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Abstract. Cloud storage services offer a variety of benefits that make
them extremely attractive for the management of large amounts of data.
These services, however, raise some concerns related to the proper protec-
tion of data that, being stored on servers of third party cloud providers,
are no more under the data owner control. The research and development
community has addressed these concerns by proposing solutions where
encryption is adopted not only for protecting data but also for regulat-
ing accesses. Depending on the trust assumption on the cloud provider
offering the storage service, encryption can be applied at the server side,
client side, or through an hybrid approach. The goal of this chapter is to
survey these encryption-based solutions and to provide a description of
some representative systems that adopt such solutions.

1 Introduction

The ever increasing availability of off-the-shelf cloud storage platforms has con-
tributed to the growing of the Storage-as-a-Service (SaaS) market, with an
increasing trend for users and companies to offload their (possibly sensitive or
confidential) data and resources. There are several reasons for using cloud stor-
age services such as the benefits in terms of availability, scalability, performance,
and costs as well as the ability to easily share data with other users. However,
this trend also introduces several security and privacy risks that can slow down
the widespread adoption of storage services (e.g., [13,18,20]). In fact, by relying
on third parties for the storage of their data and resources, users and companies
lose the control over them: how can users and companies trust that their data
are properly protected when stored on a third-party server? The research and
development communities have dedicated many efforts in designing solutions
for addressing this concern (e.g., [13]). Encryption is at the basis of many of
these techniques: when data are encrypted they are visible only to the users who
know the encryption key. Encryption has then been adopted not only as a valid
solution for protecting data confidentiality (even against adversaries with access
to the physical representation of the data, including the cloud providers them-
selves), but also for supporting selective sharing of such data [12]. In this case,
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data owner

Fig. 1. Reference scenario

the idea consists in encrypting different portions of the data with different keys
and then sharing the encryption keys with only the users that have the autho-
rization for accessing the corresponding encrypted data. Figure 1 illustrates the
typical reference scenario when considering cloud storage infrastructures. As it
is visible from the figure, there are three main entities involved in this scenario:
the data owner who wishes to outsource the management of her data to a third
party, the cloud providers (CSPs) offering storage services, and other users who
may need to access the data stored on cloud providers.

A fundamental aspect that needs to be considered when applying encryption
to protect data is the trust assumption on the cloud providers in charge of storing
and managing the data. Cloud providers can be trusted, honest-but-curious, or
lazy/malicious. A trusted provider is fully trusted to access and manage the data
that it stores. A honest-but-curious provider is trustworthy for providing services
but should not be allowed to know the actual data content. A lazy or malicious
provider is neither trusted nor trustworthy and therefore its behavior should
be controlled. Depending on the trust assumption, encryption can be applied
following three different strategies: server-side, client-side, hybrid. Server-side
encryption means that the encryption of the data is managed directly by the
cloud provider, which stores and manages also the encryption keys. In this case,
the cloud provider guarantees that the data are stored in an encrypted format.
However, whenever the cloud provider’s services require direct visibility of the
plaintext data for access execution, the provider can decrypt the data. Since the
cloud provider has full visibility on the data, it can also enforce access restric-
tions. Server-side encryption can be applied only when the cloud provider is
fully trusted. Client-side encryption means that users encrypt their data before
storing them on external cloud providers. In this case, the encryption keys are
stored and managed by the owner of the data and cloud providers cannot access
the data in plaintext form, which limits the functionality that they can offer.
Also, access control restrictions need to be enforced by the data owner who has
to mediate all access requests to the data. This clearly reduces the advantages
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Encryption type . . . .
Trust Assumption server-side| client-side | hybrid

