatively inconsistent results of the
synthetic dataset (±6.3%) make a case for over fitting. Over fitting is the scenario
in which a model is trained so specifically to the training data that it is no longer
classifying DoS attacks and normal behaviour of the system but rather focusing
solely on the training data and learning on patters unique to the dataset not
the system. This is quite common in Neural Networks as they perform best with
very large quantities of data [24], which for this part of the experiment we did
not have.

The results of the decision tree, contrasting to neural networks do not suf-
fer from the same inadequacy of over fitting and do not necessarily need large
amounts of data. This was mirrored by the results, as the model datasets all per-
formed to very similar standards and the added randomness traces which might
have disrupted the neural network made for a more ample rule set resulting in
near perfect predicting power in the model dataset (98.8± 0.6). The real world
data which did not look at the possibility of random behaviour only achieved
77% accuracy and the random dataset had a predictive power of near 50% as
expected.

7.2 Experiment 2 - Results

We observed that our approach of using non-determinism to recreate attack
traces was particularly effective for the rule based classifier however led to
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disruption during the back-propagation process of the neural network, as non-
standardized data can create uneven results. This time using the much larger
dataset of 100,000 transitions,the results were a lot more accurate (97.1%) than
previously, confirming our hypothesis.

As highlighted by this example our model has one key advantage over the
traditional approach. Data generation is fast and efficient. If we wanted to im-
prove the training of the IDS used on the real world dataset to a similar level
of accuracy, it would take several days of data collection and consumption of re-
sources (electricity, system downtime etc). We argue that whilst the initial effort
of creating a model might be time consuming and perhaps not as intuitive for
a potential system administrator, the phase of dataset generation makes up for
this effort both for speed and predicting power of the IDS.

8 Conclusion & Future work

Our case study and proposed methodology has shown very promising results. We
have shown that generating synthetic datasets of DoS attacks in IoT networks
through this tool is both effective and efficient. We believe that the ability for this
approach to scale easily to multiple devices and protocols in combination with its
strong predictive power makes a very good argument for its usage across various
IoT networks. Our argument for scalability of this approach is two fold, firstly it
scales well in terms of costs as you can make assessment prior to implementing
the system and secondly, we can bypass several of the downsides of verification (in
terms of state space) as we focus on simulation. Perhaps the most useful feature
of our proposed approach is that it allows for the construction of datasets to be
very efficient even if a device is added or the system is reconfigured. As this is a
prominent concern in dynamic IoT systems this advantage is quite significant.

In this paper we included a case study of a single attack which worked very
well. Our future work envisions the ability to model further attacks from a
database to create an extensive set of attacks to create a much more predictive
dataset. We envision that the ability to relatively easily plug and play any IoT
system in combination with implemented corpus of attacks, could turn into a
tool that generates synthetic datasets of attacks to train bespoke IDSs for any
IoT system.
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