trusted v v v
honest-but-curious X v v
lazy/malicious X v X

v': applicable; x: not applicable

Fig. 2. Encryption scenario depending on the trust assumption on cloud providers

of outsourcing the management of data to a third party. Client-side encryp-
tion can be applied under any trust assumption on the cloud provider. How-
ever, it is usually adopted when the cloud providers are honest-but-curious or
lazy /malicious. In the hybrid approach, the encryption of the data is performed
both at the client-side and at the server-side with the consequence that there are
two sets of encryption keys: one managed by the data owner and another one
managed by the cloud provider. The rationale behind the hybrid scenario is that
client-side encryption protects the data from cloud providers while server-side
encryption efficiently enforces changes in the access control policy without the
involvement of the data owner. Clearly, this approach can be applied only when
cloud providers are honest-but-curious (or trusted) but cannot be applied when
the cloud provider is lazy/malicious since there is no guarantee that the provider
applies the required encryption operations. Figure 2 summarizes the applicabil-
ity of the three encryption strategies according to the trust assumptions that
characterize the cloud providers.

The goal of this chapter is to provide an overview of the current encryption-
based solutions for protecting and enforcing selective access over data stored in
the cloud. In particular, for each of the three encryption strategies discussed
above, we first describe its salient aspects along with the main advantages and
disadvantages. We then describe a representative system that applies the con-
sidered strategy. The remainder of this chapter is organized as follows. Section 2
focuses on server-side encryption and presents OpenStack as a representative
system. Section3 illustrates client-side encryption and describes the MEGA
service. Section4 shows the hybrid approach and describes a prototype sys-
tem (ESCUDO-CLOUD EncSwift) protecting data confidentiality in OpenStack
Swift. Finally, Sect.5 presents future research directions and provides our con-
clusions.

2 Server-Side Encryption

With server-side encryption, the cloud provider protects data in storage with an
encryption layer that it can remove when needed to perform access and query
execution (i.e., the cloud provider manages both the data and the encryption
keys). In this case, users placing data in the cloud have complete trust that the
cloud provider will correctly manage the outsourced information.
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2.1 Discussion

Being fully trusted, the management of data is completely delegated to the
cloud provider itself. From the point of view of the users, the main advantage
of this solution is that they can use all the functionality offered by the server
for querying the outsourced data. Furthermore, the data owner can delegate the
cloud provider to enforce access control policies for regulating access to data.
From the point of view of the cloud provider, server-side encryption allows it to
use deduplication techniques to avoid the storage of multiple copies of the same
data, thus saving storage space. Basically, a cloud provider keeps the hash of
every resource it is storing. When a user uploads a resource, the cloud provider
computes the hash of the resources and checks whether the computed hash
corresponds to the hash of a resource it already stores. If this is the case, the
cloud provider discards the storage request and provides a link to the resource
already stored.

Although many of the most well-know public cloud storage providers use
server-side encryption (e.g., Dropbox, Amazon, and Google), this solution is not
always feasible and introduces security risks. In fact, since the encryption keys
are stored with the data, an adversary can exploit possible vulnerabilities of the
cloud provider to obtain both the encrypted data and the encryption keys, thus
obtaining the access to the plaintext version of the data themselves. Further-
more, the cloud provider might be forced by authorities to provide the stored
data in their plaintext form. With respect to the data deduplication techniques
commonly adopted by cloud providers, they can be exploited for violating data
confidentiality. As an example, suppose that an adversary knows that a certain
resource is stored on the cloud provider but does not know the value of some spe-
cific bytes (e.g., one value of a csv file). The adversary might try to generate as
many resources as the possible combinations for the missing bytes and to upload
each of them, one at a time. When the upload operation is not performed, the
adversary knows that the uploaded file corresponds to the one already stored
and therefore knows the value of the missing bytes. We note that these consider-
ations apply to both public clouds and private clouds (i.e., cloud solutions built
internally by a company).

Examples of public storage services based on server-side encryption are Drop-
box [14], Amazon Simple Storage Service (S3), and Google Cloud Storage (GCS).
All these services typically store the encryption keys in their proprietary key
management system and mainly differ in the pricing schema. Although the com-
panies ensures that no access is performed on users’ data, they could potentially
access all the data they store. In the following, we present OpenStack Swift as
an example of cloud solution offering server-side encryption.

2.2 Case Study: OpenStack Swift IBM Key Rotation

A well-known open source cloud computing platform that adopts server-side
encryption is OpenStack (http://www.openstack.org). OpenStack manages large
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Fig. 3. OpenStack Swift architecture

pools of computing, storage, and networking resources, all controlled by admin-
istrators through a dashboard. OpenStack consists of several components includ-
ing an object storage system, called Swift. The architecture of Swift is composed
of a Proxy Server, a Ring, and an Object Server (Fig.3). The Proxy Server is
the key component of Swift and is responsible for processing requests coming
from users and interacts with all other components. The Ring determines the
physical device where a file should be located. In other words, it is responsi-
ble for mapping names and physical location of data. The Object Server is a
blob storage (i.e., a storage that can manipulate unstructured data) in charge
of storing, retrieving, and deleting objects on disks. Each object is stored as a
binary file, and its metadata are stored as extended attributes of the file. Objects
stored in Swift are organized in containers, which loosely corresponds to directo-
ries of common file systems. Containers are organized in tenants (or accounts).
For interacting with Swift, a user sends a valid request to the Proxy Server.
The request is then processed by a pipeline of middlewares, and each of them
can enrich, filter, or drop metadata. In case the request reaches the end of the
pipeline, it is dispatched to the relevant Object Server based on the information
contained in the Ring. Once the request is processed by the Object Server, a
response is sent to the user, processed again by the middlewares of the Proxy
Server but in reverse order.

One of the latest release of OpenStack Swift (Ocata') supports server-side
encryption to protect data at-rest (both objects content and metadata). To
this purpose, three new middlewares have been added: encrypter, decrypter,
and keymaster. Encrypter and decrypter are middlewares in charge of perform-

! https://github.com/openstack /swift /blob/master/ CHANGELOG.
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ing encryption and decryption operations on data and metadata. Keymaster is
responsible for deciding whether a resource should (or should not) be encrypted
and which encryption key should be used?. Swift supports a variety of keymas-
ter implementations, including Swift-KeyRotate? proposed by IBM. The Swift-
KeyRotate is a hierarchical key management system that manages three types
of keys: a top-level Master Key; Data Encryption Keys (DEKSs), used to decrypt
and encrypt user/system metadata and user data; and Key Encryption Keys
(KEKs), used internally in the keymaster middleware to protect other KEKs
and DEKs. As data are hierarchically organized in accounts, containers, and
objects, also KEKs and DEKs are hierarchically organized according to the
account/container/object hierarchy (Fig.4). More precisely, a KEK and a DEK
are generated for each account, container, and object. DEKs associated with
accounts and containers are used to encrypt the metadata of the accounts and
containers, respectively. DEKs associated with objects are used to encrypt both
objects and their metadata. The Master Key (which is stored in the Barbican
system, the secret storage of OpenStack) is used to encrypt the KEK associated
with an account. Then, the KEK associated with an entity (i.e., an account, a
container, or an object) is used to encrypt the DEK associated with the same
entity and the KEKs associated with the entities of the level below (if any).

2 http:/ /specs.openstack.org/openstack /swift-specs/specs/in_progress/at_rest_
encryption.html.
3 https://github.com/ibm-research /swift-keyrotate.
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objects

Figure4 illustrates the hierarchical organization of KEKs and DEKs. When a
user authenticates to OpenStack via Keystone (the identity server of Open-
Stack), the user is associated with an account and therefore she can access a
Master Key that is retrieved from Barbican through the user’s authentication
token.

Good key management practice requires a periodic key rotation, meaning
that encryption keys must be periodically changed. The rotation of the Mas-
ter Key stored in Barbican is similar to the approach adopted by systems for
industrial key-lifecycle management [7,15]. However, in Swift-KeyRotate, it is
not sufficient to rotate the Master Key since an adversary could have stored
the key of a lower level and then could be still able to obtain access to all the
underlying data. Key rotation is then performed on all levels and is also needed
to securely delete objects. We note that key rotation involves only the KEKs
while the DEKs are generated when the corresponding entity is created and are
never changed. As an example, consider two containers, C; and Cy, each of which
includes two objects, {011,012} and {021, 022}, respectively. Figure5 illustrates
the corresponding KEK hierarchy: nodes of the hierarchy represent keys and
an arc from a key k to key k' means that k' is encrypted using k (e.g., in the
figure an arc from MK; to AK; means that the account KEK is encrypted via
the Master Key). Suppose that a user wishes to delete object 017. In this case,
new KEKs have to be generated for all entities in the key hierarchy that are
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on the path to object 011 (i.e., container Cy, account A, and the master). Fur-
thermore, the KEKs of all entities whose parent KEKs have been changed are
re-encrypted with the new parent key. In our example, the KEK O15K; of object
012 is encrypted with the new KEK associated with container Cy, say Cy K5, the
KEK C3K; of container C5 is encrypted with the new KEK of account key A,
say AKo, and the account key AK5 is encrypted with the new Master Key, say
MKs.

3 Client-Side Encryption

With client-side encryption, the data owner encrypts her data before outsourcing
them to a cloud provider. The encryption keys are therefore stored at the client-
side and are never exposed to the cloud provider, which cannot decrypt the
outsourced data. This solution is typically applied when the cloud provider is
honest-but-curious or lazy/malicious.

3.1 Discussion

Like for the server-side encryption, this solution has some advantages and disad-
vantages for users and the cloud provider. From the point of view of the users,
the main advantage is an increase of the spectrum of cloud providers to which
a data owner can outsource her data. In fact, since the data are encrypted at
the client-side, the data owner can also leverage the services of less reputable
cloud providers, which are typically cheaper than well-known cloud providers.
The main disadvantages are that the data owner has to directly manage the
encryption keys and has to enforce access control restrictions as well as changes
in the access control policy. In this scenario, access control can be enforced using
an approach based on selective encryption [12]. Intuitively, selective encryption
means that the data owner encrypts different portions of her data using dif-
ferent keys and discloses to each user only the encryption keys used to protect
the data they can access. Whenever the access control policy changes, the data
owner must download the involved data, decrypt and re-encrypt them with a new
encryption key, re-upload the new encrypted data, and share the new encryption
key with authorized users. Clearly, such an approach puts much of the work at
the data owner side, introducing a bottleneck for computation and communica-
tion. Another disadvantage is that both the client and the server storing the data
may be the subject to attacks from an adversary. Common client-side attacks
include, for example, the man-in-the-browser attack, in which an adversary takes
control over a part of the browser (e.g., browser extension hijacking) to replace
the cryptography algorithms used by the cloud provider with algorithms con-
trolled by the adversary. This attack can also compromise the key-generation
and the client-side integrity checks without the client being aware of it. The
adversary might also try to compromise the server to use it as a vehicle to send
malicious code to the client. For services that provide access via browser, in
fact, the server still plays a central role by providing the JavaScript code that
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encrypts the data before upload. If an adversary is able to replace this code
with a malicious one, the adversary can compromise the confidentiality of the
outsourced data collection.

From the point of view of the cloud provider, the main advantage is that
the cloud provider should not be worried about the protection of data, which
is guaranteed by client-side encryption. The main disadvantage is that dedupli-
cation techniques cannot be used since the same plaintext data are encrypted
by different data owners using different keys, thus generating different cipher-
texts. A possible approach for addressing this issue consists in using convergent
encryption, a cryptosystem that can generate identical ciphertexts from identical
plaintext data. While interesting, this techniques is still vulnerable to the brute
force attack described in Sect. 2.1.

Examples of cloud storage services supporting client-side encryption are Spi-
derOak and MEGA [9]. In the following, we describe the MEGA system.

3.2 Case Study: Mega

MEGA system supports browser-based User Controlled Encryption (UCE),
meaning that resources are automatically encrypted on the user’s device before
they are stored on MEGA cloud service [17]. Client-side encryption uses different
encryption keys managed by the data owner: a Master Key is a user’s key used
to protect the symmetric file key adopted for encrypting a file that is stored
on MEGA; a user password is then used to encrypt the Master Key. File keys
encrypted with the Master Key as well as the Master Key encrypted with the
user password are stored on MEGA. Different files are encrypted with different
file keys and therefore the knowledge of a file key allows a user to decrypt only the
file encrypted with such a key. This mechanism enforces selective encryption, as
illustrated in the previous section. Note that an adversary compromising a store
server of MEGA cannot decrypt the encrypted files stored on the node since the
encryption key is managed at the client-side. Furthermore, MEGA uses HMAC
to provide integrity guarantee to the file stored in MEGA store node. In this way,
an adversary with access to a MEGA store node and the file key of a file cannot
replace the file without the original user who has uploaded the file noticing that
it has been changed.

Figure 6 illustrates the MEGA encryption and decryption processes. When a
user wishes to store in the MEGA system a resource, a new file key is generated
with the support of a cryptographically strong random number with entropy
coming from both HTML5 APIs and mouse/keyboard entropy pool. The file
is then encrypted with the file key and AES-12 and the resulting ciphertext is
uploaded on MEGA. The encryption operation is performed either by the MEGA
client or directly in the browser, using JavaScript. The file key is encrypted with
the Master Key that in turn is protected with the user password. The resulting
encrypted keys are then uploaded on MEGA (Fig.6(a)). When a user wishes
to access a given file, she first provides her password, which is used to decrypt
the Master Key. The file key of the file of interest is then decrypted, using the
Master Key, and it is used to decrypt the file. Post-download integrity checks
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Fig. 6. MEGA upload (a) and download (b) process

are performed via a chunked variant of the Counter with CBC-MAC (CCM)
mode, which is an encryption mode only defined for block ciphers with a block
length of 128 bits. Note that MEGA supports end-to-end encryption, meaning
that encryption and decryption operations are performed at the client side.

With respect to the ability of supporting deduplication, MEGA can apply
a deduplication process only when a user copies/pastes a file within her cloud
drive or when the file is shared with another user who imports it. In fact, even if
two (or more) users upload the same encrypted file, it will appear different since
the file is encrypted using different keys.

Resource sharing is supported using two different strategies. The first strategy
consists in sharing a public link that will allow a user receiving it to decrypt the
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corresponding resource, as the file key used to encrypt the file is included in the
link (it is important to note that the link is generated at the client side and
not at the server side). With this strategy, the public link can be shared with
anyone who may not necessarily have a MEGA account. The second strategy is
only applicable between MEGA users and is based on asymmetric encryption
(RSA-2048). Each user is associated with a public key and a private key both
stored on MEGA: the public key is stored in plaintext and the private key is
stored in encrypted form, using the Master Key of the user as encryption key.
When a user, say A, wishes to share a resource with another user, say B, A
encrypts the corresponding file key with the public key of B and the resulting
ciphertext is stored on MEGA. When B wishes to access the resource, she first
retrieves from MEGA her encrypted private key, decrypts it using her Master
Key and the resulting plaintext private key is used to decrypt the file key that B
can use for decrypting the file of interest. To provide access revocation to users
who were previously given access to the file key, MEGA applies a classical access
control policy defined by the data owner. A revoked user is therefore prevented
access to the encrypted files. Note that MEGA is trusted to correctly enforce
the access control policy defined by the data owner.

4 Hybrid Encryption

The hybrid approach combines client-side encryption with server-side encryption
to improve efficiency in data management. Hybrid approaches are usually based
on different layers of encryption with some encryption keys managed at the client
side and other encryption keys managed at the server side. The latter keys are
needed by the cloud provider to correctly enforce changes in the access control

policy.

4.1 Discussion

The main advantage of the hybrid approach is the efficient enforcement of
changes in the access control policy without impacting the confidentiality of the
resources. In fact, while with client-side encryption changes in the access control
policy must be enforced by the data owner (Sect.3), with a hybrid approach
such changes can be enforced directly by the cloud provider. This approach
can therefore be applied only when the cloud provider is honest-but-curious,
since the provider has to correctly enforce the changes as dictated by the data
owner. An example of commercial solution adopting this approach is BeSafe
SkyCryptor®, a commercial platform providing end-to-end encryption. BeSafe is
based on a honest-but-curious proxy (BeSafe Key Server) performing a proxy
re-encryption [2,8] on encryption keys, and on a public cloud storage provider
storing the encrypted data. Proxy re-encryption is a cryptographic technique
that transforms a ciphertext generated with a key k into a ciphertext that can

4 https:/ /besafe.io/.
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be decrypted using a different key k’, without the need for decryption the orig-
inal ciphertext. Hence, it can be performed also by a party not trusted for the
plaintext content of the data. Each user of the BeSafe SkyCryptor has a pair
of public and private keys. Whenever a user wants to store a resource at the
public cloud provider, the resource is first encrypted at the client side using a
symmetric encryption key, called file key. The encrypted resource and the file
key, encrypted with the public key of the user, are then stored on the cloud
provider. Resources can be shared only among users with a BeSafe account.
Figure 7 shows an example of sharing between user A and user B. User A first
generates a new prozy key, encrypts such a key with her public key, and sends the
resulting ciphertext to the BeSafe Key Server (1). B downloads the encrypted
resource (2) from the public cloud storage provider, along with the correspond-
ing encrypted file key (3). The encrypted file key is then sent to the BeSafe Key
Server (4) that proxy-re-encrypts it using the proxy key generated by A. The
result of the proxy re-encryption is sent to B (5) who can decrypt it through her
private key for retrieving the file key and then can use the retrieved file key to
decrypt the resource [19].



Protecting Resources and Regulating Access in Cloud-based Object Storage 137

4.2 Case Study: EncSwift

EncSwift is a tool for providing data-at-rest encryption and enforcing access
control when relying on a honest-but-curious cloud provider [3,4]. This tool is
based on OpenStack Swift where, as already discussed in Sect.2.2, data are
hierarchically organized in accounts, containers, and objects. The access con-
trol enforcement mechanism implemented by EncSwift is based on selective
encryption (Sect.3.1) and over-encryption approaches [10,11]. According to the
over-encryption approach, each user has a symmetric encryption key and each
resource is encrypted with a symmetric key that depends on the access control
policy regulating access to the resource. This first client-side encryption, called
Base Encryption Layer (BEL), is needed to protect the confidentiality of the
resources from the cloud provider. Resource encryption keys are organized in a
key derivation hierarchy so that each user can use her symmetric key for deriving
the encryption keys of all and only the resources she is entitled to access. Pol-
icy updates are enforced by applying a second layer of encryption at the server
side, called Surface Encryption Layer (SEL). SEL encryption is applied when-
ever there are users who are not authorized to access an object, but they know
the underlying BEL key. This happens, for example, when access to a resource
is revoked to a user: the revoked user could have maintained a copy of the BEL
key and therefore she could still be able to pass the BEL layer and access the
object for which she does not have the access authorization anymore. A user will
then be able to access an object only if she knows both the SEL key and the
BEL key with which the object is encrypted. We now describe the keys needed
to implement the over-encryption approach in Swift, how the access control pol-
icy defined by the data owner can be enforced through selective encryption, and
how to enforce policy updates.

Keys. The core component of EncSwift is the Encryption Layer (Fig.8), which
is in charge of encrypting objects before outsourcing them to the cloud provider,
and of decrypting them when they are retrieved from the cloud provider. The
implementation of over-encryption in OpenStack Swift is then based on the
definition and management of different keys: Master Keys (MKs), RSA key pairs,
RSA signature key pairs, Data Encryption Keys (DEKs), and Key Encryption
Keys (KEKs). Each user is associated with a symmetric Master Key and two
pairs of public and private keys: one pair is used for encryption (RSA key pair)
and one pair is used for signing messages (RSA signature pair). A DEK is a
symmetric key that the Encryption Layer uses to encrypt (decrypt) an object
stored on the cloud provider. All objects in the same container are initially
encrypted with the same DEK, then a new DEK is generated whenever a policy
update occurs. The Master Key is kept on the client side while all the other
keys are stored in Barbican, the OpenStack Secret Storage, or can be stored
and managed through other key management services [6]. The user’s public keys
are stored in plaintext while the corresponding private keys are encrypted with
the Master Key. DEKs are encrypted and stored in the form of Key Encryption
Keys (KEKs), which should not be confused with the KEK used in the Swift-
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KeyRotate approach (Sect.2.2). The encryption of the DEK can be performed
in two different ways. A first way consists in encrypting a DEK with the user’s
Master Key (symmetric KEK). In this case, only the user who knows the Master
Key can decrypt the KEK. A second way consists in encrypting the DEK with
the RSA public key of a user and signing it with the RSA signature private key
of the user who owns the resource protected with the DEK (asymmetric KEK).
This second strategy allows the user who own the resource to share a DEK (and
therefore the access to the corresponding resource) with other users.

Selective Encryption. All users in the system can define an access control policy
for the objects they own, which can then be translated into an equivalent policy-
based encryption as follows. First, a data owner creates as many containers as
needed, and, for each of them, defines a DEK. The data owner then encrypts all
the objects in the same container with the DEK of the container. This means
that all objects in a container are characterized by the same access control list
(i.e., they can be accessed by the same set of users). The DEK is then encrypted
with the Master Key of the data owner and, for each user in the access control list
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of the objects in the container, the DEK is encrypted with her RSA public key
and signed by the data owner with her signature private key. When a user wishes
to access a specific object, the object descriptor is first accessed to retrieve the
identifier of the DEK used to encrypt the object. This identifier is then used to
retrieve the corresponding KEK and derive the DEK. Derivation will require the
user to use either her own Master Key (for symmetric KEK), or her RSA private
encryption key (for asymmetric KEK). Note that, to improve the efficiency of the
subsequent accesses to the key and simplify the procedure, once a DEK provided
by another user is extracted from an asymmetric KEK, the KEK is replaced by
a symmetric KEK built using the Master Key of the user.

Policy Updates. Policy changes refer to the insertion and deletion of users,
objects, and authorizations. The insertion of a user requires the generation of
her Master Key, RSA key pair, and RSA signature key pair and the storage of
the public keys in Barbican. The removal of a user requires only the removal of
her public keys from Barbican. The removal of an object requires its deletion
from the container including it. The insertion (grant) and removal (revoke) of
authorizations as well as the insertion of new objects require the involvement
of the cloud provider for the application of a second layer of encryption (SEL
layer). The SEL layer is developed as a new middleware and inserted into the
pipeline, using the same approach adopted by IBM and explained in Sect.2.2.
We now describe how grant/revoke operations and the insertion of a new object
in a container are implemented.

In case of a grant operation, it is sufficient to generate a new (asymmetric)
KEK for the granted user and store it in Barbican. This new KEK is generated
by the owner of the container. In case of a revoke operation, it is not sufficient to
remove the KEK that allows the revoked user to derive the DEK of the container
since the user could have locally stored the KEK and therefore could still have
access to the objects stored in the container. To avoid this problem, the owner
of the container asks the cloud provider to over-encrypt all the objects in the
container with a SEL key that only non-revoked users can derive. Therefore,
each container is associated with two keys: a key at the BEL level that can be
derived by all users originally authorized for the container, and a key at the SEL
level that can be derived only by non-revoked users. In case of insertion of a
new object into a container, the new object inherits the access control list of
the container. To correctly enforce such an authorization policy, the new object
is encrypted with the BEL DEK key associated with the container and, if the
contained was involved in a revoke operation, with the SEL DEK key associated
with the container. Since, however, the authorization policy of the new object
has never been updated, the adoption of SEL encryption over it might be an
overdo. A new BEL DEK key is the adopted to protect objects that are inserted
into a container on which revoke operations had been applied. As a consequence
of the revoke operation, a new DEK BEL key (and the corresponding KEKs for
the users in the new access control list) is generated for the container, and used
for objects that will be inserted into the container after the revoke operation.
While for existing objects over-encryption is needed to guarantee protection from
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the revoked user, new objects can be encrypted with the new DEK known only
to the users actually authorized for them.

The implementation of over-encryption for the enforcement of revoke opera-
tions can operate in different ways, depending on the time at which SEL encryp-
tion is applied [4]: materialized at policy update time (immediate), performed at
access time (on-the-fly), or performed at the first access and then materialized
for subsequent accesses (opportunistic).

— Immediate. The cloud provider applies over-encryption when the owner
revokes the authorization over a container to a user. Immediate over-
encryption requires the owner to generate, at policy update time: the SEL
DEK necessary to protect the objects in the revoked container, and the KEKs
necessary to authorized users (and to the server) to derive such a SEL DEK.
Also, the objects in the container will be over-encrypted. The cloud provider
will then immediately read from the storage the objects in the container,
re-encrypt their content with the new SEL DEK (possibly removing SEL
encryption), and write the over-encrypted objects back to the storage. Hence,
immediately after the policy update, the objects in the container are stored
encrypted with two encryption layers. Every time a user needs to access an
object in the container, the server will simply return the stored version of the
requested object. This approach can be applied when policy updates are rare
and the container size is moderated, because no overhead is applied when
objects are downloaded, except for the supplementary decryption step with
the SEL DEK at the client side. The main drawback is that encryption cost
must be paid for the whole container, even for objects that are not accessed
before next policy update.

— On-the-fly. The cloud provider applies over-encryption every time a user
accesses an object. Then, even if the owner of the container asks the cloud
provider to over-encrypt the objects in the container, the provider only keeps
track of this request, but it does not re-encrypt the objects. When a user
needs to access an object in the container, the cloud provider possibly over-
encrypts the object before returning it to the user. The advantage of this
approach is that over-encryption is applied only if needed. However, if an
object is accessed multiple times, the object is encrypted all the times.

— Opportunistic. This approach aims to combine the advantages of both imme-
diate over-encryption and on-the-fly over-encryption. Opportunistic over-
encryption requires the owner, when a user is revoked access to a container,
to define both the SEL. DEK necessary to protect the objects in the revoked
container, and the KEKs necessary to authorized users (and to the server)
to derive the SEL DEK. Similarly to the on-the-fly approach, the provider
over-encrypts an object in the revoked container only when it is first accessed.
However, instead of discarding it, the result of over-encryption is written back
to storage for future accesses. The main disadvantage of this approach is that
the SEL protection must be removed when the object is downloaded after a
policy update that generated a new SEL DEK because the object should be
protected with the new SEL key.
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5 Discussion and Conclusions

The design of efficient techniques for protecting the confidentiality and regu-
lating access to data stored at external cloud providers has been the subject of
several efforts in the research as well as industrial community. In this chapter, we
have presented an overview of recent approaches that protect the confidential-
ity of the data through encryption as well as enforce access control restrictions.
These techniques mainly differ in how encryption is enforced, which depends
on the trust assumption on the cloud provider. Interesting evolution of these
encryption-based data protection techniques are related to the use of All-or-
Nothing Transform (AONT) for enforcing changes in the access control policy
without requiring the support of the cloud provider [5], and the consideration
of novel distributed cloud storage systems (e.g., Storj [1,22], Sia [21] and File-
Coin [16]) characterized by the availability of multiple (untrusted) nodes that
can be used to store resources in a distributed manner.
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